

TRCV0110G 10 Gbits/s Limiting Amplifier Clock Recovery, 1:16 Data Demultiplexer

Features

- Integrated limiting amplifier with 7.5 mV sensitivity at 1e-10 bit error rate (BER)
- Integrated clock recovery and 1:16 data demultiplexer (deMUX)
- Supports standard OC-192/STM-64 data rate of 9.9532 Gbits/s up through forward error correction (FEC) rate of 10.709 Gbits/s as well as Ethernet rate of 10.3 Gbits/s
- Single 3.3 V power supply
- Additional high-speed data input for system loopback operation
- Standard low-voltage differential signaling (LVDS) deMUX data and clock outputs
- CMOS I/Os compatible with LVTTL signaling
- Available in both 177-Ball CBGA (ceramic) and FSBGA1 (plastic) packages
- Jitter tolerance compliant with the following:
 Telcordia Technologies™ GR-253 CORE
 - ITU-T G.825
 - ITU-T G.958

Applications

- SONET/SDH optical modules
- SONET/SDH line termination equipment
- SONET/SDH test equipment
- Ethernet 10 Gbit physical layer applications

Description

The Agere Systems Inc. TRCV0110G device integrates a limiting amplifier combined with a clock recovery circuit that feeds a data deMUX for use in 10 Gbits/s high-speed communications systems. Additional features include an auxiliary clock output and a reference clock input that can be either divided by 16 or divided by 64. The TRCV0110G can be operated within the standard OC192/STM64 data rate of 9.9532 GHz and the FEC rate of 10.7092 Gbits/s.

Page

Table of Contents

Contents

Features	1
Applications	1
Description	1
Block Diagram	3
Ball Information	4
Package Diagram	4
Ball Assignments	5
Ball Description	7
Functional Overview	11
FEC Rate Support	11
High-Speed Data Inputs	11
Limiting Amplifier Operation	11
Loopback Data Input	12
Clock Recovery Operation	12
CDR Input Jitter Tolerance	13
Lock Detect	14
Demultiplexer Operation	15
Demultiplexer Data Mute (MUTEDMXN)	15
CK622P/N Output Mute (MUTE622N)	15
CKOP/N Output Frequency Select (FREQCKO)	15
CKOP/N Output Mute (MUTECKON)	15
Reset (RESETN)	15
Absolute Maximum Ratings	16
Handling Precautions	16
Recommended Operating Conditions	16
Electrical Characteristics	17
LVDS, CMOS, and CML Input and Output Pins	17
Timing Characteristics	19
Output Timing	19
Output Timing	20
Reference Frequency (REFCLKP/N, REFFREQ) (Standard SONET Rate)	21
Reference Frequency (REFCLKP/N, REFFREQ) (FEC Rate)	21
Reference Frequency (REFCLKP/N, REFFREQ) (Ethernet Rate)	21
Packaging Characteristics	22
CBGA (Ceramic Ball Grid Array) Package Information	22
CBGA PWB Design Information	22
CBGA Assembly Information	23
CBGA Suggested Underfill Process	24
CBGA Reference Materials	24
Package Diagram—177-Ball CBGA (Bottom View)	25
FSBGA1 Package Information	26
FSBGA1 PWB Design Information	26
FSBGA1 Assembly Information	26
FSBGA1 Reference Materials	27
Package Diagram—177-Ball FSBGA1 (Bottom View)	28
Ordering Information	29

Description (continued)

Block Diagram

Note: Diagram is representative of device functionality and conceptual signal flow. Internal implementation details may be different than shown.

Figure 1. TRCV0110G Block Diagram

Ball Information

Package Diagram

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
A	$\sum_{i=1}^{n}$		\bigcirc	\bigcirc	\bigcirc	\bigcirc		Ċ		\odot		\mathbf{C}		(\cdot)	
в	\odot	Ō	Ō	Ō	Ō	Ċ		Ċ		Ō	Ō	Ō	Ō	Ō	
С	$\overline{\mathbb{C}}$		$\overline{\mathbb{C}}$	$\overline{\mathbb{C}}$						Ō	$\overline{\mathbb{C}}$	Ċ			
D	\odot		:,	۰.	\bigcirc				\bigcirc	$\langle \cdot \rangle$					
Е	\odot	\odot	\odot	Ċ	\odot	Ċ	\odot	\bigcirc	Ō			\bigcirc	Ō	Ō	
F	\odot	÷	$\overline{\mathbf{C}}$		$\overline{\mathbf{C}}$		<u>.</u>	\odot	:	\bigcirc				\odot	
G	Ō	Ċ	\bigcirc	$\langle \cdot \rangle$	Ō		0	\bigcirc		\bigcirc		Ō	\bigcirc	\odot	
Н	Ċ.	Ō	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	Ō	\bigcirc	\bigcirc	\odot	Ċ	\bigcirc	
J	÷.	Ō	Ō		Ō	\bigcirc	\bigcirc	Ō	\bigcirc	Ō	\bigcirc	Ō	Ċ	\odot	
к	÷.	:	$\langle \cdot \rangle$		Ō		0			Ō	0	Ō			
L	÷.	\bigcirc	Ċ	Ċ	Ō	Ċ		Ċ	Ō	Ċ,	Ō	\bigcirc	Ō		
М	÷.	Ō	Ō	Ō	Ō	Ċ	\bigcirc	Ċ	\bigcirc	Ō	\bigcirc	Ō	Ċ	\odot	
Ν	\odot		(\cdot)		(\cdot)			Ċ		\bigcirc		Ċ		\bigcirc	
Ρ	÷.	Ō	(\cdot)		Ō		\odot	Ċ	\odot	Ō	\odot	Ō	\odot	\odot	

TOP VIEW

0641.a(F)

Ball Assignments

Table 1. Ball Assignments for 177-Ball CBGA/FSBGA1 by Ball Number Order

Ball	Signal Name						
A1	GND	C1	ENLBDN	E1	D1N	G1	D2P
A2	VCCD	C2	RREFLVDS	E2	D1P	G2	GND
A3	FECN	C3	VCCD	E3	GND	G3	GND
A4	REFFREQ	C4	GND	E4	GND	G4	GND
A5	FREQCKO	C5		E5	GND	G5	GND
A6	GND	C6	—	E6	GND	G6	GND
A7	DATAN	C7	—	E7	GND	G7	GND
A8	GND	C8	_	E8	GND	G8	GND
A9	DATAP	C9	—	E9	GND	G9	GND
A10	GND	C10	VCCLA	E10	—	G10	VCCA
A11	GND	C11	VCCD	E11	—	G11	VCCD
A12	GND	C12	GND	E12	GND	G12	VCCA
A13	GND	C13	GND	E13	GND	G13	GND
A14	GND	C14	GND	E14	GND	G14	GND
B1	MUTEDMXN	D1	D0N	F1	GND	H1	D2N
B2	RESETN	D2	D0P	F2	GND	H2	GND
B3	LCKLOSSN	D3	GND	F3	GND	H3	GND
B4	MUTECKON	D4	VCCD	F4	VCCD	H4	VCCD
B5	MUTE622N	D5	GND	F5	GND	H5	VCCD
B6	GND	D6	VCCD	F6	GND	H6	GND
B7	—	D7	VCCLA	F7	GND	H7	GND
B8	GND	D8	_	F8	GND	H8	GND
B9	—	D9	ACM	F9	GND	H9	GND
B10	GND	D10	GND	F10	GND	H10	GND
B11	GND	D11	—	F11	—	H11	VCCA
B12	GND	D12		F12		H12	GND
B13	GND	D13		F13	—	H13	GND
B14	GND	D14	LBDP	F14	LBDN	H14	RREFCP

Note: — refers to no ball. A ball has been removed for routing purposes.

Ball Assignments (continued)

Ball	Signal Name						
J1	D3P	K8	_	M1	D4N	N8	D13N
J2	GND	K9	GND	M2	D5P	N9	D14N
J3	GND	K10	GND	M3	GND	N10	CKON
J4	—	K11	GND	M4	D7N	N11	CK622N
J5	GND	K12	GND	M5	GND	N12	REFCLKN
J6	GND	K13	GND	M6	D10N	N13	GND
J7	GND	K14	LFP	M7	D12P	N14	GND
J8	VCCD	L1	D4P	M8	GND	P1	GND
J9	GND	L2	GND	M9	D15N	P2	GND
J10	GND	L3	GND	M10	GND	P3	D6N
J11	VCCD	L4	D7P	M11	GND	P4	D8N
J12	VCCA	L5	GND	M12	GND	P5	D9N
J13	GND	L6	GND	M13	GND	P6	D11P
J14	LFN	L7	—	M14	GND	P7	D11N
K1	D3N	L8	GND	N1	GND	P8	D13P
K2	GND	L9	D15P	N2	D5N	P9	D14P
K3	GND	L10	GND	N3	D6P	P10	СКОР
K4	GND	L11	GND	N4	D8P	P11	CK622P
K5	VCCD	L12	GND	N5	D9P	P12	REFCLKP
K6	GND	L13	GND	N6	D10P	P13	GND
K7	VCCD	L14	RREFVCO	N7	D12N	P14	GND

Table 1. Ball Assignments for 177-Ball CBGA/FSBGA1 by Ball Number Order (continued)

Note: — refers to no ball. A ball has been removed for routing purposes.

Ball Description

Note: In Table 2, when operating the TRCV0110G device at the OC-192/STM-64 rate, 10 Gbits/s should be interpreted as 9.95328 Gbits/s. When operating the TRCV0110G device at the RS FEC OC-192/STM-64 rate, 10 Gbits/s should be interpreted as 10.709 Gbits/s. When operating the TRCV0110G device at the Ethernet rate, 10 Gbits/s should be interpreted as 10.3125 Gbits/s.

Ball	Symbol [*]	Type [†]	Level	Name/Description
A9	DATAP	lt	High-speed	Limiting Amp Input for 10 Gbits/s CML. Primary data input.
A7	DATAN		Analog	Note: This data input will scale when operating at different rates.
D14 F14	LBDP LBDN	ľ	CML	Loopback Data Input for 10 Gbits/s CML. Use this input for system loopback data.
				Note: This data input will scale when operating at different rates.
A3	FECN	In	CMOS	 FEC Rate (Active-Low). Selects between two operating rate ranges within the OC-192/STM-64 rate of 9.9532 GHz and the FEC rate of 10.7092 GHz. 0 = Will extend the operating range out to the FEC rate of 10.7092 GHz. 1 or no connection = OC-192/STM-64 rate of 9.9532 GHz to the Ethernet rate of 10.3 GHz.
				Note: An input and output SONE I/SDH clock and data rates will scale when operating at different rates.
C1	ENLBDN	ln	CMOS	Enable LBDP/N Inputs (Active-Low). Selects LBDP/N as data source rather than primary data input. 0 = Select LBDP/N. 1 or no connection = Select DATAP/N.
L14	RREFVCO	Ι	Analog	Resistor Reference VCO. VCO bias reference resistor. Connect a 1.2 k Ω resistor to VCCA.
H14	RREFCP	Ι	Analog	Resistor Reference Charge Pump. Charge pump bias resistor. Connect a 1.2 k Ω resistor to VCCA.
B3	LCKLOSSN	0	CMOS	Loss of Lock (Active-Low). 0 = Phase-locked loop (PLL) out of lock.
K14 J14	LFP LFN	0	Analog	Loop Filter PLL. Connect LFP and LFN to loop filter (see Figure 5 on page 12).

Table 2. Ball Descriptions—1) Gbits/s and Related Signals
------------------------------	-------------------------------

* Differential pins are indicated by the P and N suffixes. For nondifferential pins, N at the end of the symbol name designates active-low.
 † I = input, O = output. I^u = an internal pull-up resistor on this pin, I^d = an internal pull-down resistor on this pin, I^t = an internal termination resistance of 50 Ω on this pin.

Ball Description (continued)

Note: In Table 3, when operating the TRCV0110G device at the OC-192/STM-64 rate, 155 Mbits/s should be interpreted as 155.52 Mbits/s. When operating the TRCV0110G device at the RS FEC OC-192/STM-64 rate, 155 Mbits/s should be interpreted as 167.33 Mbits/s.

Table 3. Ball Descriptions-622.08 Mbits/s and Related Signals

Ball	Symbol [*]	Type [†]	Level	Name/Description
L9	D15P	0	LVDS	Data Output (622 Mbits/s). 622 Mbits/s differential data output.
M9	D15N	0	LVDS	D15 is the most significant bit and is the first received on the
P9	D14P	0	LVDS	DATAP/N or LBDP/N input.
N9	D14N	0	LVDS	Note: This data rate will scale when operating at different rates.
P8	D13P	0	LVDS	
N8	D13N	0	LVDS	
M7	D12P	0	LVDS	
N7	D12N	0	LVDS	
P6	D11P	0	LVDS	
P7	D11N	0	LVDS	
N6	D10P	0	LVDS	
M6	D10N	0	LVDS	
N5	D9P	0	LVDS	
P5	D9N	0	LVDS	
N4	D8P	0	LVDS	
P4	D8N	0	LVDS	
L4	D7P	0	LVDS	
M4	D7N	0	LVDS	
N3	D6P	0	LVDS	
P3	D6N	0	LVDS	
M2	D5P	0	LVDS	
N2	D5N	0	LVDS	
L1	D4P	0	LVDS	
M1	D4N	0	LVDS	
J1	D3P	0	LVDS	
K1	D3N	0	LVDS	
G1	D2P	0	LVDS	
H1	D2N	0	LVDS	
E2	D1P	0	LVDS	
E1	D1N	0	LVDS	
D2	D0P	0	LVDS	
D1	D0N	0	LVDS	

* Differential pins are indicated by the P and N suffixes. For nondifferential pins, N at the end of the symbol name designates active-low.
 † I = input, O = output. I^u = an internal pull-up resistor on this pin, I^d = an internal pull-down resistor on this pin, I^t = an internal termination resistance of 50 Ω on this pin.

Ball Description (continued)

Table 3. Ball Descriptions—622.08 Mbits/s and Related Signals (continued)

Ball	Symbol [*]	Type [†]	Level	Name/Description
B1	MUTEDMXN	ln	CMOS	Mute DeMUX Parallel Output Data (Active-Low). Forces all demultiplexer output data D[15:0] to a logic-low level. 0 = Demultiplexer output muted. 1 or no connection = Normal operation.
B5	MUTE622N	I ^u	CMOS	Mute CK622P/N Clock Output (Active-Low). Forces CK622P/N to logic low when MUTE622N is active. 0 = Muted. 1 or no connection = Enabled.
A5	FREQCKO	Iu	CMOS	CKO Frequency Select. Selects 155 MHz or 622 MHz clock frequency on CLKOP/N. 0 = 155 MHz CKOP/N. 1 or no connection = 622 MHz CKOP/N.
B4	MUTECKON	Iu	CMOS	Mute CKOP/N Clock Output (Active-Low). Forces CKOP/N to logic low when MUTECKON is active. 0 = Muted. 1 or no connection = Enabled.
A4	REFFREQ	ln	CMOS	Reference Frequency Select. Sets clock and data recovery (CDR) PLL to accept 155 MHz, or 622 MHz reference frequency on REFCLKP/N. 0 = 155 MHz REFCLKP/N. 1 or no connection = 622 MHz REFCLKP/N.
P12	REFCLKP	Ι	LVDS	Reference Clock Input (155 MHz, or 622 MHz).
N12	REFCLKN			Note: This clock frequency must scale when operating at different rates.
P11 N11	CK622P CK622N	0	LVDS	Recovered Clock Output (622 MHz). 622 MHz recovered differential clock output. Pins are active but forced to differential logic low when MUTE622N = 0.
				Note: This clock frequency will scale when operating at different rates.
P10 N10	CKOP CKON	0	LVDS	Recovered Clock Output (155 MHz or 622 MHz). Selectable 155 MHz or 622 MHz recovered differential clock output. Pins are active but forced to differential logic low when MUTECKON = 0.
				Note: These clock frequencies will scale when operating at different rates. Use the FREQCKO pin to select the frequency.
C2	RREFLVDS	Ι	Analog	Resistor Reference LVDS. LVDS bias reference resistor. Connect a 1.5 k Ω resistor to VCCA.
D9	ACM	Ι	Analog	Amplifier Common Mode. Input amplifier common bias point. Place a 0.047 μ F RF bypass capacitor to GND.

* Differential pins are indicated by the P and N suffixes. For nondifferential pins, N at the end of the symbol name designates active-low.
 † I = input, O = output. I^u = an internal pull-up resistor on this pin, I^d = an internal pull-down resistor on this pin, I^t = an internal termination resistance of 50 Ω on this pin.

Ball Description (continued)

Table 4. Ball Descriptions—Reset

Ball	Symbol [*]	Type [†]	Level	Name/Description
B2	RESETN	In	CMOS	 Reset (Active-Low). Resets all synchronous logic. During a reset, the true data outputs are in the low state and the barred data outputs are in the high state. Reset must be held active-low for a minimum of 500 ns while the internal oscillator is active. 0 = Reset. 1 or no connection = Normal operation.

* Differential pins are indicated by the P and N suffixes. For nondifferential pins, N at the end of the symbol name designates active-low.
 † I = input, O = output. I^u = an internal pull-up resistor on this pin, I^d = an internal pull-down resistor on this pin, I^t = an internal termination resistance of 50 Ω on this pin.

Table 5. Ball Descriptions—Power

Note: VCCLA, VCCA, and VCCD have the same dc value, which is represented as VCC unless otherwise specified. However, high-frequency filtering is suggested between the individual connections to a common supply.

Ball	Symbol [*]	Type [†]	Level	Name/Description
G10, G12, H11, J12	VCCA	I	Power	Analog Power Supply (3.3 V).
C10, D7	VCCLA	I	Power	Limiting Amp Analog Power Supply (3.3 V).
A2, C3, C11, D4, D6, F4, G11, H4, H5, J8, J11, K5, K7	VCCD	I	Power	Digital Power Supply (3.3 V).
A1, A6, A8, A10—A14, B6, B8, B10—B14, C4, C12—C14, D3, D5, D10, E3—E9, E12—E14, F1—F3, F5—F10, G2—G9, G13, G14, H2, H3, H6—H10, H12, H13, J2, J3, J5—J7, J9, J10, J13, K2—K4, K6, K9—K13, L2, L3, L5, L6, L8, L10—L13, M3, M5, M8, M10—M14, N1, N13, N14, P1, P2, P13, P14	GND		Ground	Ground.

* Differential pins are indicated by the P and N suffixes. For nondifferential pins, N at the end of the symbol name designates active-low.

† I = input, O = output. I^u = an internal pull-up resistor on this pin, I^d = an internal pull-down resistor on this pin, I^t = an internal termination resistance of 50 Ω on this pin.

Functional Overview

The TRCV0110G performs the data detection, clock recovery, and 1:16 demultiplexing operations required to support 10 Gbits/s¹ OC-192/STM-64 applications compliant with *Telcordia Technologies* and ITU standards. One of two high-speed inputs can be selected as the data source. A PLL recovers the clock that is used to retime the data. A 1:16 data demultiplexer performs the serial-to-parallel conversion and generates 16 parallel outputs at a 622 Mbits/s. The parallel output data is aligned to a 622 MHz clock derived from the 10 GHz recovered clock.

FEC Rate Support

The TRCV0110G will support both the normal OC-192/STM-64 rate of 9.9532 GHz and the forward error correction (FEC) rate of 10.7092 GHz. The FECN pin selects the rate range at which the part is operated. Throughout this document, the specifications are given in terms of the normal operating rate only. All frequency-based specifications are to be multiplied by the appropriate scaling factor when not operating at the OC-192/STM64 rate. All time-based specifications, with the exception of electrical signal rise and fall times, are also to be multiplied by the appropriate scaling factor. For example, a reference clock would need to be applied at 167.33 MHz or 669.32 MHz (a multiplication factor of 255/237) for the parallel data interface to operate at 669.32 MHz when FECN = 0.

High-Speed Data Inputs

Limiting Amplifier Operation

The TRCV0110G data input circuit contains a limiting amplifier that has approximately 40 dB of voltage gain. As shown in Figure 3, the DATAP/N inputs should be ac-coupled. These ac-coupling capacitors are typically included inside the optical receiver package. For applications requiring ac-coupling external to the O/E device, insert low ESR 0.047 μ F capacitors in the transmission line path. These capacitors should be chosen such that their size is similar to the transmission line width in order to minimize the parasitic effects of larger than necessary pad sizes. The 50 Ω transmission lines are terminated with on-chip 50 Ω resistors. The ACM pin should be connected with a low inductance, low ESR 0.047 μ F capacitor to ground. This capacitor provides an RF bypass for common-mode noise that may be present on the data input pins. This capacitor as well as VCCLA decoupling capacitors should be mounted as close as possible to the device package to avoid excess board trace inductance. Please refer to Table 13 on page 18, for input sensitivity and other critical input specifications.

0364.a(F)

Figure 3. Data Input Circuit

1. The OC-192/STM-64 data rate of 9.95328 Gbits/s is typically approximated as 10 Gbits/s in this document when referring to the application rate. Similarly, the low-speed parallel interface data rate of 622.08 Mbits/s is typically approximated as 622 Mbits/s. The exact frequencies are used only when necessary for clarity.

Agere Systems Inc.

High-Speed Data Inputs (continued)

Loopback Data Input

The second high-speed input in the TRCV0110G is for system loopback operation. When mated with Agere's TTRN0110G, the high-speed loopback data output can be direct coupled into the TRCV0110G loopback data input pins LBDP and LBDN. During this mode of operation, parallel low-speed data coming from the user application (typically a line card or transponder module) can be serialized through the TTRN0110G and redirected through the high-speed loopback data input port of the TRCV0110G. The TRCV0110G would then recover the clock and deserialize the data to be received by the users application. The loopback data flow is controlled by the ENLBDN pins on both devices.

Figure 4. Loopback Data Input Circuit

Clock Recovery Operation

The clock and data recovery (CDR) circuit uses a PLL to extract the clock and retime the 10 Gbits/s data. The TRCV0110G uses an external loop filter that is described below in Figure 5. A 622 MHz clock derived from the recovered clock is available as an output at CK622P/N. A 622 MHz or 155 MHz clock derived from the recovered clock is available as an auxiliary output at CKOP/N.

Figure 5. TRCV0110G Loop Filter

2245(F)

0366.a(F)

CDR Input Jitter Tolerance

Figure 6. Receive Jitter Tolerance Mask

Agere Systems Inc.

Lock Detect

By the behavior of the LCKLOSSN pin, the user can identify three possible loss-of-lock scenarios. If desired, the user can configure the TRCV0110G to lock directly to the REFCLK input during any of these conditions. See the *TRCV0110G LCKLOSSN* Application Note.

- The TRCV0110G contains a frequency detect circuit that compares the frequency of the internal VCO to the REFCLK. LCKLOSSN transitions low if the frequencies differ by approximately ±400ppm.
- The TRCV0110G contains a LOS detect circuit that monitors the amplitude of the incoming serial data. LCKLOSSN transitions low if the amplitude of the incoming data signal falls below an internal preset threshold.
- The TRCV0110G contains a transition detect circuit that monitors for transitions occuring on the LBD inputs. LCKLOSSN transitions low if no transitions appear on the LBD inputs.

Note: This mode of detection is only valid when dc coupling the loopback inputs.

2246(F)

Figure 7. LCKLOSSN Modes of Operation

Demultiplexer Operation

The serial 10 Gbits/s data is clocked into a 1:16 demultiplexer by the recovered 10 GHz clock. The demultiplexed parallel data is retimed with a 622 MHz clock that is derived from the recovered clock. The relationship between the serial input data and the parallel D[15:0] bits is given in Figure 8. D15 is the bit that was received first in time in the serial input data stream.

0367.a(F)

Figure 8. DeMUX Clock to Output Data Relationship

Demultiplexer Data Mute (MUTEDMXN)

Setting the MUTEDMXN = 0 mutes the data going into the demultiplexer and forces all zeros to appear at the parallel outputs D[15:0].

CK622P/N Output Mute (MUTE622N)

The 622 MHz clock output CK622P/N can be forced to logic low by setting MUTE622N, which is an active-low CMOS input with a pull-up resistor. A ground or logic low applied to MUTE622N mutes the CK622P/N output.

CKOP/N Output Frequency Select (FREQCKO)

Either a 155 MHz or 622 MHz clock output can be selected on the CKOP/N pins. A ground or logic low applied to FREQCKO selects a 155 MHz clock to appear on the CKO output. A logic high or no connection selects a 622 MHz clock to appear on the CKO output.

CKOP/N Output Mute (MUTECKON)

The clock output CKOP/N can be forced to logic low by setting MUTECKON, which is an active-low CMOS input with a pull-up resistor. A ground or logic low applied to MUTECKPN mutes the CKOP/N output.

Reset (RESETN)

The RESETN signal must be held active-low for a minimum of 500 ns when the internal VCO is active and running, in order for the internal logic to be completely reset.

Agere Systems Inc.

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Table 6. Absolute Maximum Ratings

Parameter	Min	Max	Unit
Power Supply Voltage	GND – 0.5	Vcc + 0.5	V
Storage Temperature	-40	125	C°
Pin Voltage	GND – 0.5	Vcc + 0.5	V

Handling Precautions

Although electrostatic discharge (ESD) protection circuitry has been designed into this device, proper precautions must be taken to avoid exposure to ESD and electrical overstress (EOS) during all handling, assembly, and test operations. Agere employs both a human-body model (HBM) and a charged-device model (CDM) qualification requirement in order to determine ESD-susceptibility limits and protection design evaluation. ESD voltage thresholds are dependent on the circuit parameters used in each of the models, as defined by JEDEC's JESD22-A114 (HBM) and JESD22-C101 (CDM) standards.

Table 7. Handling Precautions

Device	Voltage	Туре
TRCV0110G	≥100 V	HBM (human-body model)
	≥100 V	CDM (charged-device model)

Note: All LVDS, CMOS, and analog pins (except high-speed and ACM) have an ESD HBM threshold of ≥2,000 V.

Recommended Operating Conditions

Recommended operating conditions apply unless otherwise specified.

Table 8. Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Мах	Unit
Power Supply Voltage (dc)	Vcc	3.135	3.30	3.465	V
Temperature: Case	Тс	0	25	85	°C
Power Dissipation	PD	—	2.1	2.65	W

Electrical Characteristics

LVDS, CMOS, and CML Input and Output Pins

Table 9. LVDS dc Output Pin Characteristics

Parameter	Applicable Pins	Symbol	Conditions	Min	Тур	Мах	Unit
Output Voltage High	D[15:0]P/N,	Vон	$RLOAD = 100 \Omega \pm 1\%$	_	—	1475	mV
Output Voltage Low	CKOP/N	Vol	$RLOAD = 100 \Omega \pm 1\%$	925	—	_	mV
Output Differential Volt- age [†]	CK622P/N	Vod	$RLOAD = 100 \ \Omega \pm 1\%$	250	—	400	mV
Output Offset Voltage		Vos	RLOAD = 100 $\Omega \pm 1\%$	1125	—	1275	mV
Differential Output Impedance		Ro	VCM = 1.0 V and 1.4 V	80	100	120	Ω
Ro Mismatch Between A & B		ΔRo	VCM = 1.0 V and 1.4 V	_	—	20	%
Change in VOD Between Logic 0 and Logic 1		ΔVod	$RLOAD = 100 \ \Omega \pm 1\%$	_	—	25	mV
Change in Vos Between Logic 0 and Logic 1		∆Vos	$RLOAD = 100 \ \Omega \pm 1\%$	_	—	25	mV
Output Current		ISA, ISB	Driver shorted to GND	_	—	24	mA
Output Current		ISAB	Drivers shorted together	_	—	12	mA
Power-off Leakage		IXA , IXB	—	_	_	*	mA

* This leakage parameter is not specified due to EDS clamp diode conducting current during forward bias test.
 † This voltage is measured on each P/N output.

Table 10. LVDS Input Pin Characteristics

Parameter	Applicable Pins	Symbol	Conditions	Min	Тур	Мах	Unit
Input Common Mode Voltage Range	REFCLKP/N	Vсм	Avg(VIA,VIB)	0	1200	2400	mV
Input Peak Differential voltage		Vdiff	Via – Vib	100	—	800	mV
Threshold Hysteresis*		VHYST	(+VID) - (-VID)	25	—	—	mV
Differential Input Impedance [†]		Rin	f = 622.08 MHz	80	100	120	Ω

* Buffer will not produce output transitions when input is open-circuited.

† Looser than ICORE/IEEE[®] spec of ±10 Ω.

Electrical Characteristics-(continued)

LVDS, CMOS, and CML Input and Output Pins (continued)

Table 11. CMOS Input Pin Characteristics

Parameter	Applicable Pins	Symbol	Conditions	Min	Мах	Unit
Input Voltage High	RESETN,	Vih	_	Vcc - 1.0	Vcc	V
Input Voltage Low	FECN,	VIL	_	GND	1.0	V
Input Current High Leakage	ENLBDN,	Іін	VIN = VCC	—	10	μΑ
Input Current Low Leakage	MUTEDMXN, FREQCKO, MUTECKON, MUTE622N, TESTN	lı∟	VIN = GND	-225	_	μA

Table 12. CMOS Output Pin Characteristics

Parameter	Applicable Pins	Symbol	Conditions	Min	Мах	Unit
Output Voltage High	LCKLOSSN	Vон	Iон = -4.0 mA	Vcc – 0.5	Vcc	V
Output Voltage Low		Vol	IOL = 4.0 mA	GND	0.5	V
Output Load Capacitance		Сі	_	—	15	pF

Table 13. CML Input Characteristics

Parameter	Applicable Pins	Symbol	Conditions	Min	Тур	Max	Unit
Single-ended Input Amplitude (Differen- tial mode)	DATAP/N	VAMP	Data pattern PRBS 31	7.5	—	1000	mV
Input Return Loss		RLOSS	At 10 GHz	12	12	—	dB
Input Return Loss:		RLOSS	At <7 GHz	15	15	_	dB
Input Voltage Low	LBDP/N	VIL	Data pattern	VCCD – 1	Vcc - 0.4	_	V
Input Voltage High		Vін	PRBS 31	_	VCCD	VCCD + 0.3	V
Differential Input Amplitude		VAMP1		100	400	—	mV
Input Return Loss		RLOSS	At 10 GHz	12	12		dB
Input Return Loss		RLOSS	At <7 GHz	15	15	—	dB

Timing Characteristics

Note that all timing diagrams involving differential signals represent the positive signal as a solid line and the negative signal as a dashed line. This is especially important when referencing the rising or falling edge of a differential signal.

Output Timing

The timing relationships between the output 622 MHz clock CK622P/N and the output demultiplexer data D[15:0]P/N are shown in Figure 9.

0367.a(F)

Figure 9. DeMUX Transmit Timing with CK622

Table 14.	LVDS (Dutput P	in ac ⁻	Timina	Characteristics
		- acpace			

Applicable Pins	Symbol	Parameter	Conditions [*]	Min	Тур	Max	Unit
CKOP/N	tDC	Duty Cycle	—	40	50	60	%
	tPERIOD0	Period	FREQCKO = 0		6.4		ns
	tPERIOD1	Period	FREQCKO = 1		1.6	_	ns
	tRISEC1	Clock Vod (20%-80%)	—	100	_	300	ps
	tFALLC1	Clock Vod (20%-80%)	—	100	_	300	ps
	VAMP	Single-ended Output Amplitude	—	200		500	mV
CK622P/N	tDC	Duty Cycle	—	40	50	60	%
	tPERIOD2	Period	—	_	1.6	—	ns
	tRISEC2	Clock Vod (20%-80%)	—	100		300	ps
	tFALLC2	Clock Vod (20%-80%)	—	100		300	ps
	VAMP	Single Ended Output Amplitude	—	200		500	mV
D[15:0]P/N	tDD1	Time Delay from Clock Edge to Data Edge	Rising clock edge lags data	0.5	0.7	0.9	ns
	tDD2		Rising clock edge leads data	0.7	0.9	1.1	ns
	tRISED	Data Vod (20%-80%)	—	200	_	450	ps
	tFALLD	Data Vod (20%—80%)	—	200	_	450	ps
	tSKEW1	Differential Skew		_	_	70	ps
	tSKEW2	Channel to Channel [†]	Measured differentially	_	_	150	ps
	VAMP	Single Ended Output Amplitude		200	_	500	mV

* All signals differential, ZLOAD = $100 \Omega \pm 1\%$. † As defined by the *IEEE* standard 1596.3-1996.

Timing Characteristics (continued)

Output Timing

The following diagram and specs are from the 10 Gbit MSA document. You will notice the TRCV0110G device specs compared to the 300-pin 10 Gbit MSA spec's in the data table.

Figure 10. Output Data/Clock Phase

Table 15. Output Data/Clock Phase

Parameter	Description	Min	Тур	Мах	Min TRCV0110G	Typ TRCV0110G	Max TRCV0110G	Unit
ТО	Clock Period	—	1.608	—	—	1.6	_	ns
TW/TO	Duty Cycle	0.45	—	0.55	0.4	_	0.6	ns
Tr, Tf	20—80% Rise/Fall	_	_	300	—	_	300 (clock)	ps
	Times						450 (data)	
Tcq-min, Tcq-max	Data/Clock Skew	_	_	250/250			200/200	ps

Timing Characteristics (continued)

Reference Frequency (REFCLKP/N, REFFREQ) (Standard SONET Rate)

The device requires a 155.52 MHz or 622.08 MHz differential LVDS reference clock input to aid in frequency acquisition and loss-of-lock detection.

Table 16. OC-192 Reference Clock Characteristics

Applicable Pins	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
REFCLKP/N	—	Frequency	REFFREQ = 0	_	155.52	—	MHz
			REFFREQ = 1	-	622.08	—	MHz
		Duty Cycle	—	40	50	60	%
		Reference Frequency Tolerance [*]	—	—	150	—	ppm

* Includes effects of power supply variation, temperature, electrical loading, and aging.

Reference Frequency (REFCLKP/N, REFFREQ) (FEC Rate)

The device requires a (255/237) x 155.52 MHz or (255/237) x 622.08 MHz differential LVDS reference clock input to aid in frequency acquisition and loss-of-lock detection.

Table 17. FEC Reference Clock Characteristics

Applicable Pins	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
REFCLKP/N	—	Frequency	REFFREQ = 0	—	167.3316	_	MHz
			REFFREQ = 1	—	669.3265	_	MHz
		Duty Cycle	—	40	50	60	%
		Reference Frequency Tolerance [*]	—	—	150	—	ppm

* Includes effects of power supply variation, temperature, electrical loading, and aging.

Reference Frequency (REFCLKP/N, REFFREQ) (Ethernet Rate)

The device requires a 161 MHz or 644 MHz differential LVDS reference clock input to aid in frequency acquisition and loss-of-lock detection.

Table 18. Ethernet Reference Clo	ock Characteristics
----------------------------------	---------------------

Applicable Pins	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
REFCLKP/N	_	Frequency	REFFREQ = 0	_	161	_	MHz
			REFFREQ = 1		644	—	MHz
		Duty Cycle	—	40	50	60	%
		Reference Frequency Tolerance*	—	—	150	_	ppm

* Includes effects of power supply variation, temperature, electrical loading, and aging.

Packaging Characteristics

CBGA (Ceramic Ball Grid Array) Package Information

The substrate is 99.6% alumina (Al2O3) material. The standoff height is accomplished by using 0.013 in. diameter copper silver (CuAg) balls, which are attached using a eutectic braze to the thin film metal pads on the substrate. After brazing, the balls have a diameter at the braze fillet of 0.016 in. (at the interface of the ball and substrate), but still maintain their height of 0.013 in. for standoff height.

CBGA PWB Design Information

The layout of the bare PWB should use a 0.016 in. diameter pad. The pad should be defined by the copper and not by solder mask. (The only copper leading away from the pad should be the trace connected to it; the pad should not be part of a large ground plane unless only connected to the ground plane by a single trace.) Avoid placement of vias in the pads used for ball attachment on the PWB. Vias should be connected by a trace (or tear dropped) with a sufficient dam of solder mask to prevent solder from wicking into the via and away from the ball/PWB solder joint.

The stencil opening should be designed at 0.016 in. as well, to match up with the CBGA pads.

CBGA Assembly Information

Note: Each assembly process will have its own idiosyncrasies, due to product design, materials differences, and equipment variations. Assembly information provided here is a beginning point from which the assembly process engineer should apply their knowledge and experience to obtain optimal results.

It is recommended that the stencil thickness be set at 0.006 in. for a starting point. After trials with the recommended stencil opening size, stencil thickness, and process-specific solder paste, a visual inspection should be done to ensure a proper fillet and wetting is obtained for each ball. The reflowed solder fillet should resemble a cylindrical column from the PWB to the center of the ball. In addition to the recommended CBGA assembly procedure, Underfill is highly recommended to decrease the chances of cracking in the solder joint between the CBGA device ball and the PCB. Please see Suggested Underfill Process.

The reflow profile should be determined using a known setpoint for the oven such as the Joint Electron Device Engineering Council (JEDEC) profile. The JEDEC profile is defined as the following parameters.

Table 19. JEDEC Profile

ZONE		Temp	Unit
1	Upper	140	°C
	Lower	140	°C
2	Upper	150	°C
	Lower	150	°C
3	Upper	150	°C
	Lower	150	°C
4	Upper	180	°C
	Lower	180	°C
5	Upper	180	°C
	Lower	180	°C
6	Upper	205	°C
	Lower	205	°C
7	Upper	245	٥C
	Lower	245	0°

Belt speed = 28 in./min.

A representative sample of the product (fitted with multiple thermocouples and a data logger) should be run through the oven to determine the optimum profile. The temperature of the CBGA device should not exceed 225 °C, and only be above the liquidus of the solder alloy (typically 180 °C) for less than 60 s.

CBGA Suggested Underfill Process

- 1. Assemble PWB. Reflow solder and clean per standard processes.
- 2. Refer to manufacturer's data sheet for material handling, application, and cure.
- 3. Thaw out the Hysol 4549 material for a minimum of 1 hour prior to dispensing. Material should be at room temperature for proper dispensing.
- 4. Heat PWB assemblies to 90 °C for application of Hysol 4549 material. An automated dispenser can be used for dispensing which has a built-in heater platen. Another acceptable method is to heat the substrate on a hot plate and manually dispense the underfill using handheld pneumatic dispenser. Process development will be necessary for either method.
- 5. Dispense Material. It should be dispensed on one or two sides, to flood the underneath side of the device and fill all space around balls between board and device bottom. This fill should be continuous until a meniscus appears around the entire device, in order not to create air pockets in the fill. Process development will have to take place on this in order to obtain no voids.
- 6. Cure assemblies at 150 °C for 1 hour. Process development should determine the amount of extra time necessary to allow the assemblies to reach temperature so that the assemblies see a full hour at 150 °C. Other cures are available to suit product needs.
- Inspect devices for good visual quality. Properly underfilled devices will exhibit no voids, which expose the balls. Some blowholes may appear due to vias near device edge, but these can be easily distinguished from large voids exposing device balls. Process development is necessary to obtain 100% yield.

CBGA Reference Materials

For further information, the user may wish to consult some of the many references that are available on the technical market today for CBGA assembly. The following are suggested for more detailed information, but there are many others too:

- Ceramic Ball Grid Array Surface Mount Assembly and Rework, IBM Document #APD-SBSC-101.0, Cindy Milkovich, Lisa Jimarez, IBM Corporation, 1701 North Street, Endicott, NY 13760, (800) 925-3157
- Ball Grid Array Technology, John Lau (Editor), ISBN 0-07-036608-X, McGraw-Hill, Inc., 1221 Avenue of the Americas, New York, NY 10020

Package Diagram—177-Ball CBGA (Bottom View)

Dimensions are in millimeters. Tolerance is ± 0.076 mm unless otherwise noted.

0628(F)

Agere Systems Inc.

FSBGA1 Package Information

The package used for the plastic version of the TRCV0110G device is generically a plastic ball grid array (PBGA). The Agere name for this specific type of package is a fully singulated ball grid array, 1.0 mm ball pitch (FSBGA1). The substrate is organic BT (Bismalemide Triazene) material, with a plastic over mold. The standoff height is accomplished using 0.025 in. diameter eutectic solder (63/37 SnPb) balls, which are attached using a eutectic solder to the copper pads on the substrate.

FSBGA1 PWB Design Information

The layout of the bare printed wiring board (PWB) should use a 0.019 in. maximum diameter pad. The pad should be defined by the copper and not by solder mask. (The only copper leading away from the pad should be the single trace connected to it, the pad should not be part of a large ground plane unless only connected to the ground plane by a single trace.) Avoid placement of vias in the pads used for ball attachment on the PWB. Vias should be connected by a trace (or tear dropped) with a sufficient dam of solder mask to prevent solder from wicking into the via and away from the ball/PWB solder joint.

FSBGA1 Assembly Information

Note: Each assembly process will have its own idiosyncrasies, due to product design, materials differences and assembly equipment variations. Assembly information provided here is a beginning point from which the assembly process engineer should apply their knowledge and experience to obtain optimal results.

Please refer to the moisture sensitivity rating, listed in the data sheet, for the rating and bake out procedures associated with this component, prior to assembly of the devices.

It is recommended the solder paste stencil thickness be set at 0.006 in. for a starting point. The solder paste stencil opening should be designed at 0.019 in. maximum as well, to match up with the PBGA pads. After trials with the recommended stencil opening size, stencil thickness and process specific solder paste, a post reflow visual inspection should be done to assure that a proper solder fillet is being formed and that acceptable solder wetting on the balls is obtained. After reflow, the solder ball should still appear as a ball, but with flats the size of the pads on the device substrate and PWB. The balls should be centered on the pad and fully wetted to the pad.

The reflow profile should be determined using a known set point for the oven, such as the JEDEC profile (as a starting point) and must follow the thermal profile and assembly recommendations of the solder paste manufacturer. The JEDEC profile is defined as the following parameters in Table 20.

Table 20. JEDEC Profile

Belt speed = 28 in./min.

Z	one	Temp	Unit
1	Upper	140	°C
	Lower	140	°C
2	Upper	150	°C
	Lower	150	°C
3	Upper	150	°C
	Lower	150	°C
4	Upper	180	°C
	Lower	180	٥°
5	Upper	180	°C
	Lower	180	°C
6	Upper	205	°C
	Lower	205	°C
7	Upper	245	°C
	Lower	245	٥°

A representative sample of the product (fitted with multiple thermocouples and a data logger) should be run through the reflow oven to determine the temperature profile seen by the assembly. At a minimum, the following temperatures should be monitored: top of FSBGA1, a center ball, a corner ball, the bare PWB, and any other critical or sensitive components on the assembly. Only after this data is collected can adjustments be made to the profile and then verified with other reflow passes to obtain optimal results for the reflow of the assembly. The temperature of the FSBGA1 type PBGA device should not exceed 225C, and only be above the liquidus of the solder alloy (typically 180C) for less than 60 seconds.

FSBGA1 Reference Materials

For further information, the user may wish to consult some of the many references that are available on the technical market today for BGA assembly. The following are suggested for more detailed information, but there are many others too:

Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assembilies, John Lau and Yi-Hsin Pao, ISBN 0-07-036648-9, McGraw-Hill, Inc., 1221 Avenue of the Americas, New York, NY 10020

Ball Grid Array Technology, John Lau (Editor), ISBN 0-07-036608-X, McGraw-Hill, Inc., 1221 Avenue of the Americas, New York, NY 10020

Agere Systems Inc.

Package Diagram—177-Ball FSBGA1 (Bottom View)

Dimensions are in millimeters. Tolerance is ± 0.10 mm unless otherwise noted.

Ordering Information

Device Code	Package	Temperature (Tc)	Comcode (Ordering Number)
TRCV0110G	177-ball CBGA	0—85	108698499
TRCV0110G-3-XE	177-ball FSBGA1	0—85	7000199050

Telcordia Technologies is a trademark of Telcordia Technologies Inc. *National* and *National Semiconductor* are registered trademarks of National Semiconductor Corporation. *IEEE* is a registered trademark of The institute of Electrical and Electronics Engineers, Inc.

Agere Systems Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. Agere, Agere Systems, and the Agere logo are trademarks of Agere Systems Inc.

Copyright © 2002 Agere Systems Inc. All Rights Reserved

June 7, 2002 DS02-247HSPL (Replaces DS02-061HSPL)

