Data Sheet, DS2, July 2000

DuSL.C゙

Dual Conannel Subscriber \&ine
Interfáé̂écircuit
PEB 3264/-2 Sisrsio ${ }^{2} 1.2$
PEB 4264/-2 VAधsTOn 1.18
PEB 3265 Version 1.2
PEB 4265 y -2 Version 1.1
PEB 426 $6^{\circ} \%$ y ersiân 1.1

Wired
Communications

Edition 2000-07-14

Published by Infineon Technologies AG, St.-Martin-Strasse 53,

D-81541 München, Germany

© Infineon Technologies AG 8/16/00.

All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

DuSLIC

Dual Channel Subscríiber Line Interface Circuit

PEB 3264/-2 Version 1.2
PEB 4264/-2 Version 1.1
PEB 3265 Version 1.2
PEB 4265/-2 Version 1.1
PEB 4266 Version 1.1

Wired
 Communications

DuSLIC Preliminary Revision History: $\quad 2000-07-14$	
Previous Version: \quad Data Sheet DS1	
Page	Subjects (major changes since last revision)
Page 15	Usage of the term SLICOFI-2x as synonym used for all codec versions SLICOFI-2/-2S/-2S2.
Page 33	Chapter 3.1 "Functional Overview" completely updated.
Page 94	Chapter 4.7.2 "Power Dissipation of SLICOFI-2": Power dissipation tables were replaced by cross-references to Chapter 7.
Page 107	Chapter 4.8 "Integrated Test and Diagnosis Functions" replaces the former chapter "Test Modes".
Page 132	Chapter 4.9 "Signal Path and Test Loops": updated figures.
Page 137	Chapter 4.10 "Caller ID Buffer Handling of SLICOFI-2" added.
Page 162	Figure 70 "Interface SLICOFI-2 and SLIC-P": Pin IO1A on PEB 3265 was replaced by pin IO2A.
Page 174	Register XCR: Bit PLL-LOOP removed.
Page 204	Register LMCR2: Description for bit LM-NOTCH changed.
Page 228	Chapter 6.2.3 "POP Commands": General update and partially renaming of POP commands.
Page 317	Chapter 7: Electrical characteristics and AC transmission performance completely updated.
Page 342	Chapter 7.4.6 "Digital Interface": Test condition current I Io for Low-output voltage VOLDu for PEB 3264/-2 was lowered to I $=-30$ mA.
Page 367	Chapter 8 "Application Circuits" completely overworked.

For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://www.infineon.com.

DuSLIC
Table of Contents Page
1 Overview 16
1.1 Features 19
1.2 Logic Symbols 20
1.3 Typical Applications 22
2 Pin Descriptions 23
2.1 Pin Diagram SLIC 23
2.2 Pin Diagram SLICOFI-2/-2S/-2S2 28
3 Functional Description 33
$3.1 \quad$ Functional Overview 33
3.1.1 Basic Functions available for all DuSLIC Chip Sets 33
3.1.2 Additional Functions available for DuSLIC-E/-E2/-P Chip Sets 34
3.2 Block Diagrams 36
3.3 DC Feeding 40
3.3.1 DC Characteristic Feeding Zones 41
3.3.2 Constant Current Zone 42
3.3.3 Resistive Zone 43
3.3.4 Constant Voltage Zone 44
3.3.5 Programmable Voltage and Current Range of DC Characteristic 45
3.3.6 SLIC Power Dissipation 46
3.3.7 Necessary Voltage Reserve 47
3.3.8 Extended Battery Feeding 48
3.4 AC Transmission Characteristics 49
3.4.1 Transmit Path 50
3.4.2 Receive Path 50
3.4.3 Impedance Matching 51
3.5 Ringing 52
3.5.1 Ringer Load 52
3.5.2 Ring Trip 52
3.5.3 Ringing Methods 53
3.5.4 DuSLIC Ringing Options 54
3.5.5 Internal Balanced Ringing via SLICs 57
3.5.6 Internal Unbalanced Ringing with SLIC-P 58
3.5.7 External Unbalanced Ringing 59
3.6 Signaling (Supervision) 59
3.7 Metering 61
3.7.1 Metering by $12 / 16 \mathrm{kHz}$ Sinusoidal Bursts 61
3.7.2 Metering by Polarity Reversal 62
3.7.2.1 Soft Reversal 62
3.8 DuSLIC Enhanced Signal Processing Capabilities 63
3.8.1 DTMF Generation and Detection 64
3.8.2 Caller ID Generation (only DuSLIC-E/-E2/-P) 66

DuSLIC
Table of Contents Page
3.8.3 Line Echo Cancelling (LEC) (only DuSLIC-E/-E2/-P) 69
3.8.4 Universal Tone Detection (UTD) (only DuSLIC-E/-E2/-P) 70
3.8.5 MIPS Requirements for EDSP Capabilities 71
3.9 Message Waiting Indication (only DuSLIC-E/-E2/-P) 72
3.10 Three-party Conferencing (only DuSLIC-E/-E2/-P) 74
3.10.1 Conferencing Modes 75
3.1116 kHz Mode on PCM Highway 76
4 Operational Description 78
4.1 Operating Modes for the DuSLIC Chip Set 78
4.2 Operating Modes for the DuSLIC-S/-S2 Chip Set 82
4.3 Operating Modes for the DuSLIC-E/-E2 Chip Set 84
4.4 Operating Modes for the DuSLIC-P Chip Set 86
4.5 Reset Mode and Reset Behavior 88
4.5.1 Hardware and Power On Reset 88
4.5.2 Software Reset 90
4.6 Interrupt Handling 92
4.7 Operating Modes and Power Management 93
4.7.1 Introduction 93
4.7.2 Power Dissipation of the SLICOFI-2x 94
4.7.3 Power Dissipation of the SLIC 95
4.7.3.1 Power Down Modes 95
4.7.3.2 Active Mode 95
4.7.3.3 SLIC Power Consumption Calculation in Active Mode 96
4.7.3.4 Ringing Modes 101
4.7.3.5 SLIC Power Consumption Calculation in Ringing Mode 103
4.8 Integrated Test and Diagnosis Functions (ITDF) 107
4.8.1 Introduction 107
4.8.1.1 Conventional Line Testing 107
4.8.1.2 DuSLIC Line Testing 107
4.8.2 Diagnostics 108
4.8.2.1 Line Test Capabilities 108
4.8.2.2 Integrated Signal Sources 108
4.8.2.3 Result Register Data Format 110
4.8.2.4 Using the Levelmeter Integrator 110
4.8.2.5 DC Levelmeter 112
4.8.2.6 \quad AC Levelmeter 117
4.8.2.7 Levelmeter Threshold 121
4.8.2.8 Current Offset Error Compensation 122
4.8.2.9 Loop Resistance Measurements 123
4.8.2.10 Line Resistance Tip/GND and Ring/GND 125
4.8.2.11 Capacitance Measurements 126
4.8.2.12 Line Capacitance Measurements Ring and Tip to GND 129

DuSLIC
Table of Contents Page
4.8.2.13 Foreign- and Ring Voltage Measurements 129
4.9 Signal Path and Test Loops 132
4.9.1 Test Loops DuSLIC-E/-E2/-P 132
4.9.2 Test Loops DuSLIC-S/-S2 134
4.10 Caller ID Buffer Handling of SLICOFI-2 137
5 Interfaces 138
5.1 PCM Interface with a Serial Microcontroller Interface 138
5.1.1 PCM Interface 138
5.1.2 Control of the Active PCM Channels 142
5.1.3 Serial Microcontroller Interface 143
5.2 The IOM-2 Interface 145
5.2.1 IOM-2 Interface Monitor Transfer Protocol 148
5.2.2 SLICOFI-2x Identification Command (only IOM-2 Interface) 152
5.3 TIP/RING Interface 152
5.4 SLICOFI-2S/-2S2 and SLIC-S/-S2 Interface 153
5.5 SLICOFI-2 and SLIC-E/-E2 Interface 156
5.6 SLICOFI-2 and SLIC-P Interface 159
6 SLICOFI-2x Command Structure and Programming 163
6.1 Overview of Commands 166
6.2 SLICOFI-2 Command Structure and Programming 167
6.2.1 SOP Command 167
6.2.1.1 SOP Register Overview 167
6.2.1.2 SOP Register Description 172
6.2.2 COP Command 224
6.2.2.1 CRAM Programming Ranges 227
6.2.3 POP Command 228
6.2.3.1 POP Register Overview 228
6.2.4 POP Register Description 232
6.2.5 IOM-2 Interface Command/Indication Byte 262
6.2.6 Programming Examples of the SLICOFI-2 264
6.2.6.1 Microcontroller Interface 264
6.2.6. \quad IOM-2 Interface 265
6.3 SLICOFI-2S/-2S2 Command Structure and Programming 267
6.3.1 SOP Command 267
6.3.1.1 SOP Register Overview 267
6.3.1.2 SOP Register Description 272
6.3.2 COP Command 308
6.3.2.1 CRAM Programming Ranges 311
6.3.3 IOM-2 Interface Command/Indication Byte 312
6.3.4 Programming Examples of the SLICOFI-2S/-2S2 314
6.3.4.1 Microcontroller Interface 314

DuSLIC
Table of Contents Page
6.3.4.2 IOM-2 Interface 315
7 Electrical Characteristics 317
7.1 Electrical Characteristics PEB 4264/-2 (SLIC-S/-S2) 317
7.1.1 Absolute Maximum Ratings PEB 4264/-2 (SLIC-S/-S2) 317
7.1.2 Operating Range PEB 4264/-2 (SLIC-S/-S2) 319
7.1.3 Thermal Resistances PEB 4264/-2 (SLIC-S/-S2) 319
7.1.4 Electrical Parameters PEB 4264/-2 (SLIC-S/-S2) 320
7.1.5 Power Calculation PEB 4264/-2 (SLIC-S/-S2) 322
7.1.6 Power Up Sequence PEB 4264/-2 (SLIC-S/-S2) 323
7.2 Electrical Characteristics PEB 4265/-2 (SLIC-E/-E2) 324
7.2.1 Absolute Maximum Ratings PEB 4265/-2 (SLIC-E/-E2) 324
7.2.2 Operating Range PEB 4265/-2 (SLIC-E/-E2) 325
7.2.3 Thermal Resistances PEB 4265/-2 (SLIC-E/-E2) 325
7.2.4 Electrical Parameters PEB 4265/-2 (SLIC-E/-E2) 326
7.2.5 Power Calculation PEB 4265/-2 (SLIC-E/-E2) 328
7.2.6 Power Up Sequence PEB 4265/-2 (SLIC-E/-E2) 329
7.3 Electrical Characteristics PEB 4266 (SLIC-P) 330
7.3.1 Absolute Maximum Ratings PEB 4266 (SLIC-P) 330
7.3.2 Operating Range PEB 4266 (SLIC-P) 332
7.3.3 Thermal Resistances PEB 4266 (SLIC-P) 332
7.3.4 Electrical Parameters PEB 4266 (SLIC-P) 333
7.3.5 Power Calculation PEB 4266 (SLIC-P) 336
7.3.6 Power Up Sequence PEB 4266 (SLIC-P) 337
7.4 Electrical Characteristics PEB 3265/PEB 3264/PEB 3264-2 (SLICOFI-2/- 2S/-
2S2) 338
7.4.1 Absolute Maximum Ratings 338
7.4.2 Operating Range 339
7.4.3 Power Dissipation PEB 3265 (SLICOFI-2) 340
7.4.4 Power Dissipation PEB 3264, PEB 3264-2 (SLICOFI-2S/-2S2) 341
7.4.5 Power Up Sequence for Supply Voltages 341
7.4.6 Digital Interface 342
7.5 AC Transmission DuSLIC 343
7.5.1 Frequency Response 351
7.5.2 Gain Tracking (Receive or Transmit) 352
7.5.3 Group Delay 353
7.5.4 Out-of-Band Signals at Analog Output (Receive) 354
7.5.5 Out-of-Band Signals at Analog Input (Transmit) 355
7.5.6 Total Distortion Measured with Sine Wave 356
7.6 DC Characteristics 358
7.7 DuSLIC Timing Characteristics 360
7.7.1 MCLK/FSC Timing 360
7.7.2 PCM Interface Timing 361
Table of Contents Page
7.7.2.1 Single-Clocking Mode 361
7.7.2.2 Double-Clocking Mode 362
7.7.3 Microcontroller Interface Timing 364
7.7.4 IOM-2 Interface Timing 365
7.7.4.1 Single-Clocking Mode 365
7.7.4.2 Double-Clocking Mode 366
8 Application Circuits 367
8.1 Internal Ringing (Balanced/Unbalanced) 367
8.1.1 Circuit Diagram Internal Ringing 368
8.1.2 Protection Circuit for SLIC-E/-E2 and SLIC-S 369
8.1.3 Protection Circuit for SLIC-P 370
8.1.4 Bill of Materials (Including Protection) 371
8.2 External Unbalanced Ringing with DuSLIC-E/-E2/-S/-S2/-P 372
8.3 DuSLIC Layout Recommendation 374
9 Package Outlines 376
10 Glossary 378
10.1 List of Abbreviations 378
11 Index 380
List of Figures Page
Figure 1 DuSLIC Chip Set 18
Figure 2 Logic Symbol SLIC-S / SLIC-S2 / SLIC-E / SLIC-E2 20
Figure 3 Logic Symbol SLIC-P 20
Figure 4 Logic Symbol SLICOFI-2/-2S/-2S2 21
Figure 5 Pin Configuration SLIC-S/-S2, SLIC-E/-E2, SLIC-P (top view) 23
Figure 6 Pin Configuration SLICOFI-2/-2S/-2S2 (top view) 28
Figure 7 Line Circuit Functions included in the DuSLIC-S/-S2 35
Figure 8 Line Circuit Functions included in the DuSLIC-E/-E2/-P 35
Figure 9 Block Diagram SLIC-S/-S2 (PEB 4264/-2). 36
Figure 10 Block Diagram SLIC-E/-E2 (PEB 4265/-2) 37
Figure 11 Block Diagram SLIC-P (PEB 4266) 38
Figure 12 Block Diagram SLICOFI-2/-2S/-2S2 (PEB 3265, PEB 3264/-2) 39
Figure 13 Signal Paths - DC Feeding 40
Figure 14 DC Feeding Characteristic 41
Figure 15 Constant Current Zone 42
Figure 16 Resistive Zone 43
Figure 17 Constant Voltage Zone 44
Figure 18 DC Characteristic 45
Figure 19 Power Dissipation 46
Figure 20 TTX Voltage Reserve Schematic 47
Figure 21 DC Feeding Characteristics (ACTH, ACTR) 48
Figure 22 Signal Paths - AC Transmission 49
Figure 23 Signal Flow in Voice Channel (A) 50
Figure 24 Nyquist Diagram 51
Figure 25 Typical Ringer Loads of 1 and 5 REN Used in US 52
Figure 26 External Ringing Zero Crossing Synchronization 56
Figure 27 Balanced Ringing via SLIC-E/-E2, SLIC-S and SLIC-P 57
Figure 28 Unbalanced Ringing Signal 58
Figure 29 Teletax Injection and Metering 61
Figure 30 Soft Reversal (Example for Open Loop) 62
Figure 31 DuSLIC AC Signal Path 63
Figure 32 DuSLIC EDSP Signal Path 63
Figure 33 Bellcore On-hook Caller ID Physical Layer Transmission 68
Figure 34 Line Echo Cancelling Unit - Block Diagram 69
Figure 35 UTD Functional Block Diagram 70
Figure 36 MWI Circuitry with Glow Lamp 72
Figure 37 Timing Diagram 73
Figure 38 Conference Block for One DuSLIC Channel 74
Figure 39 DuSLIC Reset Sequence 89
Figure 40 Circuit Diagram for Power Consumption 96
Figure 41 SLIC-E/-E2 Power Dissipation with Switched Battery Voltage. 98
Figure 42 SLIC-P Power Dissipation (Switched Battery Voltage, Long Loops) 99
List of Figures Page
Figure 43 SLIC-P Power Dissipation (Switched Battery Voltage, Short Loops). 101
Figure 44 Circuit Diagram for Ringing 103
Figure 45 Blockdiagram Levelmeter 109
Figure 46 Single Measurement Sequence (AC\&DC Levelmeter) 110
Figure 47 Continuous Measurement Sequence (DC Levelmeter) 111
Figure 48 Continuous Measurement Sequence (AC Levelmeter) 111
Figure 49 Example Resistance Measurement 123
Figure 50 Differential Resistance Measurement 124
Figure 51 Capacitance Measurement 127
Figure 52 Foreign Voltage Measurement Principle 130
Figure 53 AC Test Loops DuSLIC-E/-E2/-P 132
Figure 54 DC Test Loops DuSLIC-E/-E2/-P. 133
Figure 55 AC Test Loops DuSLIC-S 134
Figure 56 AC Test Loops DuSLIC-S2 135
Figure 57 DC Test Loops DuSLIC-S/-S2 136
Figure 58 General PCM Interface Timing 139
Figure 59 Setting of Slopes in Register PCMC1 141
Figure 60 Serial Microcontroller Interface Write Access 143
Figure 61 Serial Microcontroller Interface Read Access 144
Figure 62 IOM-2 Int. Timing for up to 16 Voice Channels (Per 8-kHz Frame) 145
Figure 63 IOM-2 Interface Timing (DCL $=4096 \mathrm{kHz}$, Per $8-\mathrm{kHz}$ Frame). 146
Figure 64 IOM-2 Interface Timing (DCL $=2048 \mathrm{kHz}$, Per $8-\mathrm{kHz}$ Frame) 147
Figure 65 IOM-2 Interface Monitor Transfer Protocol 148
Figure 66 State Diagram of the SLICOFI-2x Monitor Transmitter 150
Figure 67 State Diagram of the SLICOFI-2x Monitor Receiver 151
Figure 68 Interface SLICOFI-2S/-2S2 and SLIC-S/-S2 155
Figure 69 Interface SLICOFI-2 and SLIC-E/-E2. 158
Figure 70 Interface SLICOFI-2 and SLIC-P 162
Figure 71 Example for Switching Between Different Ring Offset Voltages 208
Figure 72 Example for UTD Recognition Timing 259
Figure 73 Example for UTD Tone End Detection Timing 261
Figure 74 Waveform of Programming Example SOP-Write to Channel 0 264
Figure 75 Waveform of Programming Example SOP Read from Channel 0 264
Figure 76 Waveform of Programming Example SOP Write to Channel 0 314
Figure 77 Waveform of Programming Example SOP Read from Channel 0 314
Figure 78 Hysteresis for Input Pins 342
Figure 79 Signal Definitions Transmit, Receive 343
Figure 80 Overload Compression 350
Figure 81 Frequency Response Transmit 351
Figure 82 Frequency Response Receive. 351
Figure 83 Gain Tracking Receive 352
Figure 84 Gain Tracking Transmit 352
List of Figures Page
Figure 85 Group Delay Distortion Receive and Transmit. 353
Figure 86 Out-of-Band Signals at Analog Output (Receive) 354
Figure 87 Out-of-Band Signals at Analog Input (Transmit) 355
Figure 88 Total Distortion Transmit (LX = 0 dBr) 356
Figure 89 Total Distortion Receive ($\mathrm{LR}=-7 \mathrm{dBr}$) 356
Figure 90 Total Distortion Receive ($\mathrm{LR}=0 \mathrm{dBr}$) 357
Figure 91 MCLK / FSC-Timing 360
Figure 92 PCM Interface Timing - Single-Clocking Mode 361
Figure 93 PCM Interface Timing - Double-Clocking Mode 362
Figure 94 Microcontroller Interface Timing. 364
Figure 95 IOM-2 Interface Timing - Single-Clocking Mode 365
Figure 96 IOM-2 Interface Timing - Double-Clocking Mode 366
Figure 97 Application Circuit, Internal Ringing (Balanced \& Unbalanced) 368
Figure 98 Typical Overvoltage Protection for SLIC-E/-E2 and SLIC-S 369
Figure 99 Typical Overvoltage Protection for SLIC-P 370
Figure 100 Application Circuit, External Unbalanced Ringing 372
Figure 101 Application Circuit, External Unbalanced Ringing for Long Loops 373
Figure 102 DuSLIC Layout Recommendation 375
Figure 103 PEB426x (SLIC-S/-S2, SLIC-E/-E2, SLIC-P) 376
Figure 104 PEB 3264, PEB 3264-2, PEB 3265 (SLICOFI-2x) 377
List of Tables Page
Table 1 DuSLIC Chip Sets 16
Table 2 Pin Definitions and Functions SLIC-S/-S2 and SLIC-E/-E2 24
Table $3 \quad$ Pin Definitions and Functions SLIC-P 26
Table 4 Pin Definitions and Functions SLICOFI-2/-2S/-2S2 29
Table 5 DC Characteristic. 45
Table 6 Ringing Options with SLIC-S, SLIC-E/-E2 and SLIC-P 54
Table 7 Performance Characteristics of the DTMF Decoder Algorithm 65
Table 8 FSK Modulation Characteristics 67
Table 9 MIPS Requirements 71
Table 10 Conference Modes 75
Table 11 Possible Modes in PCM/ μ C Interface Mode 76
Table 12 Overview of DuSLIC Operating Modes 78
Table 13 DuSLIC-S/-S2 Operating Modes 82
Table 14 DuSLIC-E/-E2 Operating Modes 84
Table 15 DuSLIC P Operating Modes 86
Table 16 Default Values 90
Table 17 Typical Buffer Voltage Drops (Sum) for $I_{\text {TRANS }}\left(I_{\mathrm{T}}\right.$ or $\left.I_{\mathrm{R}}\right)$ 95
Table 18 Line Feed Conditions for Power Calculation of SLIC-E/-E2. 97
Table 19 SLIC-E/-E2 Typical Total Power Dissipation 97
Table 20 Line Feed Conditions for Power Calculation for SLIC-P 98
Table 21 SLIC-P PEB 4266 Power Dissipation 99
Table 22 Line Feed Conditions for Power Calculation for SLIC-P 100
Table 23 SLIC-P PEB 4266 Power Dissipation 100
Table 24 SLIC-E/-E2 Balanced Ringing Power Dissipation (typical) 104
Table 25 SLIC-P Balanced Ringing Power Dissipation (typical) 105
Table 26 SLIC-P Unbalanced Ringing Power Dissipation (typical). 106
Table 27 Levelmeter Result Value Range 110
Table 28 Selecting DC Levelmeter Path. 112
Table 29 KINTDC Setting Table 113
Table $30 \quad$ NSamples Setting Table 114
Table 31 Levelmeter Results with and without Integrator Function 115
Table 32 Selecting AC Levelmeter Path 117
Table 33 KINTAC Setting Table 118
Table 34 KTG Setting Table 120
Table 35 Threshold Setting Table 121
Table 36 Measurement Input Selection 130
Table 37 SLICOFI-2x PCM Interface Configuration 140
Table 38 Active PCM Channel Configuration Bits 142
Table 39 IOM-2 Time Slot Assignment 147
Table 40 SLIC-S/-S2 Interface Code 153
Table 41 SLIC-S/-S2 Modes 153
Table 42 SLIC-E/-E2 Interface Code 156
List of Tables Page
Table 43 SLIC-E/-E2 Modes 156
Table 44 SLIC-P Interface Code 159
Table 45 SLIC-P Modes 159
Table 46 SLIC-P Modes 160
Table 47 M2, M1, M0: General Operating Mode 164
Table 48 Valid DTMF Keys (Bit DTMF-KEY4 = 1) 178
Table 49 DTMF Keys 200
Table 50 Typical Usage for the three Ring Offsets 208
Table 51 CRAM Coefficients 226
Table 52 CRAM Programming Ranges 227
Table 53 Ranges of GDTMF[dB] dependent on "e" 237
Table 54 Example for DTMF-GAIN Calculation 237
Table 55 Characteristic Values 240
Table 56 Characteristic Values 241
Table 57 Characteristic Values 242
Table 58 Ranges of GLEC-XI[dB] Dependent on "e" 243
Table 59 Example for LEC-GAIN-XI Calculation 243
Table 60 Ranges of GLEC-RI[dB] Dependent on "e" 244
Table 61 Example for LEC-GAIN-RI Calculation 244
Table 62 Ranges of GLEC-X0[dB] Dependent on "e". 245
Table 63 Example for LEC-GAIN-X0 Calculation 245
Table 64 Examples 247
Table 65 UTD Inband/Outband Attenuation 257
Table 66 M2, M1, M0: General Operating Mode 262
Table 67 DTMF Keys 294
Table 68 CRAM Coefficients. 310
Table 69 CRAM Programming Ranges 311
Table 70 M2, M1, M0: General Operating Mode 312
Table $71 \quad P_{1}$ Calculation PEB 4264/-2 (SLIC-S/-S2) 322
Table $72 \quad P_{\mathrm{G}}$ Calculation PEB 4264/-2 (SLIC-S/-S2) 323
Table $73 \quad P_{\mathrm{O}}$ Calculation PEB 4264/-2 (SLIC-S/-S2) 323
Table $74 \quad P_{1}$ Calculation PEB 4265/-2 (SLIC-E/-E2) 328
Table $75 \quad P_{G}$ Calculation PEB 4265/-2 (SLIC-E/-E2) 329
Table $76 \quad P_{\mathrm{O}}$ Calculation PEB 4265/-2 (SLIC-E/-E2) 329
Table $77 \quad P_{1}$ Calculation PEB 4266 (SLIC-P)... 336
Table $78 \quad P_{\mathrm{G}}$ Calculation PEB 4266 (SLIC-P) 337
Table $79 \quad P_{\mathrm{O}}$ Calculation PEB 4266 (SLIC-P) 337
Table 80 AC Transmission 344
Table 81 Group Delay Absolute Values: Signal level $0 \mathrm{dBm0}$ 353
Table 82 DC Characteristics 358
Table 83 External Components in Application Circuit for DuSLIC-E/-E2/-S/-P 371

DuSLIC

Preliminary

Preface

This document describes the DuSLIC chip set comprising a programmable dual channel SLICOFI- $2 x$ codec and two single channel high-voltage SLIC chips. For more DuSLIC related documents please see our webpage at http://www.infineon.com/duslic.
To simplify matters, the following synonyms are used:
SLICOFI-2x: Synonym used for all codec versions SLICOFI-2/-2S/-2S2
SLIC: \quad Synonym used for all SLIC versions SLIC-S/-S2, SLIC-E/-E2 and SLIC-P

Organization of this Document

This Data Sheet is divided into eleven chapters. It is organized as follows:

- Chapter 1, Overview

A general description of the product, its key features, and some typical applications.

- Chapter 2, Pin Descriptions
- Chapter 3, Functional Description

The main functions are presented following a functional block diagram.

- Chapter 4, Operational Description

A brief description of the three operating modes: power down, active and ringing (plus signal monitoring techniques).

- Chapter 5, Interfaces

Connection information including standard IOM-2 and PCM interface timing frames and pins.

- Chapter 6, SLICOFI-2x command structure

A general brief about the SLICOFI-2x command structure.

- Chapter 7, Electrical Characteristics

Parameters, symbols and limit values.

- Chapter 8, Application Circuits

External components and layout recommendations. Illustrations of balanced ringing, unbalanced ringing and protection circuits.

- Chapter 9, Package Outlines Illustrations and dimensions of the package outlines.
- Chapter 10, Glossary List of abbreviations and description of symbols.
- Chapter 11, Index

DuSLIC

Preliminary

1 Overview

DuSLIC is a chip set, comprising one dual channel SLICOFI-2x codec and two single channel SLIC chips. It is a highly flexible codec/SLIC solution for an analog line circuit and is widely programmable via software. Users can now serve different markets with a single hardware design that meets all different standards worldwide.
The interconnections between the single channel high-voltage SLIC and the dual channel SLICOFI-2x codec (advanced CMOS process) ensure a seamless fit. This guarantees maximum transmission performance with minimum line circuit component count.
DuSLIC family chip sets:

Table 1 DuSLIC Chip Sets

Chip Set	DuSLIC-S	DuSLIC-S2	DuSLIC-E	DuSLIC-E2	DuSLIC-P
Marketing Name	$\begin{aligned} & \text { SLICOFI-2S/ } \\ & \text { SLIC-S } \end{aligned}$	$\begin{aligned} & \text { SLICOFI-2S2/ } \\ & \text { SLIC-S2 } \end{aligned}$	$\begin{aligned} & \text { SLICOFI-2/ } \\ & \text { SLIC-E } \end{aligned}$	$\begin{aligned} & \text { SLICOFI-2/ } \\ & \text { SLIC-E2 } \end{aligned}$	$\begin{aligned} & \text { SLICOFI-2/ } \\ & \text { SLIC-P } \end{aligned}$
Product ID	$\begin{aligned} & \text { PEB 3264/ } \\ & \text { PEB } 4264 \end{aligned}$	$\begin{aligned} & \text { PEB 3264-2/ } \\ & \text { PEB 4264-21) } \end{aligned}$	PEB 3265/ PEB 4265	$\begin{aligned} & \text { PEB 3265/ } \\ & \text { PEB 4265-2²) } \end{aligned}$	PEB 3265/ PEB 4266
Longitudinal Balance	53 dB	60 dB	53 dB	60 dB	53 dB
Maximum DC feeding	32 mA	50 mA	32 mA	50 mA	32 mA
Neg. Battery Voltages	2	2	2	2	2/3
Add. positive Voltages	1	1	1	1	0
Internal Ringing	45 Vrms	no	85 Vrms	85 Vrms	85 Vrms bal., 50 Vrms unbal.
ITDF ${ }^{3)}$	no	no	yes	yes	yes
TTX	1.2 Vrms	no	2.5 Vrms	2.5 Vrms	2.5 Vrms
Add-Ons ${ }^{4}$	no	no	yes	yes	yes

[^0]DuSLIC

The DuSLIC family comprises five different chip sets (see Table 1):

- Three basic DuSLIC chip sets optimized for different applications: DuSLIC-S (Standard), DuSLIC-E (Enhanced), DuSLIC-P (Power Management).
- Two different performance versions of the basic DuSLIC-E and DuSLIC-S chip sets: DuSLIC-E2 (using SLIC-E2 PEB 4265-2 compared to DuSLIC-E) DuSLIC-S2 (using SLIC-S2 PEB 4264-2 and codec PEB 3264-2)

The codec devices SLICOFI-2, SLICOFI-2S and SLICOFI-2S2 are manufactured in an advanced $0.35 \mu \mathrm{~m} 3.3 \mathrm{~V}$ CMOS process.
The SLIC-E, SLIC-E2 and SLIC-P devices are manufactured in Infineon Technologies robust and well proven 170 V Smart Power technology.
The SLIC-S and SLIC-S2 devices are manufactured in Infineon Technologies 90 V Smart Power technology and offer further cost reduction.

Usage of Codec's and SLIC's:

DuSLIC-E, DuSLIC-E2 and DuSLIC-P comprise the same SLICOFI-2 codec with full EDSP (Enhanced Digital Signal Processor) features like DTMF detection, Caller ID generation, Universal Tone Detection (UTD) and Line Echo Cancellation.
DuSLIC-S comprises the SLICOFI-2S codec without EDSP features.
DuSLIC-S2 comprises the SLICOFI-2S2 codec based on the SLICOFI-2S but without Teletax metering (TTX) and internal ringing capability.
The respective SLIC variant for each chip set featured in Table 1 has been selected according to performance and application requirements:
SLIC-S/-S2 (PEB 4264 / PEB 4264-2) and SLIC-E/-E2 (PEB 4265 / PEB 4265-2) are optimized for access network requirements, while the power management SLIC-P (PEB 4266) is an enhanced version for extremely power-sensitive applications or for applications where internal unbalanced ringing is required.

DuSLIC Architecture

Unlike traditional designs, DuSLIC splits the SLIC function into high-voltage SLIC functions and low-voltage SLIC functions.
The low-voltage functions are handled in the SLICOFI-2x device. The partitioning of the functions is shown in Figure 1.
For further information see Chapter 3.1.

Preliminary

Figure 1 DuSLIC Chip Set

Dual Channel Subscriber Line Interface Circuit DuSLIC

PEB 3264/-2

PEB 3265
PEB 4264/-2
PEB 4265/-2
PEB 4266

Version 1.2

$1.1 \quad$ Features

- Internal unbalanced/balanced ringing capability up to 85 Vrms
- Programmable Teletax (TTX) generation
- Programmable battery feeding with capability for driving longer loops
- Fully programmable dual-channel codec
- Ground/loop start signaling
- Polarity reversal

- Integrated Test and Diagnosis Functions (IDTF)
- On-hook transmission
- Integrated DTMF generator
- Integrated DTMF decoder
- Integrated Caller ID (FSK) generator
- Integrated fax/modem detection (Universal Tone Detection (UTD))
- Integrated Line Echo Cancellation unit (LEC)
- Optimized filter structure for modem transmission

- Three-party conferencing (in PCM $/ \mu \mathrm{C}$ mode)
- Message waiting lamp support (PBX)
- Power optimized architecture
- Power management capability (integrated battery switches)
- 8 and 16 kHz PCM Transmission
- Specification in accordance with

ITU-T Recommendation Q. 552 for interface Z and applicable LSSGR

Type	Package
PEB 3264/-2	P-MQFP-64-1
PEB 4264/-2	P-DSO-20-5
PEB 3265	P-MQFP-64-1
PEB 4265/-2	P-DSO-20-5
PEB 4266	P-DSO-20-5

Preliminary

1.2 Logic Symbols

Figure 2 Logic Symbol SLIC-S / SLIC-S2 / SLIC-E / SLIC-E2

Figure $3 \quad$ Logic Symbol SLIC-P

Preliminary

Figure 4 Logic Symbol SLICOFI-2/-2S/-2S2

Preliminary

1.3 Typical Applications

- Digital Loop Carrier (DLC)
- Wireless Local Loop
- Fiber in the Loop
- Private Branch Exchange
- Intelligent NT (Network Termination) for ISDN
- ISDN Terminal Adapter
- Central Office
- Cable Modem
- XDSL NT
- Router

Preliminary

2 Pin Descriptions

2.1 Pin Diagram SLIC

Figure 5 Pin Configuration SLIC-S/-S2, SLIC-E/-E2, SLIC-P (top view)
Note: The SLIC is only available in a P-DSO-20-5 package with heatsink on top. Please note that the pin counting for the P-DSO-20-5 package is clockwise (top view) in contrast to similar type packages which mostly count counterclockwise.

DuSLIC

Preliminary
Pin Descriptions
Table 2 Pin Definitions and Functions SLIC-S/-S2 and SLIC-E/-E2

Pin No.	Symbol	Input (I) Output (O)	Function
1	RING	I/O	Subscriber loop connection RING
2	TIP	I/O	Subscriber loop connection TIP
3	BGND	Power	Battery ground: TIP, RING, $V_{\mathrm{BATH}}, V_{\mathrm{BATL}}$ and V_{HR} refer to this pin
4	VHR	Power	Auxiliary positive battery supply voltage used in ringing mode
5	VDD	Power	Positive supply voltage (+5 V), referred to AGND
6	VBATL	Power	Negative battery supply voltage ($-15 \mathrm{~V} \geq V_{\text {BATL }} \geq V_{\text {BATH }}$)
7	VBATH	Power	Negative battery supply voltage: $\text { SLIC-S / SLIC-S2: - } 20 \mathrm{~V} \geq V_{\mathrm{BATH}} \geq-65 \mathrm{~V}$ $\text { SLIC-E / SLIC-E2: - } 20 \mathrm{~V} \geq V_{\mathrm{BATH}} \geq-85 \mathrm{~V}$
8	N.C.	-	Not connected
9	AGND	Power	Analog ground: V_{DD}, and all signal and control pins with the exception of TIP and RING refer to AGND
10	CEXT	0	Output of voltage divider defining DC line potentials; an external capacitance allows supply voltage filtering (output resistance about $30 \mathrm{k} \Omega$)
11	VCMS	I	Reference voltage for differential two-wire interface, typical 1.5 V
$\begin{aligned} & \overline{12} \\ & 13 \end{aligned}$	ACN, ACP	I	Differential two-wire AC input voltage; multiplied by - 6 and related to $\left(V_{\mathrm{HI}}+V_{\mathrm{BI}}\right) / 2$, ACN appears at TIP and ACP at RING output, respectively ($V_{\mathrm{HI}} \& V_{\mathrm{BI}}$ are internal voltages)
$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & \mathrm{DCN} \\ & \mathrm{DCP} \end{aligned}$	I	Differential two-wire DC input voltage; multiplied by a factor (-30 in ACTH and ACTL mode, -60 in ACTR mode) and related to $\left(V_{\mathrm{HI}}+V_{\mathrm{BI}}\right) / 2$, DCN appears at TIP and DCP at RING output, respectively
16	N.C.	-	Not connected
17	C2	I	Ternary logic input, controlling the operation mode
18	C1	I/O	Ternary logic input, controlling the operation mode; in case of thermal overload (chip temperature exceeding $165^{\circ} \mathrm{C}$) this pin sinks a current of typically $150 \mu \mathrm{~A}$

Preliminary

Table 2 Pin Definitions and Functions SLIC-S/-S2 and SLIC-E/-E2 (cont'd)

Pin No.	Symbol	Input (I) Output (O)	Function
19	IL	O	Current output: longitudinal line current scaled down by a factor of 100
20	IT	O	Current output representing the transversal current scaled down by a factor of 50

Note: The SLIC is only available in a P-DSO-20-5 package with heatsink on top. Please note that the pin counting for the P-DSO-20-5 package is clockwise (top view) in contrast to similar type packages which mostly count counterclockwise.

DuSLIC

Preliminary
Pin Descriptions
Table 3 Pin Definitions and Functions SLIC-P

Pin No.	Symbol	Input (I) Output (O)	Function
1	RING	I/O	Subscriber loop connection RING
2	TIP	I/O	Subscriber loop connection TIP
3	BGND	Power	Battery ground: TIP, RING, $V_{\mathrm{BATH}}, V_{\mathrm{BATL}}$ and V_{BATR} refer to this pin
4	N.C.	-	Not connected
5	VDD	Power	Positive supply voltage ($3.1 \mathrm{~V} \leq V_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$), referred to AGND
6	VBATL	Power	Negative battery supply voltage ($-15 \mathrm{~V} \geq V_{\mathrm{BATL}} \geq-140 \mathrm{~V}$)
7	VBATH	Power	Negative battery supply voltage $\left(-20 \mathrm{~V} \geq V_{\mathrm{BATH}} \geq-145 \mathrm{~V}, V_{\mathrm{BATL}} \geq V_{\mathrm{BATH}}\right)$
8	VBATR	Power	Negative battery supply voltage used as on-hook voltage in power sensitive applications with external ringing or for the extended battery feeding option. $\left(-25 \mathrm{~V} \geq V_{\mathrm{BATR}} \geq-150 \mathrm{~V}, V_{\mathrm{BATL}} \geq V_{\mathrm{BATH}} \geq V_{\mathrm{BATR}}\right)$
9	AGND	Power	Analog ground: V_{DD}, and all signal and control pins with the exception of TIP and RING refer to AGND
10	CEXT	0	Output of voltage divider defining DC line potentials; an external capacitance allows supply voltage filtering (output resistance about $30 \mathrm{k} \Omega$)
11	VCMS	I	Reference voltage for differential two-wire interface, typical 1.5 V
$\begin{aligned} & 12, \\ & 13 \end{aligned}$	ACN, ACP	I	Differential two-wire AC input voltage; multiplied by - 6 and related to $V_{\mathrm{B}} / 2$, ACN appears at TIP and ACP at RING output, respectively (V_{BI} is an internal voltage)
$\begin{aligned} & \hline 14, \\ & 15 \end{aligned}$	$\begin{aligned} & \text { DCN, } \\ & \text { DCP } \end{aligned}$	I	Differential two-wire DC input voltage; multiplied by a factor (-30 in ACTH \& ACTL mode, -60 in ACTR mode) and related to $V_{\mathrm{BI}} / 2$, DCN appears at TIP and DCP at RING output, respectively
16	C3	I	Binary logic input, controlling the operation mode
17	C2	1	Ternary logic input, controlling the operation mode
18	C1	I/O	Ternary logic input, controlling the operation mode; in case of thermal overload (chip temperature exceeding $165^{\circ} \mathrm{C}$) this pin sinks a current of typically $150 \mu \mathrm{~A}$

Preliminary

Table 3 Pin Definitions and Functions SLIC-P (cont'd)

Pin No.	Symbol	Input (I) Output (O)	Function
19	IL	O	Current output: longitudinal line current scaled down by a factor of 100
20	IT	O	Current output representing the transversal current scaled down by a factor of 50

Note: The SLIC is only available in a P-DSO-20-5 package with heatsink on top. Please note that the pin counting for the P-DSO-20-5 package is clockwise (top view) in contrast to similar type packages which mostly count counterclockwise.

DuSLIC

Preliminary

2.2 Pin Diagram SLICOFI-2/-2S/-2S2

Figure 6 Pin Configuration SLICOFI-2/-2S/-2S2 (top view)

DuSLIC

Preliminary
Pin Descriptions
Table 4 Pin Definitions and Functions SLICOFI-2/-2S/-2S2

Pin No.	Symbol	Input (I) Output (O)	Function
1	C2B	O	Ternary logic output for controlling the SLIC operation mode (channel B)
2	DCPB	O	Two-wire output voltage (DCP) (channel B)
3	CDCPB	I/O	External capacitance for filtering (channel B)
4	CDCNB	I/O	External capacitance for filtering (channel B)
5	DCNB	O	Two-wire output voltage (DCN) (channel B)

DuSLIC

Preliminary
Pin Descriptions
Table 4 Pin Definitions and Functions SLICOFI-2/-2S/-2S2 (cont'd)

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Input (I) Output (O)	Function
18	DU DOUT	0	PCM $/ \overline{\mathrm{OM}}-2=0$ (IOM-2 interface): Data upstream, open drain PCM $/ \overline{\mathrm{IOM}-2}=1$ ($\mu \mathrm{C}$ interface): Data out, push/pull
19	DCL PCLK	I	$\begin{aligned} & \mathrm{PCM} / \overline{\overline{\mathrm{IOM}}-2}=0(\mathrm{IOM}-2 \text { interface }): \text { Data clock } \\ & \mathrm{PCC} / \overline{\mathrm{IOM}-2}=1 \text { (PCM interface): } 128 \mathrm{kHz} \text { to } 8192 \mathrm{kHz} \\ & \text { PCM clock } \end{aligned}$
20	$\begin{array}{\|l\|} \hline \text { DD } \\ \text { DRB } \end{array}$	1	$\mathrm{PCM} / \overline{\mathrm{IOM}-2}=0$ (IOM-2 interface): Data downstream $\mathrm{PCM} / \overline{\mathrm{IOM}-2}=1$ (PCM interface): Receive data input for PCM highway B
21	SEL24 DRA	1	PCM/IOM-2 $=0$ (IOM-2 interface): SEL24 = 0: DCL $=2048 \mathrm{kHz}$ selected SEL24 = 1: DCL $=4096 \mathrm{kHz}$ selected $\mathrm{PCM} / \overline{\mathrm{IOM}-2}=1$ (PCM-interface): Receive Data input for PCM-highway A
22	MCLK	I	PCM/IOM-2 $=0$ (IOM-2 interface): not connected $\mathrm{PCM} / \overline{\mathrm{IOM}-2}=1$ (PCM interface): master clock when PCM/ $\mu \mathrm{C}$ interface is used, clock rates are $512 \mathrm{kHz}, 1536 \mathrm{kHz}$, 2048 kHz, 4096 kHz, 7168 kHz , 8192 kHz
23	FSC	I	Frame synchronization clock for PCM/ $\mu \mathrm{C}$ or IOM-2 interface, 8 kHz , identifies the beginning of the frame, individual time slots are referenced to this input signal.
24	GNDD	Power	Digital ground
25	VDDD	Power	+ 3.3 V digital supply voltage
26	$\overline{\text { TCA }}$	O	Transmit control output for PCM highway A, active low during transmission, open drain
27	DXA	0	Transmit data output for PCM highway A (goes tristate when inactive)
28	DXB	0	Transmit data output for PCM highway B (goes tristate when inactive)
29	$\overline{\text { TCB }}$	0	Transmit control output for PCM highway B, active low during transmission, open drain
30	GNDPLL	Power	Digital ground PLL
31	VDDPLL	Power	+ 3.3 V supply voltage PLL

DuSLIC

Preliminary
Pin Descriptions
Table 4 Pin Definitions and Functions SLICOFI-2/-2S/-2S2 (cont'd)

Pin No.	Symbol	Input (I) Output (O)	Function
32	$\frac{\mathrm{PCM} /}{\mathrm{IOM}-2}$	I	$\mathrm{PCM} / \overline{\mathrm{IOM}-2}=1: \mathrm{PCM} / \mu \mathrm{C}$ interface selected PCM $/ \overline{\mathrm{IOM}-2}=0: I O M-2$ interface selected
33	RSYNC	1	External ringing synchronization pin
34	RESET	I	Reset pin, low active
35	TEST	1	Testpin for production test, has to be connected to GNDD
36	IO4A	I/O	User-programmable I/O Pin (channel A) with analog input functionality
37	IO3A	I/O	User-programmable I/O Pin (channel A) with analog input functionality
38	IO2A	I/O	User-programmable I/O Pin (channel A) with relay-driving capability. SLICOFI-2 and SLIC-P: connected to pin C3 of SLIC-P, when two supply voltages for voice transmission and internal ringing are used. ${ }^{1)}$
39	IO1A	I/O	User-programmable I/O Pin (channel A) with relay-driving capability. In external ringing mode IO1 is used to automatically control and drive the ring relay.
40	GNDA	Power	Analog ground (channel A)
41	VDDA	Power	+ 3.3 V analog supply voltage (channel A)
42	ACNA	O	Differential two-wire AC output voltage controlling the TIP pin (channel A)
43	ACPA	0	Differential two-wire AC output voltage controlling the RING pin (channel A)
44	DCNA	O	Two-wire output voltage (DCN) (channel A)
45	CDCNA	I/O	External capacitance for filtering (channel A)
46	CDCPA	I/O	External capacitance for filtering (channel A)
47	DCPA	0	Two-wire output voltage (DCP) (channel A)
48	C2A	0	Ternary logic output for controlling the SLIC operation mode (channel A)
49	C1A	I/O	Ternary logic output, controlling the SLIC operation mode (channel A); indicating thermal overload of SLIC if a current of typically $150 \mu \mathrm{~A}$ is drawn out
50	ILA	1	Longitudinal current input (channel A)
51	ITACA	I	Transversal current input (AC) (channel A)

DuSLIC

Preliminary
Pin Descriptions
Table 4 Pin Definitions and Functions SLICOFI-2/-2S/-2S2 (cont'd)

Pin No.	Symbol	Input (I) Output (O)	Function
52	ITA	I	Transversal current input (AC + DC) (channel A)
53	VCMITA	I	Reference pin for trans./long. current sensing (channel A)
54	VDDR	Power	+3.3 V analog supply voltage (bias)
55	GNDR	Power	Analog ground (bias)
56	VCMS	O	Reference voltage for differential two-wire interface, typical 1.5 V
57	VCM	O	Reference voltage for input pins IT, IL, ITAC
58	CREF	I/O	An external capacitor of 68 nF has to be connected to GNDR
59	SELCLK	I	Master clock select. Should be set to GND (internal master clock generation). For test purposes, external master clock generation can be selected (SELCLK = 1). In this case a clock of nominal 32.768 Mhz with a jitter time of less than 1 ns has to be applied to the MCLK pin.
60	VCMITB	I	Reference pin for transversal/longitudinal current sensing (channel B)
61	ITB	I	Transversal current input (AC + DC) (channel B)
62	ITACB	I	Transversal current input (AC) (channel B)
63	ILB	I	Longitudinal current input (channel B)
64	C1B	I/O	Ternary logic output, controlling the SLIC operation mode (channel B); indicating thermal overload of SLIC if a current of typically $150 ~ \mu A ~ i s ~ d r a w n ~ o u t ~$

[^1]DuSLIC

3 Functional Description

3.1 Functional Overview

3.1.1 Basic Functions available for all DuSLIC Chip Sets

The functions described in this chapter are integrated in all DuSLIC chip sets (see Figure 7 for DuSLIC-S/-S2 and Figure 8 for DuSLIC-E/-E2/-P).
All BORSCHT functions are integrated:

- Battery feed
- Overvoltage protection (realized by the robust high-voltage SLIC technology and additional circuitry)
- Ringing ${ }^{1)}$
- Signaling (supervision)
- Coding
- Hybrid for 2/4-wire conversion
- Testing

An important feature of the DuSLIC design is the fact that all the SLIC and codec functions are programmable via the IOM-2 or PCM/ $\mu \mathrm{C}$-interface of the dual channel SLICOFI-2x device:

- DC (battery) feed characteristics
- AC impedance matching
- Transmit gain
- Receive gain
- Hybrid balance
- Frequency response in transmit and receive direction
- Ring frequency and amplitude ${ }^{1)}$
- Hook thresholds
- TTX modes ${ }^{2)}$

Because signal processing within the SLICOFI- $2 x$ is completely digital, it is possible to adapt to the requirements listed above by simply updating the coefficients that control DSP processing of all data. This means, for example, that changing impedance matching or hybrid balance requires no hardware modifications. A single hardware is now capable of meeting the requirements for different markets. The digital nature of the filters and gain stages also assures high reliability, no drifts (over temperature or time) and minimal variations between different lines.

[^2]The characteristics for the two voice channels within SLICOFI-2x can be programmed independently of each other. The DuSLICOS software is provided to automate calculation of coefficients to match different requirements. DuSLICOS also verifies the calculated coefficients.

3.1.2 Additional Functions available for DuSLIC-E/-E2/-P Chip Sets

The following line circuit functions are integrated only in the DuSLIC-E/-E2/-P chip sets (see Figure 8):

- Teletax metering

For pulse metering, a $12 / 16 \mathrm{kHz}$ sinusoidal metering burst has to be transmitted. The DuSLIC chip set generates the metering signal internally and has an integrated notch filter.

- DTMF

DuSLIC has an integrated DTMF generator comprising two tone generators and a DTMF decoder. The decoder is able to monitor the transmit or receive path for valid tone pairs and outputs the corresponding digital code for each DTMF tone pair.

- Caller ID Frequency Shift Keying (FSK) Modulator

DuSLIC has an integrated FSK modulator capable of sending Caller ID information. The Caller ID modulator complies with all requirements of ITU-T recommendation V. 23 and Bell 202.

- LEC (Line Echo Cancellation)

DuSLIC contains an adaptive line echo cancellation unit for the cancellation of near end echos (up to 8 ms cancelable echo delay time).

- UTD (Universal Tone Detection)

DuSLIC has an integrated Universal Tone Detection unit to detect special tones in the receive or transmit path (e.g. fax or modem tones).

Preliminary

Figure 7 Line Circuit Functions included in the DuSLIC-S/-S2

Figure 8 Line Circuit Functions included in the DuSLIC-E/-E2/-P

Preliminary

Functional Description

3.2 Block Diagrams

Figure 9, Figure 10 and Figure 11 show the basic functional blocks and circuits for all SLIC versions of the DuSLIC chip set.

Figure 9 Block Diagram SLIC-S/-S2 (PEB 4264/-2)

Preliminary

Figure 10 Block Diagram SLIC-E/-E2 (PEB 4265/-2)

Preliminary

Figure 11 Block Diagram SLIC-P (PEB 4266)

Preliminary

Figure 12 shows the internal block structure of all SLICOFI-2x codec versions available. The Enhanced Digital Signal Processor (EDSP) realizing the add-on funtions ${ }^{1)}$ is only integrated in the SLICOFI-2 (PEB 3265) device.

Figure 12 Block Diagram SLICOFI-2/-2S/-2S2 (PEB 3265, PEB 3264/-2)

[^3]
Functional Description

Preliminary

3.3 DC Feeding

DC feeding with the DuSLIC is fully programmable by using the software coefficients depicted in Table 5 on Page 45.
Figure 13 shows the signal paths for DC feeding between the SLIC and SLICOFI-2x:

Figure 13 Signal Paths - DC Feeding

3.3.1 DC Characteristic Feeding Zones

The DuSLIC DC feeding characteristic has three different zones: the constant current zone, the resistive zone and the constant voltage zone. A voltage reserve $V_{\text {RES }}$ (see Chapter 3.3.7) can be selected to avoid clipping the high level AC signals (e.g. TTX) and to take into account the voltage drop of the SLIC. The DC feeding characteristic is shown in Figure 14.

Figure 14 DC Feeding Characteristic
The simplified diagram shows the constant current zone as an ideal current source with an infinite internal resistance, while the constant voltage zone is shown as an ideal voltage source with an internal resistance of 0Ω. For the specification of the internal resistances see Chapter 3.3.5.

3.3.2 Constant Current Zone

In the off-hook state, the feed current must usually be kept at a constant value independent of load (see Figure 15). The SLIC senses the DC current and supplies this information to SLICOFI-2x via the IT pin (input pin for DC control). SLICOFI- $2 x$ compares the actual current with the programmed value and adjusts the SLIC drivers as necessary. ITIP/RING in the constant current zone is programmable from 0 to 32 mA or 0 to 50 mA depending on the used SLIC version.

Figure 15 Constant Current Zone
Depending on the load, the operating point is determined by the voltage $V_{\text {TIP/RING }}$ between the Tip and Ring pins.
The operating point is calculated from:
$V_{\text {TIP/RING }}=R_{\text {LOAD }} \times I_{\text {TIP/RING }}$
where
$R_{\text {LOAD }}=R_{\text {PRE }}+R_{\text {LINE }}+R_{\text {PHONE,OFF-HOOK }}$
$R_{\text {PRE }}=R_{\text {PROT }}+R_{\text {STAB }}$ (see Figure 99 on Page 370).
The lower the load resistance $R_{\text {LOAD }}$, the lower the voltage between the Tip and Ring pins. A typical value for the programmable feeding resistance in the constant current zone is about $R_{\mathrm{I}}=10 \mathrm{k} \Omega$ (see Table 5).

Functional Description

Preliminary

3.3.3 Resistive Zone

The programmable resistive zone $R_{\mathrm{K} 12}$ of DuSLIC provides extra flexibility over a wide range of applications. The resistive zone is used for very long lines where the battery is incapable of feeding a constant current into the line.
The operating point in this case crosses from the constant current zone for low and medium impedance loops to the resistive zone for high impedance loops (see Figure 16). The resistance of the zone $R_{\mathrm{K} 12}$ is programmable from R_{V} to 1000Ω.

ezm14035.emf
Figure 16 Resistive Zone

Functional Description

Preliminary

3.3.4 Constant Voltage Zone

The constant voltage zone (see Figure 17) is used in some applications to supply a constant voltage to the line. In this case $V_{\text {TIP/RING }}$ is constant and the current depends on the load between the Tip and Ring pin.
In the constant voltage zone the external resistors $R_{\text {PRE }}=R_{\text {Stab }}+R_{\text {Prot }}$ necessary for stability and protection define the resistance R_{V} seen at the RING and TIP wires of the application.
The programmable range of the parameters $R_{\mathrm{l}}, I_{0}, I_{\mathrm{K} 1}, V_{\mathrm{K} 1}, R_{\mathrm{K} 12}$ and V_{LIM} is given in Table 5.

Figure 17 Constant Voltage Zone

Preliminary

Functional Description

3.3.5 Programmable Voltage and Current Range of DC Characteristic

The DC characteristic and all symbols are shown in Figure 18.

Figure 18 DC Characteristic
Table 5 DC Characteristic

Symbol	Programmable Range	Condition
R_{I}	$1.8 \mathrm{k} \Omega \ldots 40 \mathrm{k} \Omega$	-
I_{0}	$0 \ldots 32 \mathrm{~mA}$	only for DuSLIC-S, DuSLIC-E, DuSLIC-P
	$0 \ldots 50 \mathrm{~mA}$	only for DuSLIC-S2, DuSLIC-E2
$\mathrm{K}_{\mathrm{K} 1}$	$0 \ldots 32 \mathrm{~mA}$	only for DuSLIC-S, DuSLIC-E, DuSLIC-P
	$0 \ldots 50 \mathrm{~mA}$	only for DuSLIC-S2, DuSLIC-E2
	$0 \ldots 50 \mathrm{~V}$	-
	$V_{\mathrm{K} 1}<V_{\mathrm{LIM}}-I_{\mathrm{K} 1} \times R_{\mathrm{K} 12}$	only $\left(V_{\mathrm{K} 1}, I_{\mathrm{K} 1}\right)$
	$V_{\mathrm{K} 1}<V_{\mathrm{LIM}}-I_{\mathrm{K}} \times R_{\mathrm{V}}$ $V_{\mathrm{K} 1}>V_{\mathrm{LIM}}-I_{\mathrm{K} 1} \times R_{\mathrm{K} 12}$	$\left(V_{\mathrm{K} 1}, I_{\mathrm{K} 1}\right)$ and $\left(V_{\mathrm{K} 2}, I_{\mathrm{K} 2}\right)$
$R_{\mathrm{K} 12}$	$R_{\mathrm{V}} \ldots 1000 \Omega$	-
	$0 \ldots 50 \mathrm{~V}$	-
	$V_{\mathrm{LIM}}>V_{\mathrm{K} 1}+I_{\mathrm{K} 1} \times R_{\mathrm{K} 12}$	only $\left(V_{\mathrm{K} 1}, I_{\mathrm{K} 1}\right)$

Preliminary

Functional Description

3.3.6 SLIC Power Dissipation

The major portion of the power dissipation in the SLIC can be estimated by the power dissipation in the output stages. The power dissipation can be calculated from:
$P_{\mathrm{SLIC}} \approx\left(V_{\mathrm{BAT}}-V_{\mathrm{TIP} / \mathrm{RING}}\right) \times I_{\mathrm{TIP} / \mathrm{RING}}$

Figure 19 Power Dissipation
For further information see Chapter 4.7.3 on Page 95.

3.3.7 Necessary Voltage Reserve

To avoid clipping AC speech signals as well as AC metering pulses, a voltage reserve $V_{\text {RES }}$ (see Figure 14) has to be provided.

$$
V_{\mathrm{RES}}=\left|V_{\mathrm{BAT}}\right|-V_{\mathrm{LIM}}
$$

$V_{\text {BAT }}$ is the selected battery voltage, which can be depending on the mode either $V_{\text {BATH }}$, $V_{\mathrm{BATL}},\left(V_{\mathrm{HR}}-V_{\mathrm{BATH}}\right)$ for SLIC-S/-S2/-E/-E2 or $V_{\mathrm{BATH}}, V_{\mathrm{BATL}},-V_{\mathrm{BATR}}$ for SLIC-P.
$V_{\text {RES }}$ consists of:

- Voltage reserve of the SLIC output buffers: this voltage drop depends on the output current through the Tip and Ring pins. For a standard output current of 25 mA , this voltage reserve is a few volts (see Table 17 on Page 95).
- Voltage reserve for AC speech signals: max. signal amplitude (example 2 V)
- Voltage reserve for AC metering pulses: The TTX signal amplitude V_{TTX} depends on local specifications and varies from 0.1 Vrms to several Vrms at a load of 200Ω. To obtain $V_{\mathrm{TTX}}=2 \mathrm{Vrms}$ at a load of 200Ω and $R_{\text {PRE }}=50 \Omega\left(R_{\text {PRE }}=R_{\text {PROT }}+R_{\text {STAB }}\right.$, see Figure 99 on Page 370), 3 Vrms = 4.24 Vpeak are needed at the SLIC output.
Therefore a $V_{\text {RES }}$ value of 10.24 V must be selected (= 4 V (SLIC drop for peak current of DC and speech and TTX) +2 V (AC speech signals) +4.24 V (TTX-signal)).

Figure 20 TTX Voltage Reserve Schematic

3.3.8 Extended Battery Feeding

If the battery voltage is not sufficient to supply the minimum required current through the line even in the resistive zone, the auxiliary positive battery voltage can be used to expand the voltage swing between Tip and Ring. With this extended supply voltage V_{HR} (DuSLIC-S/E) respectively $V_{\text {BATR }}$ (DuSLIC-P), it is possible to supply the constant current for long lines. Figure 21 shows the DC feeding impedances $R_{\text {MAX,ACTH }}$ in ACTH mode and $R_{\text {MAX,ACTR }}$ in ACTR mode (for ACTH and ACTR modes see Chapter 4.1).

Figure 21 DC Feeding Characteristics (ACTH, ACTR)
The extended feeding characteristic is determined by the feeding characteristic in normal mode (ACTH) and an additional gain factor K_{B} (DuSLICOS DC Control Parameter 1/3: Additional Gain in active Ring):
$V_{\mathrm{LIM}, \mathrm{ACTR}}=V_{\mathrm{LIM}} \times \mathrm{K}_{\mathrm{B}}$
$V_{\mathrm{K} 1, \mathrm{ACTR}}=V_{\mathrm{K} 1} \times \mathrm{K}_{\mathrm{B}}+R_{\mathrm{V}} \times I_{\mathrm{K} 1} \times\left(\mathrm{K}_{\mathrm{B}}-1\right) \approx V_{\mathrm{K} 1} \times \mathrm{K}_{\mathrm{B}}$
$R_{\mathrm{K} 12, \mathrm{ACTR}}=\mathrm{K}_{\mathrm{B}} \times\left(R_{\mathrm{K} 12}-R_{\mathrm{V}}\right)+R_{\mathrm{V}} \approx R_{\mathrm{K} 12} \times \mathrm{K}_{\mathrm{B}}$
$R_{\mathrm{l}, \mathrm{ACTR}}=R_{\mathrm{l}} \times \mathrm{K}_{\mathrm{B}} / 2$
$I_{\mathrm{K} 2, \mathrm{ACTR}}=I_{\mathrm{K} 2} \times \mathrm{K}_{\mathrm{B}} \times\left(R_{\mathrm{K} 12}-R_{\mathrm{V}}\right) /\left(\mathrm{K}_{\mathrm{B}} \times R_{\mathrm{K} 12}-R_{\mathrm{V}}\right)$
$V_{\mathrm{K} 2, \mathrm{ACTR}}=V_{\mathrm{LIM}, \mathrm{ACTR}}-I_{\mathrm{K} 2, \mathrm{ACTR}} \times R_{\mathrm{V}}$

Preliminary

3.4 AC Transmission Characteristics

SLICOFI-2x uses either an IOM-2 or a PCM digital interface. In receive direction, SLICOFI-2x converts PCM data from the network and outputs a differential analog signal (ACP and ACN) to the SLIC, that amplifies the signal and applies it to the subscriber line. In transmit direction, the transversal (IT) and longitudinal (IL) currents on the line are sensed by the SLIC and fed to the SLICOFI-2x. A capacitor separates the transversal line current into DC (IT) and AC (ITAC) components. As ITAC is the sensed transversal (also called metallic) current on the line, it includes both the receive and transmit components. SLICOFI-2x separates the receive and transmit components digitally, via a transhybrid circuit. Figure 22 shows the signal paths for AC transmission between the SLICs and SLICOFI-2x:

Figure 22 Signal Paths - AC Transmission
The signal flow within the SLICOFI-2x for one voice channel is shown in Figure 23 by the following schematic circuitry. With the exception of a few analog filter functions, signal processing is performed digitally in the SLICOFI-2x.

Preliminary
Functional Description

Figure 23 Signal Flow in Voice Channel (A)

3.4.1 Transmit Path

The current sense signal (ITAC) is converted to a voltage by an external resistor. This voltage is first filtered by an anti-aliasing filter (pre-filter), that stops producing noise in the voiceband from signals near the A/D sampling frequency. A/D conversion is done by a 1 -bit sigma-delta converter. The digital signal is down-sampled further and routed through programmable gain and filter stages. The coefficients for the filter and gain stages can be programmed to meet specific requirements. The processed digital signal goes through a compander (CMP) that converts the voice data into A-law or μ-law codes. A time slot assignment unit outputs the voice data to the programmed time slot. SLICOFI-2x can also operate in 16-bit linear mode for processing uncompressed voice data. In this case, two time slots are used for one voice channel.

3.4.2 Receive Path

The digital input signal is received via the IOM-2 or PCM interface. Expansion (EXP), PCM low-pass filtering, frequency response correction and gain correction are performed by the DSP. The digital data stream is up-sampled and converted to a corresponding analog signal. After smoothing by post-filters in the SLICOFI-2x, the AC signal is fed to the SLIC, where it is superimposed on the DC signal. The DC signal has been processed in a separate DC path. A TTX signal, generated digitally within SLICOFI-2x, can also be added.

Preliminary

3.4.3 Impedance Matching

The SLIC outputs the voice signal to the line (receive direction) and also senses the voice signal coming from the subscriber. The AC impedance of the SLIC and the load impedance need to be matched in order to maximize power transfer and minimize twowire return loss. The two-wire return loss is a measure of the impedance matching between a transmission line and the AC termination of DuSLIC.
Impedance matching is done digitally within SLICOFI-2x by providing three impedance matching feedback loops. The loops feed the transmit signal back to the receive signal simulating the programmed impedance through the SLIC. When calculating the feedback filter coefficients, the external resistors between the protection network and SLIC ($R_{\text {PRE }}=R_{\text {PROT }}+R_{\text {STAB }}$, see Figure 100, Page 372) have to be taken into account. The impedance can be programmed to any appropriate real and complex values shown in the Nyquist diagram Figure 24. This means that the device can be adapted to requirements anywhere in the world without requiring the hardware changes that are necessary with conventional line card designs.

Figure 24 Nyquist Diagram

DuSLIC

Preliminary

Functional Description

3.5 Ringing

With the 170 V technology used for the SLIC, a ringing voltage of up to 85 Vrms can be generated on-chip without the need for an external ringing generator. The SLICOFI-2x generates a sinusoidal ringing signal that causes less noise and cross-talk in neighboring lines than a trapezoidal ringing signal. The ringing frequency is programmable from 3 to 300 Hz .
SLIC-E/-E2, SLIC-S/-S2 and SLIC-P support different ringing methods (see Chapter 3.5.3).

3.5.1 Ringer Load

A typical ringer load can be thought of as a resistor in series with a capacitor. Ringer loads are usually described as a REN (Ringer Equivalence Number) value. REN is used to describe the on-hook impedance of the terminal equipment, and is actually a dimensionless ratio that reflects a certain load. REN definitions vary from country to country. A commonly used REN is described in FCC part 68 that defines a single REN as either $5 \mathrm{k} \Omega, 7 \mathrm{k} \Omega$ or $8 \mathrm{k} \Omega$ of AC impedance at 20 Hz . The impedance of an n-multiple REN is equivalent to parallel connection of n single RENs. In this manual, all references to REN assume the $7 \mathrm{k} \Omega$ model.

For example, a 1 REN and 5 REN load would be:

Figure 25 Typical Ringer Loads of 1 and 5 REN Used in US

3.5.2 Ring Trip

Once the subscriber has gone off-hook, the ringing signal must be removed within a specified time, and power must start feeding to the subscriber's phone. There are two ring trip methods:

DC Ring Trip Detection

Most applications with DuSLIC are using DC ring trip detection. By applying a DC offset together with the ringing signal, a transversal DC loop current starts to flow when the subscriber goes off-hook. This DC current is sensed by the SLIC and in this way used as an off-hook criterion. The SLIC supplies this information to the SLICOFI-2x at the IT pin. The SLICOFI-2x continuously integrates the sensed line current ItRANS over one

DuSLIC

Preliminary

ringer period. This causes the integration result to represent the DC component of the ring current. If the DC current exceeds the programmed ring trip threshold, SLICOFI-2x generates an interrupt. Ring trip is reliably detected and reported within two ring signal periods. The ringing signal is switched off automatically at zero crossing by the SLICOFI-2x. The threshold for the ring trip DC current is set internally in SLICOFI-2x, programmed via the digital interface. The DC offset for ring trip detection can be generated by the DuSLIC chip set and the internal ring trip function can be used, even if an external ringing generator is used.

AC Ring Trip Detection

For short lines ($<1 \mathrm{k} \Omega$ loop length) and for low-power applications, the DC offset can be avoided to reduce the battery voltage for a given ring amplitude. Ring trip detection is done by rectifying the ring current $I_{\text {TRANS }}$, integrating it over one ringer period and comparing it to a programmable AC ring trip threshold. If the ring current exceeds the programmed threshold the HOOK bit in register INTREG1 is set accordingly.
Most applications with DuSLIC are using DC ring trip detection, which is more reliable than $A C$ ring trip detection.

3.5.3 Ringing Methods

There are two methods of ringing:

- Balanced ringing (bridged ringing)
- Unbalanced ringing (divided ringing)

Internal balanced ringing generally offers more benefits compared to unbalanced ringing:

- Balanced ringing produces much less longitudinal voltage, which results in a lower amount of noise coupled into adjacent cable pairs
- By using a differential ringing signal, lower supply voltages become possible

The phone itself cannot distinguish between balanced and unbalanced ringing. Where unbalanced ringing is still used, it is often simply a historical leftover. For a comparison between balanced and unbalanced ringing see also ANSI document T1.401-1993.
Additionally, integrated ringing with the DuSLIC offers the following advantages:

- Internal ringing (no need for external ringing generator and relays)
- Reduction of board space because of much higher integration and fewer external components
- Programmable ringing amplitude, frequency and ringing DC offset without hardware changes
- Programmable ring trip thresholds
- Switching off the ringing signal at zero-crossing

3.5.4 DuSLIC Ringing Options

Application requirements differ with regard to ringing amplitudes, power requirements, loop length and loads. The DuSLIC options include three different SLICs to select the most appropriate ringing methods (see Table 6):

Table 6 Ringing Options with SLIC-S, SLIC-E/-E2 and SLIC-P

SLIC Version/ Ringing Facility, Battery Voltages	SLIC-S PEB 4264	$\begin{aligned} & \text { SLIC-E/-E2 } \\ & \text { PEB 4265 } \\ & \text { PEB 4265-2 } \end{aligned}$	SLIC-P PEB 4266
Internal balanced ringing max. voltage in Vrms (sinusoidal) with $20 V_{\mathrm{DC}}$ used for ring trip detection	45 Vrms	85 Vrms	85 Vrms
DC voltage for balanced ringing ${ }^{1)}$	programmable typ. $0 \ldots 50 \mathrm{~V}$	programmable typ. 0 ... 50 V	programmable typ. 0 ... 50 V
Internal unbalanced ringing max. voltage in Vrms (sinusoidal)	NO	NO	50 Vrms
DC voltage for unbalanced ringing	NO	NO	$V_{\text {BATR }} / 2$
Required SLIC supply voltages for maximum ringing amplitude (typically)	$\begin{aligned} & \hline V_{\mathrm{DD}}=5 \mathrm{~V}, \\ & V_{\mathrm{BATH}}=-54 \mathrm{~V}, \\ & V_{\mathrm{HR}}=36 \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{\mathrm{DD}}=5 \mathrm{~V}, \\ & V_{\mathrm{BATH}}=-70 \mathrm{~V}, \\ & V_{\mathrm{HR}}=80 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline V_{\mathrm{DD}}=5 \mathrm{~V} \text { or } \\ & 3.3 \mathrm{~V}, \\ & V_{\text {BATH }}=-70 \mathrm{~V}, \\ & V_{\text {BATR }}=-150 \mathrm{~V} \end{aligned}$
Number of battery voltages for power saving	$\begin{aligned} & 2\left(V_{\mathrm{BATL}} \&\right. \\ & \left.V_{\mathrm{BATH}}\right) \end{aligned}$	$\begin{aligned} & 2\left(V_{\mathrm{BATL}} \&\right. \\ & \left.V_{\mathrm{BATH}}\right) \end{aligned}$	2 (when internal ringing is used) 3 (when external ringing is used)

[^4]SLIC-S allows balanced ringing up to 45 Vrms and is dedicated for short loop or PBX applications.
For SLIC-S2 only external ringing is provided.
SLIC-E/-E2 allows balanced ringing up to 85 Vrms and can therefore be used in systems with higher loop impedance.

The low-power SLIC-P is optimized for power-critical applications (e.g. intelligent ISDN network termination). Internal ringing can be used up to 85 Vrms balanced or 50 Vrms unbalanced. For lowest power applications where external ringing is preferred, three different battery voltages ($V_{\mathrm{BATR}}, V_{\mathrm{BATH}}, V_{\mathrm{BATL}}$) can be used for optimizing the power consumption of the application. ${ }^{\text {1) }}$
SLIC-E/-E2 and SLIC-P differ in supply voltage configuration and the ring voltages at Tip and Ring V_{T} and V_{R}. External ringing is supported by both SLIC's.
Both internal and external ringing is activated by switching the DuSLIC to ringing mode by setting the CIDD/CIOP bits M2, M1, M0 to 101.

External Ringing Support by DuSLIC

The following settings have to be made:

- Enabling the use of an external ring signal generator by setting bit REXT-EN in Register BCR2 to 1.
- A TTL compatible zero crossing signal has to be applied to the RSYNC pin of the SLICOFI-2x (see Figure 26).
- Activating the ringing mode by setting the CIDD/CIOP bits M2, M1, M0 to 101.
- Setting the DuSLIC internal ring frequency to a value according a factor of about 0.75 of the external ring frequency.
The ring relay is controlled by the IO1 pin (see Figure 100). Due to the high current drive capability of the IO1 ouput, no additional relay driver is necessary.
The relay is switched:
- Synchronous to the zero crossing of the external ringing frequency (bit ASYNCH-R in register XCR set to 0)
A ring generator delay $\mathrm{T}_{\text {RING,DELAY }}$ (see DuSLICOS control parameters 2/3) can be programmed to consider the ring relay delay $\mathrm{T}_{\text {RING-RELAY,DELAY }}$ as shown in Figure 26.

- Asynchronous

(bit ASYNCH-R in register XCR set to 1)
The ring relay is switched immediately with the ring command.

[^5]DuSLIC

Preliminary

Functional Description

Figure 26 External Ringing Zero Crossing Synchronization

3.5.5 Internal Balanced Ringing via SLICs

SLIC-E/-E2 and SLIC-P support internal balanced ringing up to $V_{\text {RING, RMS }}=85 \mathrm{Vrms}$, SLIC-S support balanced ringing up to $V_{\text {RING, RMS }}=45 \mathrm{Vrms}^{1}$. .
The ringing signal is generated digitally within SLICOFI-2x ${ }^{2}$).

Figure 27 Balanced Ringing via SLIC-E/-E2, SLIC-S and SLIC-P
In ringing mode, the DC feeding regulation loop is not active. A programmable DC ring offset voltage is applied to the line instead. During ring bursts, the ringing DC offset and the ringing signal are summed digitally within SLICOFI-2x in accordance with the programmed values. This signal is then converted to an analog signal and applied to the SLIC. The SLIC amplifies the signal and supplies the line with ringing voltages up to 85 Vrms. In balanced ringing mode, the SLIC uses an additional supply voltage V_{HR} for SLIC-E/-E2/-S and $V_{\text {BATR }}$ for SLIC-P. The total supply span is now $V_{\text {HR }}-V_{\text {BATH }}$ for SLIC-E/-E2/-S and $V_{\text {BATR }}$ for SLIC-P.
The maximum ringing voltage that can be achieved is:
for SLIC-E/-E2/-S: $\quad V_{\mathrm{RING}, \mathrm{RMS}}=\left(V_{\mathrm{HR}}-V_{\mathrm{BATH}}-V_{\mathrm{DROP}, \mathrm{RT}}-V_{\mathrm{DC}, \mathrm{RING}}\right) / 1.41$
for SLIC-P: $\quad V_{\text {RING,RMS }}=\left(-V_{\mathrm{BATR}}-V_{\mathrm{DROP}, \mathrm{RT}}-V_{\mathrm{DC}, \mathrm{RING}}\right) / 1.41$
where:

$$
V_{\mathrm{DROP}, \mathrm{RT}}=V_{\mathrm{DROP}, \mathrm{~T}}+V_{\mathrm{DROP}, \mathrm{R}}
$$

[^6]
Preliminary

With the DuSLIC ringing voltages up to 85 Vrms sinusoidal can be applied, but also trapezoidal ringing can be programmed.
For a detailed application diagram of internal balanced ringing refer to the chapter on "Application Circuits" (see Figure 97, Page 368).

3.5.6 Internal Unbalanced Ringing with SLIC-P

The internal unbalanced ringing together with SLIC-P can be used for ringing voltages up to 50 Vrms . The SLICOFI-2 integrated ringing generator is used and the ringing signal is applied to either the Tip or Ring line. Ringing signal generation is the same as described above for balanced ringing. Since only one line is used for ringing, technology limits the ringing amplitude to about half the value of balanced ringing, to maximum 50 Vrms.

Figure 28 Unbalanced Ringing Signal

The above diagram shows an example with the ring line used for ringing and the Tip line fixed at - $V_{\mathrm{DROP}, \mathrm{T}}$ which is the drop in the output buffer of the Tip line of SLIC-P (typ. $<1 \mathrm{~V}$). The ring line has a fixed DC voltage of $V_{\mathrm{BATR}} / 2$ used for ring trip detection.
The maximum ringing voltage is:
$V_{\text {RING,RMS }}=\left(-V_{\text {BATR }}-V_{\text {DROP,R,VBATR }}-V_{\text {DROP, }, ~}\right) / 2.82$
When the called subscriber goes off-hook, a DC path is established from the Ring to the Tip line. The DC current is recognized by the SLICOFI-2 because it monitors the IT pin. An interrupt indicates ring trip if the line current exceeds the programmed threshold.
The same hardware can be used for integrated balanced or unbalanced ringing. The balanced or unbalanced modes are configured by software. The maximum achievable amplitudes depend on the values selected for $V_{\text {BATR }}$.

In both balanced and unbalanced ringing modes, SLICOFI-2 automatically applies and removes the ringing signal during zero-crossing. This reduces noise and cross-talk to adjacent lines.

3.5.7 External Unbalanced Ringing

SLICOFI- $2 x$ supports external ringing for higher unbalanced ringing voltage requirements above 85 Vrms with all SLICs. For a detailed application diagram of unbalanced ringing see Figure 100 and Figure 101 on Page 372 and Page 373.
Since high voltages are involved, an external relay should be used to switch the RING line off and to switch the external ringing signal together with a DC voltage to the line. The DC voltage has to be applied for the internal ring trip detection mechanism which operates for external ringing in the same way as for internal ringing.
The SLICOFI-2x has to be set to the external ringing mode by the REXT-EN bit in register BCR2. A synchronization signal of the external ringer is applied to the SLICOFI- $2 x$ via the RSYNC pin. The external relay is switched on or off synchronously to this signal via the IO1 pin of the SLICOFI-2x according to the actual mode of the DuSLIC. An interrupt is generated if the DC current exceeds the programmed ring trip threshold.

3.6 Signaling (Supervision)

Signaling in the subscriber loop is monitored internally by the DuSLIC chip set.
Supervision is performed by sensing the longitudinal and transversal line currents on the Ring and Tip wires. The scaled values of these currents are generated in the SLIC and fed to the SLICOFI-2x via the IT and IL pins.

Transversal line current: $I_{\text {TRANS }}=\left(I_{\mathrm{R}}+I_{\mathrm{T}}\right) / 2$
Longitudinal line current: $I_{\mathrm{LONG}}=\left(I_{\mathrm{R}}-I_{\mathrm{T}}\right) / 2$
where $I_{\mathrm{R}}, I_{\mathrm{T}}$ are the loop currents on the Ring and Tip wires.

Off-hook Detection

Loop start signaling is the most common type of signaling. The subscriber loop is closed by the hook switch inside the subscriber equipment.

- In Active mode, the resulting transversal loop current is sensed by the internal current sensor in the SLIC. The IT pin of the SLIC indicates the subscriber loop current to the SLICOFI-2x. External resistors ($R_{I T 1}, R_{I T 2}$, see Figure 97, Page 368) convert the current information to a voltage on the ITA (or ITB) pin.
The analog information is first converted to a digital value. It is then filtered and processed further which effectively suppresses line disturbances. If the result exceeds a programmable threshold, an interrupt is generated to indicate off-hook detection.
- In Sleep/Power Down mode (PDRx) a similar mechanism is used. In this mode, the internal current sensor of the SLIC is switched off to minimize power consumption. The loop current is therefore fed and sensed through $5 \mathrm{k} \Omega$ resistors integrated in the SLIC (see Figure 9, Figure 10, Figure 11). The information is made available on the IT pin and interpreted by the SLICOFI-2x.
- In Sleep mode, the analog information is fed to an analog comparator integrated in the SLICOFI-2x who directly indicates off-hook.
- In Power Down mode, the SLICOFI-2x converts the analog information to a digital value. It is then filtered and processed further which effectively suppresses line disturbances. If the result exceeds a programmable threshold, an interrupt is generated to indicate off-hook detection.
In applications using ground start signaling, DuSLIC can be set in the ground start mode. In this mode, the Tip wire is switched to high impedance mode. Ring ground detection is performed by the internal current sensor in the SLIC and transferred to the SLICOFI-2x via the IT pin.

Ground Key Detection

The scaled longitudinal current information is transferred from the SLIC via the IL pin and the external resistor R_{IL} to SLICOFI-2x. This voltage is compared with a fixed threshold value. For the specified $R_{\| L}$ ($1.6 \mathrm{k} \Omega$, see application circuit Figure 97, Page 368) this threshold corresponds to 17 mA (positive and negative). After further post-processing, this information generates an interrupt (GNDK bit in the INTREG1 register) and ground key detection is indicated.
The polarity of the longitudinal current is indicated by the GNKP bit in the INTREG1 register. Each change of the GNKP bit generates an interrupt. Both bits (GNDK, GNKP) can be masked in the MASK register.
The post-processing is performed to guarantee ground key detection, even if longitudinal AC currents with frequencies of $16^{2} / 3,50$ or 60 Hz are superimposed. The time delay between triggering the ground key function and registering the ground key interrupt will in most cases ($f=50 \mathrm{~Hz}, 60 \mathrm{~Hz}$) be less than 40 ms .
For longitudinal DC signals, the blocking period can be programmed by the DUP value in register IOCTL3. DC signals with less duration will not be detected. The DUP time is equivalent to the half of the cycle time for the lowest frequency for AC suppression (for values see Page 189).
In Power Down mode, the SLIC's internal current sensors are switched off and ground key detection is disabled.

Preliminary

$3.7 \quad$ Metering

There are two different metering methods:

- Metering by sinusoidal bursts with either 12 or 16 kHz or
- Polarity reversal of Tip and Ring.

3.7.1 Metering by $\mathbf{1 2 / 1 6 ~ k H z ~ S i n u s o i d a l ~ B u r s t s ~}$

To satisfy worldwide application requirements, SLICOFI-2/-2S ${ }^{1)}$ offers integrated metering injection of either 12 or 16 kHz signals with programmable amplitudes. SLICOFI-2/-2S also has an integrated adaptive TTX notch filter and can switch the TTX signal to the line in a smooth way. When switching the signal to the line, the switching noise is less than 1 mV . Figure 29 shows TTX bursts at certain points of the signal flow within SLICOFI-2/-2S.

Figure 29 Teletax Injection and Metering
The integrated, adaptive TTX notch filter guarantees an attenuation of $>40 \mathrm{~dB}$. No external components for filtering TTX bursts are required.

1) Metering is not available with SLICOFI-2S2

DuSLIC

Preliminary

3.7.2 Metering by Polarity Reversal

SLICOFI-2/-2S also supports metering by polarity reversal by changing the actual polarity of the voltages on the TIP/RING lines. Polarity reversal is activated by switching the REVPOL bit in register BCR1 to one or switching to the "Active with Metering" mode by the CIDD or CIOP command (see "Operating Modes for the DuSLIC Chip Set" on Page 78).

3.7.2.1 Soft Reversal

Some applications require a smooth polarity reversal (soft reversal), as shown in Figure 30. Soft reversal helps to prevent negative effects like non-required ringing. Soft reversal is deactivated by the SOFT-DIS bit in register BCR2.

SOFT-DIS = 1 Immediate reversal is performed (hard reversal)
SOFT-DIS $=0 \quad$ Soft reversal is performed. Transition time (time from START to SREND1, see Figure 30) is programmable by CRAM coefficients, default value 80 ms .

Figure 30 Soft Reversal (Example for Open Loop)
START: The soft ramp starts by setting the REVPOL bit in register BCR1 to 1. The DC characteristic is switched off.
SR-END1: At the soft reversal end one point, the DC characteristic is switched on again. Programmable by the DuSLICOS software, e.g. $\Delta \mathrm{U} / 8$.
SR-END2: At the soft reversal end two point, the soft ramp is switched off. Programmable by the DuSLICOS software, e.g. $1 / 16 \times$ SR-END1.
From START to SR-END2 the READY bit in register INTREG2 is set to 0 (see register description in Chapter 6.3.1.2 for further information).

DuSLIC

Preliminary

Functional Description

3.8 DuSLIC Enhanced Signal Processing Capabilities

The signal processing capabilities described in this chapter are realized by an Enhanced Digital Signal Processor (EDSP) except for DTMF generation. Each function can be individually enabled or disabled for each DuSLIC channel. Therefore power consumption can be reduced according to the needs of the application. For the MIPS requirements of the different EDSP algorithms see Chapter 3.8.5.
Figure 31 shows the AC signal path for DuSLIC with the ADCs and DACs, impedance matching loop, trans-hybrid filter, gain stages and the connection to the EDSP.

Figure 31 DuSLIC AC Signal Path
Figure 32 shows a closeup on the EDSP signal path shown in Figure 31 outlining signal names and SOP commands.

Figure 32 DuSLIC EDSP Signal Path

DuSLIC

Preliminary

Functional Description
The enhanced Signal Processing Capabilities are available only for the DuSLIC-E/-E2/ -P versions, with an exception of DTMF generation.
The DTMF generation is available for all DuSLIC versions.
The functions of the EDSP are configured and controlled by POP register settings (see Chapter 6.2.3).

3.8.1 DTMF Generation and Detection ${ }^{1)}$

Dual Tone Multi-Frequency (DTMF) is a signaling scheme using voice frequency tones to signal dialing information. A DTMF signal is the sum of two tones, one from a low group ($697-941 \mathrm{~Hz}$) and one from a high group ($1209-1633 \mathrm{~Hz}$), with each group containing four individual tones. This scheme allows 16 unique combinations. Ten of these codes represent the numbers from zero through nine on the telephone keypad, the remaining six codes (${ }^{*}$, \#, A, B, C, D) are reserved for special signaling. The buttons are arranged in a matrix, with the rows determining the low group tones, and the columns determining the high group tone for each button.
In all SLICOFI-2x codec versions the 16 standard DTMF tone pairs can be generated independently in each channel via two integrated tone generators. Alternatively the frequency and the amplitude of the tone generators can be programmed individually via the digital interface. Each tone generator can be switched on and off. The generated DTMF tone signals meet the frequency variation tolerances specified in the ITU-T Q. 23 recommendation.
Both channels (A and B) of SLICOFI-2 ${ }^{1}$) have a powerful built-in DTMF decoder that will meet most national requirements. The receiver algorithm performance meets the quality criteria for central office/exchange applications. It complies with the requirements of ITUT Q.24, Bellcore GR-30-CORE (TR-NWT-000506) and Deutsche Telekom network (BAPT 223 ZV 5, Approval Specification of the Federal Office for Post and Telecommunications, Germany).
The performance of the algorithm can be adapted according to the needs of the application via the digital interface (detection level, twist, bandwidth and center frequency of the notch filter).
${ }^{1)}$ DTMF Detection only available for DuSLIC-E/-E2/-P

DuSLIC
technologies
Functional Description
Table 7 shows the performance characteristics of the DTMF decoder algorithm:
Table $7 \quad$ Performance Characteristics of the DTMF Decoder Algorithm

	Characteristic	Value	Notes
1	Valid input signal detection level	- 48 to $0 \mathrm{dBm0}$	Programmable
2	Input signal rejection level	-5 dB of valid signal detection level	-
3	Positive twist accept	$<8 \mathrm{~dB}$	Programmable
4	Negative twist accept	$<8 \mathrm{~dB}$	Programmable
5	Frequency deviation accept	$\begin{aligned} & < \pm(1.5 \%+4 \mathrm{~Hz}) \text { and } \\ & < \pm 1.8 \% \end{aligned}$	Related to center frequency
6	Frequency deviation reject	$> \pm 3 \%$	Related to center frequency
7	DTMF noise tolerance (could be the same as 14)	- 12 dB	dB referenced to lowest amplitude tone
8	Minimum tone accept duration	40 ms	-
9	Maximum tone reject duration	25 ms	-
10	Signaling velocity	$\geq 93 \mathrm{~ms} /$ digit	-
11	Minimum inter-digit pause duration	40 ms	-
12	Maximum tone drop-out duration	20 ms	-
13	Interference rejection 30 Hz to 480 Hz for valid DTMF recognition	$\begin{aligned} & \text { Level in frequency } \\ & \text { range } 30 \mathrm{~Hz} \ldots 480 \mathrm{~Hz} \\ & \leq \text { level of DTMF } \\ & \text { frequency }+22 \mathrm{~dB} \\ & \hline \end{aligned}$	dB referenced to lowest amplitude tone
14	Gaussian noise influence Signal level-22dBm0, SNR $=23 \mathrm{~dB}$	Error rate better than 1 in 10000	-
15	Pulse noise influence Impulse noise tape 201 according to Bellcore TR-TSY-000762	Error rate better than 14 in 10000	measured with DTMF level - $22 \mathrm{dBm0}$ Impulse Noise -10 dBm 0 and - 12 dBm 0

DuSLIC

Preliminary

In the event of pauses < 20 ms :

- If the pause is followed by a tone pair with the same frequencies as before, this is interpreted as drop-out.
- If the pause is followed by a tone pair with different frequencies and if all other conditions are valid, this is interpreted as two different numbers.
DTMF decoders can be switched on or off individually to reduce power consumption. In normal operation, the decoder monitors the Tip and Ring wires via the ITAC pins (transmit path). Alternatively the decoder can be switched also in the receive path. On detecting a valid DTMF tone pair, SLICOFI-2 generates an interrupt via the appropriate INT pin and indicates a change of status. The DTMF code information is provided by a register which is read via the digital interface.
The DTMF decoder also has excellent speech-rejection capabilities and complies with Bellcore TR-TSY-000763. The algorithm has been fully tested with the speech sample sequences in the Series-1 Digit Simulation Test Tapes for DTMF decoders from Bellcore. The characteristics of DTMF detection can be controlled by POP registers 30h to 39 h .

3.8.2 Caller ID Generation (only DuSLIC-E/-E2/-P)

A generator to send calling line identification (Caller ID, CID) is integrated in the DuSLIC chip set. Caller ID is a generic name for the service provided by telephone utilities that supply information like the telephone number or the name of the calling party to the called subscriber at the start of a call. In call waiting, the Caller ID service supplies information about a second incoming caller to a subscriber already busy with a phone call.
In typical Caller ID (CID) systems, the coded calling number information is sent from the central exchange to the called phone. This information can be shown on a display on the subscriber telephone set. In this case, the Caller ID information is usually displayed before the subscriber decides to answer the incoming call. If the line is connected to a computer, caller information can be used to search in databases and additional services can be offered.
There are two methods used for sending CID information depending on the application and country-specific requirements:

- Caller ID generation using DTMF signaling (see Chapter 3.8.1)
- Caller ID generation using FSK

DuSLIC contains DTMF generation units and FSK generation units which can be used for both channels simultaneously.
The characteristics of the Caller ID generation circuitry can be controlled by POP registers 00h, 43h to 4Ah.

DuSLIC FSK Generation

Different countries use different standards to send Caller ID information. The DuSLIC chip set is compatible with the widely used standards Bellcore GR-30-CORE, British Telecom (BT) SIN227, SIN242 or the UK Cable Communications Association (CCA) specification TW/P\&E/312. Continuous phase binary frequency shift keying (FSK) modulation is used for coding which is compatible with BELL 202 (see Table 8) and ITU-T V.23, the most common standards. SLICOFI-2 can be easily adapted to these requirements by programming via the microcontroller interface. Coefficient sets are provided for the most common standards.

Table $8 \quad$ FSK Modulation Characteristics

Characteristic	ITU-T V.23	Bell 202
Mark (Logic 1)	$1300 \pm 3 \mathrm{~Hz}$	$1200 \pm 3 \mathrm{~Hz}$
Space (Logic 0)	$2100 \pm 3 \mathrm{~Hz}$	$2200 \pm 3 \mathrm{~Hz}$
Modulation	FSK	
Transmission rate	1200 ± 6 baud	
Data format	Serial binary asynchronous	

The Caller ID data of the calling party can be transferred via the microcontroller interface into a SLICOFI-2 buffer register. The SLICOFI-2 will start sending the FSK signal when the CIS-EN bit is set and the CID-data buffer is filled up to CIS-BRS plus 1 byte. The data transfer into the buffer register is handled by a SLICOFI-2 interrupt signal. Caller data is transferred from the buffer via the interface pins to the SLIC-E/-E2/-P and fed to the Tip and Ring wires. The Caller ID data bytes from CID-data buffer are sent LSB first.
DuSLIC offers two different levels of framing:

- A basic low-level framing mode

All the data necessary to implement the FSK data stream - including channel seizure, mark sequence and framing for the data packet or checksum - has to be configured by firmware. SLICOFI-2 transmits the data stream in the same order in which the data is written to the buffer register.

- A high level framing mode

The number of channel seizure and mark bits can be programmed and are automatically sent by the DuSLIC. Only the data packet information has to be written into the CID buffer. Start and Stop bits are automatically inserted by the SLICOFI-2.
The example below shows signaling of CID on-hook data transmission in accordance with Bellcore specifications. The Caller ID information applied on Tip and Ring is sent during the period between the first and second ring burst.

Bellcore On-hook Caller ID Physical Layer Transmission

1 Message length equals the number of bytes to follow in the message body, excluding the checksum.
A: 0.2-3 second ring burst
B: 0.5-1.5 seconds between first ring burst and start of data transmission
C: 300 alternating mark and space bits
D: 180 mark bits
$C+D+E=2.9$ to 3.7 seconds
$\mathrm{F}: \geq 200 \mathrm{~ms}$
$\mathrm{G}: 1.8-3$ second ring burst

Figure 33 Bellcore On-hook Caller ID Physical Layer Transmission

DuSLIC

Preliminary

3.8.3 Line Echo Cancelling (LEC) (only DuSLIC-E/-E2/-P)

The DuSLIC contains an adaptive line echo cancellation unit for the cancellation of near end echoes. With the adaptive balancing of the LEC unit the Transhybrid Loss can be improved up to a value of about 50 dB . The maximum echo cancellation time selectable is 8 ms . The line echo cancellation unit is especially useful in combination with the DTMF detection unit. In critical situations the performance of the DTMF detection can be improved.
If 8 ms line echo cancellation length (LEC Length) is used, please take care about the MIPS requirements described in Chapter 3.8.5.
The DuSLIC line echo canceller is compatible with applicable standards ITU-T G. 165 and G.168. An echo cancellation delay time of up to 8 ms can be programmed.
The LEC unit consists basically of an FIR filter, a shadow FIR filter, and a coefficient adaption mechanism between these two filters as shown in Figure 34.

Figure 34 Line Echo Cancelling Unit - Block Diagram
The adaption process is controlled by the three parameters Pow ${ }_{\text {LECR }}$ (Power Detection Level Receive), DeltaP ${ }_{\text {LEC }}$ (Delta Power) and DeltaQ (Delta Quality) ("POP Command" on Page 228). Adaptation takes place only if both of the following conditions hold:

1. $\mathrm{S}_{\mathrm{LEC}, \mathrm{R}}>$ Pow $_{\text {LECR }}$
2. $\mathrm{S}_{\mathrm{LEC}, \mathrm{R}}-\mathrm{S}_{\mathrm{LEC}, \mathrm{TIN}}>$ DeltaP $_{\text {LEC }}$

With the first condition, adaptation to small signals can be avoided. The second condition avoids adaptation during double talk. The parameter DeltaP LEC represents the echo loss provided by external circuitry.

If the adaptation of the shadow filter is performed better than the adaption of the actual filter by a value of more than DeltaQ then the shadow filter coefficients will be copied to the actual filter.
At the start of an adaption process the coefficients of the LEC unit can be reset to default initial values or set to the old coefficient values. The coefficients may also be frozen.

3.8.4 Universal Tone Detection (UTD) (only DuSLIC-E/-E2/-P)

Each channel of the DuSLIC has two Universal Tone Detection units which can be used to detect special tones in the receive and transmit paths, especially fax or modem tones (e.g., see the modem startup sequence described in recommendation ITU-T V.8).

This allows the use of modem-optimized filter for V. 34 and V. 90 connections. If the DuSLIC UTD detects that a modem connection is about to be established, the optimized filter coefficients for the modem connection can be downloaded before the modem connection is set up. With this mechanism implemented in the DuSLIC chip set, the optimum modem transmission rate can always be achieved.
Figure 35 shows the functional block diagram of the UTD unit:

Figure 35 UTD Functional Block Diagram
Initially, the input signal is filtered by a programmable band-pass (center frequency f_{C} and bandwidth f_{BW}). Both the in-band signal (upper path) and the out-of-band signal (lower path) are determined, and the absolute value is calculated. Both signals are furthermore filtered by a limiter and a low-pass. All signal samples (absolute values) below a programmable limit Lev_{N} (Noise Level) are set to zero and all other signal samples are diminished by Lev_{N}. The purpose of this limiter is to increase noise robustness. After the limiter stages both signals are filtered by a fixed low-pass.
The evaluation logic block determines whether a tone interval or silence interval is detected and an interrupt is generated for the receive or transmit path.

The UTDR-OK respectively UTDX-OK bit (register INTREG3) will be set if both of the following conditions hold for a time span of at least RTIME without breaks longer than RBRKTime occurring:

1. The in-band signal exceeds a programmable level $\mathrm{Lev}_{\mathrm{S}}$.
2. The difference of the in-band and the out-of-band signal levels exceeds Deltautd.

The UTDR-OK respectively UTDX-OK bit will be reset if at least one of these conditions is violated for a timespan of at least ETime during which the violation does not cease for at least EBRKTime.
The times ETIME and EBRKTime help to reduce the effects of sporadic dropouts.
If the bandwidth parameter is programmed to a negative value, the UTD unit can be used for the detection of silence intervals in the whole frequency range.
The DuSLIC UTD unit is compatible with ITU-T G. 164.
The UTD is resistant to a modulation with 15 Hz sinusoidal signals and a phase reversal but is not able to detect the 15 Hz modulation and the phase reversal.

3.8.5 MIPS Requirements for EDSP Capabilities

Table 9 shows the MIPS requirements for each algorithm using the EDSP:
Table 9 MIPS Requirements

Algorithm / Device	Used MIPS	Conditions
Caller ID Sender (CIS)	$1.736^{*} n_{\text {CIS }}$	$n_{\text {CIS }}=0 \ldots 2$
Universal Tone Detection (UTD)	$1.208^{*} n_{\text {UTD }}$	$n_{\text {UTD }}=0 \ldots 4$, transmit and receive for two channels
DTMF Receiver	$6.296^{*} n_{\text {DTMF }}$	$n_{\text {DTMF }}=0 \ldots 2$
Line Echo Canceller (LEC)	$\left(3.448+0.032^{*} \text { LEN }\right)^{*} n_{\text {LEC }}$	$n_{\text {LEC }}=0 \ldots 2$ LEN - see Page 239
Operating System	1.432	-

The maximum capability of the EDSP is 32 MIPS.

Example:

- All devices enabled and LEC Length $=8 \mathrm{~ms}$ (LEN = 64):
\rightarrow 33.32 MIPS total computing load exceeding the 32 MIPS limit!
- All devices enabled and LEC Length $=4 \mathrm{~ms}$ (LEN = 32):
\rightarrow 31.272 MIPS total computing load within the 32 MIPS limit.
- $4 \times$ UTD, $2 \times$ DTMF Receiver and $2 \times$ LEC (8 ms) enabled:
\rightarrow 29.85 MIPS total computing load within the 32 MIPS limit.

Preliminary

3.9 Message Waiting Indication (only DuSLIC-E/-E2/-P)

Message Waiting Indication (MWI) is usually performed using a glow lamp at the subscriber phone. Current does not flow through a glow lamp until the voltage reaches a threshold value above approximately 80 V . At this threshold, the neon gas in the lamp will start to glow. When the voltage is reduced, the current falls under a certain threshold and the lamp glow is extinguished. DuSLIC has high-voltage SLIC technology (170 V) which is able to activate the glow lamp without any external components.
The hardware circuitry is shown in Figure 36 below. The figure shows a typical telephone circuit with the hook switch in the on-hook mode, together with the impedances for the on-hook $\left(Z_{R}\right)$ and off-hook $\left(Z_{L}\right)$ modes.

Figure 36 MWI Circuitry with Glow Lamp

The glow lamp circuit also requires a resistor ($R_{M W}$) and a lamp (MW Lamp) built into the phone. When activated, the lamp must be able to either blink or remain on constantly.
In non-DuSLIC solutions the telephone ringer may respond briefly if the signal slope is too steep, which is not desirable. DuSLIC's integrated ramp generator can be programmed to increase the voltage slowly, to ensure activating the lamp and not the ringer.

Preliminary

Functional Description

To activate the Message Waiting function of DuSLIC the following steps should be performed:

- Activating Ring Pause mode by setting the M0-M2 bits
- Select Ring Offset RO2 by setting the bits in register LMCR3
- Enable the ramp generator by setting bit RAMP-EN in register LMCR2
- Switching between the Ring Offsets RO3 and RO2 in register LMCR3 will flash the lamp on and off (see Figure 37).
The values for RO2 and RO3 have to be programmed in the CRAM to the according values before so that the lamp will flash on and off.

Figure 37 Timing Diagram

Preliminary

3.10 Three-party Conferencing (only DuSLIC-E/-E2/-P)

Each DuSLIC channel has a three-party conferencing facility implemented which consist of four PCM registers, adders and gain stages in the microprogram and the corresponding control registers (see Figure 38).
This facility is available in PCM $/ \mu \mathrm{C}$ mode only. The PCM control registers PCMR1 through PCMR4 and PCMX1 through PCMX4 control the timeslot assignment and PCM highway selection, while the bits PCMX-EN, CONF-EN and CONFX-EN in the BCR3 register control the behavior of the conferencing facility and the PCM line drivers (see Figure 38). A programmable gain stage G is able to adjust the gain of the conferencing voice data (B, C, D, S) in a range of $-6 d B$ to $+3 d B$ to prevent an overload of the sum signals.

Figure 38 Conference Block for One DuSLIC Channel
Note: G ... Gain Stage (Gain Factor) set in CRAM coefficients, X1-X4 ... PCM transmit channels,
R1-R4 ... PCM receive channels,
$A, B, C, D, S \ldots$ examples for voice data on PCM channels $X 1-X 4, R 1-R 4$

DuSLIC

Preliminary
Functional Description

3.10.1 Conferencing Modes

Table 10 Conference Modes

	Configuration Registers			Receive Channels				Transmit Channels				
Mode	$\begin{aligned} & \hline \text { PCMX } \\ & \text {-EN } \end{aligned}$	$\begin{aligned} & \hline \mathrm{CONF} \\ & -\mathrm{EN} \end{aligned}$	$\begin{aligned} & \hline \text { CONFX } \\ & \text {-EN } \end{aligned}$	R1	R2	R3	R4	X1	X2	X3	X4	Subscriber S
PCM Off	0	0	0	-	-	-	-	off	off	off	off	off
PCM Active	1	0	0	A	-	-	-	S	off	off	off	A
External Conference	0	0	1	-	B	C	D	off	G (C+D)	$\mathrm{G}(\mathrm{B}+\mathrm{D})$	$G(B+C)$	off
External Conference + PCM Active	1	0	1	A	B	C	D	S	G (C+D)	$G(B+D)$	$\mathrm{G}(\mathrm{B}+\mathrm{C})$	A
Internal Conference	0	1	0	-	B	C	-	off	G (C+S)	$G(B+S)$	off	$\mathrm{G}(\mathrm{B}+\mathrm{C})$

(see also "Control of the Active PCM Channels" on Page 142)

- PCM Off

After a reset, or in power down there is no communication via the PCM highways. Also when selecting new timeslots it is recommended to switch off the PCM line drivers by setting the control bits to zero.

- PCM Active

This is the normal operating mode without conferencing. Only the channels R1 and X1 are in use, and voice data are transferred from subscriber A to analog subscriber S and vice versa.

- External Conference

In this mode the SLICOFI-2 acts as a server for a three-party conference of subscribers B, C and D which may be controlled by any device connected to the PCM highways. The SLICOFI-2 channel itself can remain in power down mode to lower power consumption.

- External Conference + PCM Active

Like in External Conference mode any external three-party conference is supported. At the same time an internal phone call is active using the channels R1 and X 1 .

- Internal Conference

If the analog subscriber S is one of the conference partners, the internal conference mode will be selected. The partners (B, C) do not need any conference facility, since the SLICOFI-2 performs all required functions for them as well.

DuSLIC

Preliminary
Functional Description

$3.11 \quad 16$ kHz Mode on PCM Highway

In addition to the standard 8 kHz transmission PCM interface modes, there are also two 16 kHz modes for high data transmission performance.
Table 11 shows the configuration of PCM channels for the different PCM interface modes.

Table 11 Possible Modes in PCM/ μ C Interface Mode ${ }^{1)}$

Config. Bits	Receive PCM Channels				Transmit PCM Channels						
PCM16K	LIN	R1	R1L $^{\mathbf{2})}$	R2	R3	R4	X1	X1L $^{3)}$	X2	X3	X4

PCM Mode

0	0	A	4)	B	C	D	S	-	depends on conference mode

LIN Mode

0	1	A-HB	A-LB	B	C	D	S-HB	S-LB	depends on conference mode

PCM16 Mode

1	0	DS1	-	-	DS2	-	DS1	-	-	DS2	-

LIN16 Mode

1	1	DS1- HB	-	DS1- LB	DS2- HB	DS2- LB	DS1- HB	-	DS1- LB	DS2- HB	DS2- LB

[^7]The configuration bits PCM16K and LIN (in the BCR3 register) are used to select the following PCM interface modes:

- PCM Mode

Normal mode used for voice transmission via channels R1 and X1 (receive and transmit). The PCM input channels R2, R3 and R4 are always available for use in different conference configurations. The status of the PCM output channels depends on the conference mode configuration.

Preliminary

Functional Description

- LIN Mode

Similar to the PCM mode, but for 16 bit linear data at 8 kHz sample rate via the PCM channels R1, R1L (receive) and X1, X1L (transmit).

- PCM16 Mode

Mode for higher data transmission rate of PCM encoded data using a 16 kHz sample rate (only in PCM/ $\mu \mathrm{C}$ Interface mode with the PCMX-EN bit in the BCR3 register set to one). In this mode the channels R1, R3 (X1, X3) are used to receive (transmit) two samples of data (DS1, DS2) in each 8 kHz frame.

- LIN16 Mode

Like the PCM16 mode for 16 kHz sample rate but for linear data. Channels R1 to R4 (X1 to X 4) are used for receiving (transmitting) the high and low bytes of the two linear data samples DS1 and DS2.

DuSLIC

Preliminary

4 Operational Description

4.1 Operating Modes for the DuSLIC Chip Set

Table 12 Overview of DuSLIC Operating Modes

SLICOFI-2x Mode	SLIC Type			$\begin{aligned} & \hline \text { CIDD/ } \\ & \text { CIOP }^{1)} \end{aligned}$			Additional Bits used (Note ${ }^{2)}$)
	$\begin{aligned} & \hline \text { SLIC-S/ } \\ & \text { SLIC-S2 } \end{aligned}$	$\begin{array}{\|l} \hline \text { SLIC-E/ } \\ \text { SLIC-E2 } \end{array}$	SLIC-P	M2	M1	M0	
Sleep (SL)	-	PDRH	PDRH	1	1	1	SLEEP-EN = 1
			PDRR	1	1	1	SLEEP-EN = 1, ACTR = 1
Power Down Resistive (PDR)	PDRH	PDRH	PDRH	1	1	1	SLEEP-EN = 0
			PDRR	1	1	1	SLEEP-EN = 0, ACTR = 1
Power Down High Impedance (PDH)	PDH	PDH	PDH	0	0	0	-
Active High (ACTH)	ACTH	ACTH	ACTH	0	1	0	-
Active Low (ACTL)	ACTL	ACTL	ACTL	0	1	0	$\mathrm{ACTL}=1$
Active Ring (ACTR)	ACTR	ACTR	ACTR	0	1	0	ACTR = 1
Ringing (Ring)	A^{\prime} CR $^{3)}$	ACTR	ACTR	1	0	1	-
	-	-	ROT	1	0	1	HIT = 1
	-	-	ROR	1	0	1	HIR $=1$
Active with HIT	HIT	HIT	HIT	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{HIT}=1 \\ & \mathrm{HIT}=1, \mathrm{ACTR}=0 \end{aligned}$
Active with HIR	HIR	HIR	HIR	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{HIR}=0 \\ & \mathrm{HIR}=0, \mathrm{ACTR}=0 \end{aligned}$
Active with Ring to Ground			ROT	0	1	0	$\mathrm{HIT}=1, \mathrm{ACTR}=1$
Active with Tip to Ground			ROR	0	1	0	HIR = 1, ACTR = 1
HIRT	-	HIRT	HIRT	0	1	0	$\mathrm{HIR}=1, \mathrm{HIT}=1$
Active with Metering	$\underset{4)}{\mathrm{ACT}}{ }^{3)}$	ACTx ${ }^{4}$	ACTx ${ }^{4}$	1	1	0	TTX-DIS to select Reverse Polarity or TTX Metering

DuSLIC

Preliminary
Operational Description
Table 12 Overview of DuSLIC Operating Modes (cont'd)

$\begin{aligned} & \text { SLICOFI-2x } \\ & \text { Mode } \end{aligned}$	SLIC Type			$\begin{aligned} & \hline \text { CIDD/ } \\ & \text { CIOP }^{1)} \end{aligned}$			Additional Bits used (Note ${ }^{2)}$)
	$\begin{array}{\|l\|} \hline \text { SLIC-S/ } \\ \text { SLIC-S2 } \end{array}$	$\begin{aligned} & \hline \text { SLIC-E/ } \\ & \text { SLIC-E2 } \end{aligned}$	SLIC-P	M2	M1	M0	
Ground Start	HIT	HIT	HIT	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\text { ACTR }=0$
Ring Pause	ACTR ${ }^{3}$	ACTR	ACTR ROR ROT	0	0	1	$\begin{aligned} & \mathrm{HIR}=1 \\ & \mathrm{HIT}=1 \end{aligned}$

1) CIDD = Data Downstream Command/Indication Channel Byte (IOM-2 interface)

CIOP = Command/Indication Operation
For further information see "SLICOFI-2x Command Structure and Programming" on Page 163.
2) if not otherwise stated in the table, the bits ACTL, ACTR, HIT, HIR have to be set to 0 .
3) only for SLIC-S
4) ACTx means ACTH, ACTL or ACTR.

Sleep (SL) (only available with DuSLIC-E/-E2/-P)

The SLICOFI-2 is able to go into a sleep mode with minimal power dissipation. In this mode off-hook detection is performed without any checks on spikes or glitches. The sleep mode can be used for either channel, but for the most effective power saving, both channels should be set to this mode. Note that this requires the following:

- Due to the lack of persistence checking only non-noisy lines should use this feature.
- If both channels are set to the sleep mode, waking up takes about 1.25 ms , since the on-chip PLL is also switched off. Therefore it is also possible to switch off all external clocks. In this time no programming or other functionality is available. The off-hook event is indicated either by setting the interrupt pin to active mode if the PCM $/ \mu \mathrm{C}$ interface mode is selected or by pulling down the DU pin if IOM-2 interface is used.
- If only one channel is set to sleep mode, persistence checking and off-hook indication is performed as in any other mode, but the off-hook level is fixed to 2 mA at the subscriber line. No special wake-up is needed if only one channel is in sleep mode. A simple mode change ends the sleep mode.
- A sleeping SLICOFI-2 is woken up if the $\overline{\mathrm{CS}}$ pin is drawn to low level when the PCM/ $\mu \mathrm{C}$ interface is used or the MX bit is set to zero when the IOM-2 interface is used. Note that no programming is possible until the SLICOFI-2 wakes up. In IOM-2 mode the identification request can be used as a wake-up signal since this command is independent of the internal clock. In the $\mathrm{PCM} / \mu \mathrm{C}$ mode it is recommended to set the $\overline{\mathrm{CS}}$ to 0 for only one clock cycle.
- After a wake up from Sleep mode the SLICOFI-2 enters the PDRH or PDRR mode. To re-enter the Sleep mode it is necessary to perform a mode change to any Active mode at least at one channel first.

DuSLIC

Preliminary

Power Down Resistive (PDRH for SLIC-E/-E2/-S/-S2 and PDRR for SLIC-P)

The Power Down Resistive mode is the standard mode for none-active lines. Off-hook is detected by a current value fed to the DSP, compared with a programmable threshold, and filtered by a data upstream persistence checker. The power management SLIC-P can be switched to a Power Down Resistive High or a Power Down Resistive Ring mode.

HIRT

The line drivers in the SLIC-E/-E2/-P are shut down and no resistors are switched to the line. Off-hook detection is not possible. In HIRT mode the SLICOFI-2 is able to measure the input offset of the current sensors.

Power Down High Impedance (PDH)

In Power Down High Impedance mode, the SLIC is totally powered down. No off-hook sensing can be performed. This mode can be used for emergency shutdown of a line.

Active High (ACTH)

A regular call can be performed, voice and metering pulses can be transferred via the telephone line and the DC loop is operational in the Active High mode.

Active Low (ACTL)

The Active Low mode is similar to the Active High mode. The only difference is that the SLIC uses a lower battery voltage, $V_{\text {BATL }}$ (bit ACTL = 1).

Active Ring (ACTR)

The Active Ring mode is different for the SLIC-E/-E2 and the SLIC-P. The SLIC-E/-E2 uses the additional positive voltage V_{HR} for extended feeding and the SLIC-P will switch to the negative battery voltage $V_{\text {BATR }}$.

Ringing

If the SLICOFI- $2 x$ is switched to Ringing mode, the SLIC is switched to ACTR mode.
With the SLIC-P connected to the SLICOFI-2, the Ring on Ring (ROR) mode allows unbalanced internal ringing on the Ring wire. The Tip wire is set to battery ground. The Ring signal will be superimposed by $V_{\mathrm{BATR}} / 2$.
The Ring on Tip (ROT) mode is the equivalent to the ROR mode.

Active with HIT

This is a testing mode where the Tip wire is set to a high impedance mode. It is used for special line testing. It is only available in an active mode of the SLICOFI-2x to enable all necessary test features.

Preliminary

Active with HIR

HIR is similar to HIT but with the Ring wire set to high impedance.

Active with Metering

Any available active mode can be used for metering either with Reverse Polarity or with TTX Signals.

Ground Start

The Tip wire is set to high impedance in Ground Start mode. Any current drawn on the Ring wire leads to a signal on IT, indicating off-hook.

Ring Pause

The Ring burst is switched off in Ring Pause, but the SLIC remains in the specified mode and the off-hook recognition behaves like in ringing mode (Ring Trip).

DuSLIC

Preliminary
Operational Description

4.2 Operating Modes for the DuSLIC-S/-S2 Chip Set

Table 13 DuSLIC-S/-S2 Operating Modes

SLICOFI-2S SLICOFI-2S2 Mode	SLIC-S SLIC-S2 Mode	SLIC-S/-S2 Internal Supply Voltages $(+/-)\left[V_{\mathrm{HI}} / V_{\mathrm{BI}}\right]$	System Functionality	Active Circuits	Tip/Ring Output Voltage
$\overline{\text { PDH }}$	PDH	Open/ $V_{\text {BATH }}$	None	None	High Impedance
Power Down Resistive	PDRH	Open/V $V_{\text {BATH }}$	Off-hook detect as in active mode (DSP)	Off-hook, DC transmit path	$\begin{aligned} & V_{\mathrm{BGND}} / V_{\mathrm{BATH}} \\ & (\mathrm{via} 5 \mathrm{k} \Omega) \end{aligned}$
-	$\begin{array}{\|l\|l\|} \hline \text { PDRHL } \\ \text { 1) } \end{array}$	Open/V $V_{\text {BATH }}$	Off-hook detect as in active mode (DSP)	Off-hook, DC transmit path	$\begin{aligned} & V_{\mathrm{BGND}} / V_{\mathrm{BATH}} \\ & (\text { via } 5 \mathrm{k} \Omega) \end{aligned}$
Active Low (ACTL)	ACTL	$V_{\text {BGND }} / V_{\text {BATL }}$	Voice and/or TTX transmission	Buffer, Sensor, $D C+A C$ loop, TTX generator (optional)	$\begin{aligned} & \text { Tip: }\left(V_{\mathrm{BATL}}+\right. \\ & V_{\mathrm{AC}}+V_{\mathrm{DC}} / 2 \\ & \text { Ring: }\left(V_{\mathrm{BATL}}-\right. \\ & \left.V_{\mathrm{AC}}-V_{\mathrm{DC}}\right) / 2 \end{aligned}$
Active High (ACTH)	ACTH	$V_{\text {BGND }} / V_{\text {BATH }}$	Voice and/or TTX transmission	Buffer, Sensor, $D C+A C$ loop, TTX generator (optional)	$\begin{aligned} & \text { Tip: }\left(V_{\mathrm{BATH}}+\right. \\ & V_{\mathrm{AC}}+V_{\mathrm{DC}} / 2 \\ & \mathrm{Ring}^{(}\left(V_{\mathrm{BATH}}-\right. \\ & \left.V_{\mathrm{AC}}-V_{\mathrm{DC}}\right) / 2 \end{aligned}$
Active Ring (ACTR)	ACTR	$V_{\text {HR }} / V_{\text {BATH }}$	Voice and/or TTX transmission	Buffer, Sensor, $D C+A C$ loop, TTXgenerator (optional)	Tip: (+ $V_{\text {BATH }}$ $+V_{\mathrm{HR}}+V_{\mathrm{AC}}$ $\left.+V_{\mathrm{DC}}\right) / 2$ Ring: $\left(+V_{\text {BATH }}\right.$ $+V_{\mathrm{HR}}-V_{\mathrm{AC}}$ $\left.-V_{\mathrm{DC}}\right) / 2$
Ringing (Ring)	ACTR	$V_{\text {HR }} / V_{\text {BATH }}$	Balanced ring signal feed (incl. DC offset)	Buffer, Sensor, DC loop, Ring generator	$\begin{aligned} & \text { Tip: }\left(V_{\mathrm{BATH}}+\right. \\ & V_{\mathrm{HR}}+V_{\mathrm{DC}} / 2 \\ & \text { Ring: }^{\left(V_{\mathrm{BATH}}+\right.} \\ & \left.V_{\mathrm{HR}}-V_{\mathrm{DC}}\right) / 2 \end{aligned}$

Preliminary

Table 13 DuSLIC-S/-S2 Operating Modes (cont'd)

SLICOFI-2S SLICOFI-2S2 Mode	$\begin{array}{\|l\|} \hline \text { SLIC-S / } \\ \text { SLIC-S2 } \\ \text { Mode } \end{array}$	SLIC-S/-S2 Internal Supply Voltages $(+/-)\left[V_{\mathrm{HI}} / V_{\mathrm{BI}}\right]$	System Functionality	Active Circuits	Tip/Ring Output Voltage
Ring Pause	ACTR	$V_{\text {HR }} / V_{\text {BATH }}$	DC offset feed	Buffer, Sensor, DC loop, Ramp generator	$\begin{aligned} & \text { Tip: }\left(V_{\mathrm{BATH}}+\right. \\ & V_{\mathrm{HR}}+V_{\mathrm{DC}} / 2 \\ & \text { Ring: }^{\left(V_{\mathrm{BATH}}+\right.}+ \\ & \left.V_{\mathrm{HR}}-V_{\mathrm{DC}}\right) / 2 \end{aligned}$
Active with HIR	HIR	$V_{\text {HR }} / V_{\text {BATH }}$	E.g. line test (Tip)	Tip Buffer, Sensor, DC + AC loop	$\begin{aligned} & \text { Tip: }\left(V_{\mathrm{BATH}}+\right. \\ & V_{\mathrm{HR}}+V_{\mathrm{AC}}+ \\ & \left.V_{\mathrm{DC}}\right) / 2 \\ & \text { Ring: High } \\ & \text { impedance } \end{aligned}$
Active with HIT	HIT	$V_{\text {HR }} / V_{\text {BATH }}$	E.g. line test (Ring)	Ring Buffer, Sensor, DC + AC loop	$\begin{aligned} & \text { Ring: }\left(V_{\mathrm{BATH}}+\right. \\ & V_{\mathrm{HR}}-V_{\mathrm{AC}}- \\ & \left.V_{\mathrm{DC}}\right) / 2 \\ & \text { Tip: High } \\ & \text { impedance } \\ & \hline \end{aligned}$

1) load ext. C for switching from PDRH to ACTH in on-hook mode
$V_{\text {AC }} \ldots$ Tip/Ring AC Voltage
$V_{\text {DC }} \ldots$ Tip/Ring DC Voltage

DuSLIC

Preliminary

4.3 Operating Modes for the DuSLIC-E/-E2 Chip Set

Table 14 DuSLIC-E/-E2 Operating Modes

$\begin{aligned} & \text { SLICOFI-2 } \\ & \text { Mode } \end{aligned}$	SLIC-E SLIC-E2 Mode	SLIC-E/-E2 Internal Supply Voltages $(+/-)\left[V_{\mathrm{HI}} / V_{\mathrm{BI}}\right]$	System Functionality	Active Circuits	Tip/Ring Output Voltage
PDH	PDH	Open/ $/ V_{\text {BATH }}$	None	None	High Impedance
Sleep	PDRH	Open/ $/ V_{\text {BATH }}$	Off-hook detect via offhook comparator	Off-hook, Analog comparator	$\begin{aligned} & V_{\mathrm{BGND}} / V_{\mathrm{BATH}} \\ & (\text { via } 5 \mathrm{k} \Omega) \end{aligned}$
Power Down Resistive	PDRH	Open/ $/ V_{\text {BATH }}$	Off-hook detect as in active mode (DSP)	Off-hook, DC transmit path	$\begin{aligned} & V_{\mathrm{BGND}} / V_{\mathrm{BATH}} \\ & (\mathrm{via} 5 \mathrm{k} \Omega) \end{aligned}$
-	PDRHL ${ }^{1)}$	Open/ $/ V_{\text {BATH }}$	Off-hook detect as in active mode (DSP)	Off-hook, DC transmit path	$\begin{aligned} & V_{\mathrm{BGND}} / V_{\mathrm{BATH}} \\ & (\mathrm{via} 5 \mathrm{k} \Omega) \end{aligned}$
Active Low (ACTL)	ACTL	$V_{\text {BGND }} / V_{\text {BATL }}$	Voice and/or TTX transmission	Buffer, Sensor, DC + AC loop, TTX generator (optional)	$\begin{aligned} & \text { Tip: }\left(V_{\mathrm{BATL}}+\right. \\ & \left.V_{\mathrm{AC}}+V_{\mathrm{DC}}\right) / 2 \\ & \text { Ring: }\left(V_{\mathrm{BATL}}-\right. \\ & \left.V_{\mathrm{AC}}-V_{\mathrm{DC}}\right) / 2 \\ & \hline \end{aligned}$
Active High (ACTH)	ACTH	$V_{\text {BGND }} / V_{\text {BATH }}$	Voice and/or TTX transmission	Buffer, Sensor, DC + AC loop, TTX generator (optional)	$\begin{aligned} & \text { Tip: }\left(V_{\mathrm{BATH}}+\right. \\ & \left.V_{\mathrm{AC}}+V_{\mathrm{DC}}\right) / 2 \\ & \text { Ring: }\left(V_{\mathrm{BATH}}-\right. \\ & \left.V_{\mathrm{AC}}-V_{\mathrm{DC}}\right) / 2 \end{aligned}$
Active Ring (ACTR)	ACTR	$V_{\text {HR }} / V_{\text {BATH }}$	Voice and/or TTX transmission	Buffer, Sensor, DC + AC loop, TTX generator (optional)	$\begin{aligned} & \text { Tip: } \\ & \left(+V_{\mathrm{BATH}}+V_{\mathrm{HR}}\right. \\ & \left.+V_{\mathrm{AC}}+V_{\mathrm{DC}}\right) / 2 \\ & \text { Ring: } \\ & \left(+V_{\mathrm{BATH}}+V_{\mathrm{HR}}\right. \\ & \left.-V_{\mathrm{AC}}-V_{\mathrm{DC}}\right) / 2 \end{aligned}$

Preliminary

Table 14 DuSLIC-E/-E2 Operating Modes (cont'd)

$\begin{aligned} & \text { SLICOFI-2 } \\ & \text { Mode } \end{aligned}$	SLIC-E SLIC-E2 Mode	SLIC-E/-E2 Internal Supply Voltages $(+/-)\left[V_{\mathrm{HI}} / V_{\mathrm{BI}}\right]$	System Functionality	Active Circuits	Tip/Ring Output Voltage
Ringing (Ring)	ACTR	$V_{\mathrm{HR}} / V_{\mathrm{BATH}}$	Balanced Ring signal feed (incl. DC offset)	Buffer, Sensor, DC loop, Ring generator	$\begin{aligned} & \text { Tip: }\left(V_{\mathrm{BATH}}+\right. \\ & \left.V_{\mathrm{HR}}+V_{\mathrm{DC}}\right) / 2 \\ & \text { Ring: }\left(V_{\mathrm{BATH}}+\right. \\ & \left.V_{\mathrm{HR}}-V_{\mathrm{DC}}\right) / 2 \end{aligned}$
Ring Pause	ACTR	$V_{\mathrm{HR}} / V_{\text {BATH }}$	DC offset feed	Buffer, Sensor, DC loop, ramp generator	$\begin{aligned} & \text { Tip: }\left(V_{\mathrm{BATH}}+\right. \\ & \left.V_{\mathrm{HR}}+V_{\mathrm{DC}}\right) / 2 \\ & \text { Ring: }\left(V_{\mathrm{BATH}}+\right. \\ & \left.V_{\mathrm{HR}}-V_{\mathrm{DC}}\right) / 2 \end{aligned}$
HIRT	HIRT	$V_{\text {HR }} / V_{\text {BATH }}$	E.g. sensor offset calibration	Sensor, DC transmit path	High Impedance
Active with HIR	HIR	$V_{\text {HR }} / V_{\text {BATH }}$	E.g. line test (Tip)	Tip-Buffer, Sensor, DC + AC loop	$\begin{aligned} & \text { Tip: }\left(V_{\mathrm{BATH}}+\right. \\ & V_{\mathrm{HR}}+V_{\mathrm{AC}}+ \\ & \left.V_{\mathrm{DCC}}\right) / 2 \\ & \text { iing: } \\ & \text { impedigh } \\ & \text { impe } \end{aligned}$
Active with HIT	HIT	$V_{\text {HR }} / V_{\text {BATH }}$	E.g. line test (Ring)	Ring-Buffer, Sensor, DC + AC loop	$\begin{aligned} & \text { Ring: }\left(V_{\mathrm{BATH}}+\right. \\ & V_{\mathrm{HR}}-V_{\mathrm{AC}}- \\ & \left.V_{\mathrm{DC}}\right) / 2 \\ & \text { Tip: High } \\ & \text { impedance } \end{aligned}$

[^8]DuSLIC

Preliminary

4.4 Operating Modes for the DuSLIC-P Chip Set

Table 15 DuSLIC P Operating Modes

$\overline{\text { SLICOFI-2 }}$ Mode	SLIC-P Mode	SLIC-P Internal Supply Voltages [V_{BI}]	System Functionality	Active Circuits	Tip/Ring Output Voltage
PDH	PDH	$V_{\text {BATR }}$	None	None	High impedance
Sleep	PDRH	$V_{\text {BATH }}$	Off-hook detect via off-hook comparator	Off-hook, Analog comparator	$\begin{aligned} & V_{\mathrm{BGND}} / V_{\mathrm{BATH}} \\ & (\text { via } 5 \mathrm{k} \Omega) \end{aligned}$
Sleep	PDRR	$V_{\text {BATR }}$	Off-hook detect via off-hook comparator	Off-hook, Analog comparator	$\begin{aligned} & V_{\mathrm{BGND}} / V_{\mathrm{BATR}} \\ & (\text { via } 5 \mathrm{k} \Omega) \end{aligned}$
Power Down Resistive	PDRH	$V_{\text {BATH }}$	Off-hook detect as in active mode (DSP)	Off-hook, DC transmit path	$\begin{aligned} & V_{\mathrm{BGND}} / V_{\mathrm{BATH}} \\ & (\text { via } 5 \mathrm{k} \Omega) \end{aligned}$
-	PDRHL ${ }^{19}$	$V_{\text {BATH }}$	Off-hook detect as in active mode (DSP)	Off-hook, DC transmit path	$\begin{aligned} & V_{\mathrm{BGND}} / V_{\mathrm{BATH}} \\ & (\text { via } 5 \mathrm{k} \Omega) \end{aligned}$
-	PDRR	$V_{\text {BATR }}$	Off-hook detect as in active mode (DSP)	Off-hook, Analog comparator	$\begin{aligned} & V_{\mathrm{BGND}} / V_{\mathrm{BATR}} \\ & (\text { via } 5 \mathrm{k} \Omega \text {) } \end{aligned}$
-	PDRRL ${ }^{2}$	$V_{\text {BATR }}$	Off-hook detect as in active mode (DSP)	Off-hook, DC transmit path	$\begin{aligned} & V_{\mathrm{BGND}} / V_{\mathrm{BATR}} \\ & (\mathrm{via} 5 \mathrm{k} \Omega) \end{aligned}$
Active Low (ACTL)	ACTL	$V_{\text {BATL }}$	Voice and/or TTX transmission	Buffer, Sensor, DC + AC loop, TTX generator (optional)	$\begin{aligned} & \text { Tip: }\left(V_{\mathrm{BATL}}+\right. \\ & V_{\mathrm{AC}}+V_{\mathrm{DC}} / 2 \\ & \text { Ring: }\left(V_{\mathrm{BATL}}-\right. \\ & \left.V_{\mathrm{AC}}-V_{\mathrm{DC}}\right) / 2 \end{aligned}$
Active High (ACTH)	ACTH	$V_{\text {BATH }}$	Voice and/or TTX transmission	Buffer, Sensor, DC + AC loop, TTX generator (optional)	$\begin{aligned} & \text { Tip: }\left(V_{\mathrm{BATH}}+\right. \\ & V_{\mathrm{AC}}+V_{\mathrm{DC}} / 2 \\ & \mathrm{Ring}:\left(V_{\mathrm{BATH}}-\right. \\ & \left.V_{\mathrm{AC}}-V_{\mathrm{DC}}\right) / 2 \end{aligned}$

DuSLIC

Preliminary

Table 15 DuSLIC P Operating Modes (cont'd)

$\begin{aligned} & \text { SLICOFI-2 } \\ & \text { Mode } \end{aligned}$	SLIC-P Mode	SLIC-P Internal Supply Voltages [V_{BI}]	System Functionality	Active Circuits	Tip/Ring Output Voltage
Active Ring (ACTR)	ACTR	$V_{\text {BATR }}$	Voice and/or TTX transmission	Buffer, Sensor, DC + AC loop, TTX generator (optional)	$\begin{aligned} & \text { Tip: }\left(V_{\mathrm{BATR}}+\right. \\ & \left.V_{\mathrm{AC}}+V_{\mathrm{DC}}\right) / 2 \\ & \text { Ring: }\left(V_{\mathrm{BATR}}-\right. \\ & \left.V_{\mathrm{AC}}-V_{\mathrm{DC}}\right) / 2 \end{aligned}$
Ringing (Ring)	ACTR	$V_{\text {BATR }}$	Balanced ring signal feed (incl. DC offset)	Buffer, Sensor, DC loop, ring generator	$\begin{aligned} & \text { Tip: }\left(V_{\mathrm{BATR}}+\right. \\ & V_{\mathrm{DC}} / 2 \\ & \text { Ring: }\left(V_{\mathrm{BATR}}-\right. \\ & \left.V_{\mathrm{DC}}\right) / 2 \end{aligned}$
Ringing (Ring)	ROR	$V_{\text {BATR }}$	Ring signal on ring, Tip on BGND	Buffer, Sensor, DC loop, ring generator	Ring: $\left(V_{\text {BATR }}-\right.$ $V_{\mathrm{DC}} / 2$ Tip: 0 V
Ringing (Ring)	ROT	$V_{\text {BATR }}$	Ring signal on ring, Tip on BGND	Buffer, Sensor, DC loop, ring generator	$\begin{aligned} & \text { Tip: }\left(V_{\mathrm{BATR}}+\right. \\ & \left.V_{\mathrm{DC}}\right) / 2 \\ & \text { Ring: } 0 \mathrm{~V} \end{aligned}$
Ring Pause	ACTR, ROR, ROT	$V_{\text {BATR }}$	DC offset feed	Buffer, Sensor, DC loop, ramp generator	$\begin{aligned} & \text { Tip: }\left(V_{\mathrm{BATR}}+\right. \\ & V_{\mathrm{DC}} / 2 \\ & \text { Ring: }\left(V_{\mathrm{BATR}}-\right. \\ & V_{\mathrm{DC}} / 2 \end{aligned}$
HIRT	HIRT	$V_{\text {BATR }}$	E.g. sensor offset calibration	Sensor, DC transmit path	High impedance
Active with HIR	HIR	$V_{\text {BATR }}$	E.g. line test (Tip)	Tip-Buffer, Sensor, DC + AC loop	Tip: $\left(V_{\text {BATR }}+\right.$ $\left.V_{\mathrm{AC}}+V_{\mathrm{DC}}\right) / 2$ Ring: High impedance
Active with HIT	HIT	$V_{\text {BATR }}$	E.g. line test (Ring)	Ring-Buffer, Sensor, DC + AC loop	$\begin{aligned} & \text { Ring: }\left(V_{\mathrm{BATR}}-\right. \\ & \left.V_{\mathrm{AC}}-V_{\mathrm{DC}}\right) / 2 \\ & \text { Tip: High } \\ & \text { impedance } \end{aligned}$

[^9]DuSLIC

Preliminary

4.5 Reset Mode and Reset Behavior

4.5.1 Hardware and Power On Reset

A reset of the DuSLIC is initiated by a power-on reset or a hardware reset by setting the signal at RESET input pin to low level for at least $4 \mu \mathrm{~s}^{1}$. The reset input pin has a spike rejection which will safely suppress spikes with an duration of less than $1 \mu \mathrm{~s}^{2}$.
By setting the reset signal to low, the chip will be reset (see Figure 39):

- all I/O pins deactivated
- all outputs inactive (e.g. DXA/DXB)
- internal PLL stopped
- internal clocks deactivated
- chip in power down high impedance (PDH)

With the high going reset signal, the following actions take place:

- Clock detection
- PLL synchronization
- Running the reset routine

The internal reset routine will then initialize the whole chip to default condition as described in the SOP default register setting (see Chapter 6). To run through the internal reset routine it is necessary that all external clocks are supplied:

- $\mu \mathrm{C} /$ PCM mode: FSC, MCLK, PCLK
- IOM-2 mode: FSC and DCL.

Without valid and stable external clock signals, the DuSLIC will not finish the reset sequence properly.
The internal reset routine requires 12 frames ($125 \mu \mathrm{~s}$) to be finished (including PLL start up and clock synchronization) and is setting the default values given in Table 16. The first register access to the SLICOFI-2x may be done after the internal reset routine is finished.

[^10]
Preliminary

Figure 39 DuSLIC Reset Sequence

DuSLIC
technologies

4.5.2 Software Reset

When performing a software reset, the DuSLIC is running the reset routine and sets the default settings of the configuration registers. The software reset can be performed individually for each channel.

Table 16 Default Values

DC			
$I_{\text {K1 }}$	20	mA	Limit for Constant Current
$V_{\mathrm{K} 1}$	34	V	Voltage of limit between Constant Current and Resistive Zone
K_{B}	1	-	Additional gain with extended battery feeding
$R_{\text {I }}$	10	k Ω	Output Resistance in constant current zone
$R_{\text {K12 }}$	100	Ω	Programmable resistance in resistive zone
$f_{\text {RING }}$	25.4	Hz	Ring frequency
$A_{\text {RING }}$	62	Vrms	Ring amplitude at Ring/Tip wire
RO1	23	V	Ring offset voltage RO1
RO2	0	V	Ring offset voltage RO2
RO3	50	V	Ring offset voltage RO3
$f_{\text {RINGLP }}$	75	Hz	Corner frequency of Ring low-pass filter
Off-hookPD	2	mA	Current threshold for Off-hook Detection in Power Down mode
Off-hookAct	8	mA	Off-hook Detection in Active with 2 mA hysteresis
Off-hookRing	5	mA	DC-Current threshold for Off-hook Detection in Ringing mode
Off-hookMW	5	mA	DC-Current threshold for Off-hook Detection in Message Waiting
Off-hookAC	22	mArms	Current threshold for AC Ring-Trip detection
LineSup	5	mA	Current threshold Line-Supervision for ground start
Ring/Tip	30	V	Voltage threshold at Ring/Tip wire for VRTLIM bit
DC-Lowpass	1.2/20	Hz	DC low-pass set to 1.2 and 20 Hz respectively
ConstRamp	300	V/s	Slope of the ramp generator
	0	ms	Delay of Ring burst
SRend1	1/128	-	Soft-reversal threshold 1 (referred to the input of the ramp generator)

Table 16 Default Values (cont'd)

SRend2	$1 / 512$	-	Soft-reversal threshold 2 (referred to the input of the ramp generator)
DUP	10	ms	Data Upstream Persistence Counter is set to 10 ms
DUP-IO	16.5	ms	Data Upstream Persistence Counter for I/O pins, VRTLIM and ICON bits (register INTREG1) is set to 16.5 ms
SR-Time	80	ms	Time for soft-reversal
AC			

IM-Filter	900	Ω	Approximately 900Ω real input impedance
TH-Filter	TH $_{\text {BRD }}$	-	Approximately BRD impedance for balanced network
LX	0	dB	Relative level in transmit
LR	7	dB	Relative level in receive
ATTX	2.5	Vrms	Teletax generator amplitude at the resistance of 200Ω
$f_{\text {TTX }}$	16	kHz	Teletax generator frequency
TG1	940	Hz	Tone generator $1(-12 \mathrm{dBm})$
TG2	1633	Hz	Tone generator 2 $(-10 \mathrm{dBm})$
AC-LM-BP	1004	Hz	AC level meter band pass

4.6 Interrupt Handling

SLICOFI-2x provides much interrupt data for the host system. Interrupt handling is performed by the on chip microprogram which handles the interrupts in a fixed 2 kHz ($500 \mu \mathrm{~s}$) frame. Therefore, some delays up to $500 \mu \mathrm{~s}$ can occur in the reactions of SLICOFI- $2 x$ depending on when the host reads the interrupt registers.
Independent of the selected interface mode (PCM/ $\mu \mathrm{C}$ or IOM-2), the general behavior of the interrupt is as follows:

- Any change (at some bits only transitions from 0 to 1) in one of the four interrupt registers leads to an interrupt. The interrupt channel bit INT-CH in INTREG1 is set to one and all interrupt registers of one DuSLIC channel are locked at the end of the interrupt procedure (500μ s period). Therefore all changes within one 2 kHz frame are stored in the interrupt registers. The lock remains until the interrupt channel bit is cleared (Release Interrupt by reading all four interrupt registers INTREG1 to INTREG4 with one command).
- In IOM-2 interface mode, the interrupt channel bits are fed to the CIDU channel (see IOM-CIDU). In PCM mode, the INT pin is set to active (low).
- The interrupt is released (INT-CH bit reset to zero) by reading all four interrupt registers by one command. Reading the interrupt registers one by one using a series of commands does not release the interrupt even if all four registers are read.
- A hardware or power-on reset of the chip clears all pending interrupts and resets the INT line to inactive (PCM/ $\mu \mathrm{C}$ mode) or resets the INT-CH bit in CIDU (IOM-2 mode). The behavior after a software reset of both channels is similar, the interrupt signal switches to non-active within $500 \mu \mathrm{~s}$. A software reset of one DuSLIC channel deactivates the interrupt signal if there is no active interrupt on the other DuSLIC channel.
If the reset line is deactivated, a reset interrupt is generated for each channel (bit RSTAT in register INTREG2).

4.7 Operating Modes and Power Management

In many applications, the power dissipated on the line card is a critical parameter. In larger systems, the mean power value (taking into account traffic statistics and line length distribution) determines cooling requirements. Particularly in remotely fed systems, the maximum power for a line must not exceed a given limit.

4.7.1 Introduction

Generally, system power dissipation is determined mainly by the high-voltage part. The most effective power-saving method is to limit SLIC functionality and reduce supply voltage in line with requirements. This is achieved using different operating modes.
The three main modes - Power Down, Active and Ringing - correspond to the main system states: on-hook, signal transmission (voice and/or TTX) and ring signal feed.
For power critical applications the Sleep mode can be used for even lower power consumption than in Power Down mode.

- Power Down

Off-hook detection is the only function available. It is realized by $5 \mathrm{k} \Omega$ resistors applied by the SLIC from Tip to $V_{\text {BGND }}$ and Ring to V_{BAT}, respectively. A simple sensing circuit supervises the DC current through these resistors (zero in on-hook and non-zero in offhook state). This scaled transversal line current is transferred to the IT pin and compared with a programmable current threshold in the SLICOFI-2x. Only the DC loop in the SLICOFI- $2 x$ is active.
In Sleep mode, all functions of the SLICOFI-2x are switched off except for off-hook detection which is still available via an analog comparator. Both AC and DC loops are inactive. To achieve the lowest power consumption of the DuSLIC chip set, the clock cycles fed to the MCLK and PCLK pins have to be shut off.
For changing into another state the DuSLIC has to be woken up according to the procedure described in Chapter 4.1.

- Active

Both AC and DC loops are operative. The SLIC provides low-impedance voltage feed to the line. The SLIC senses, scales and separates transversal (metallic) and longitudinal line currents. The voltages at Tip and Ring are always symmetrical with reference to half the battery voltage (no ground reference!). An integrated switch makes it possible to choose between two (SLIC-S/-S2, SLIC-E/-E2) or even three (SLIC-P) different battery voltages. With these voltages selected according to certain loop lengths, power optimized solutions can be achieved.

Preliminary

- Ringing

For SLIC-E/-E2 and SLIC-S, an auxiliary positive supply voltage V_{HR} is used to give a total supply range of up to 150 V . For SLIC-P the whole supply range is provided by $V_{\text {BATR. }}$. The low-impedance line feed $\left(R_{\text {STAB }}(2 \times 30 \Omega)+R_{\text {FUSE }}(2 \times 20 \Omega)+\right.$ appr. 1Ω $\approx 101 \Omega$ output impedance) with a balanced sinusoidal Ring signal of up to 85 Vrms , plus a DC offset of 20 V , is sufficient to supply very long lines at any kind of ringer load and to reliable detect Ring trip. Unbalanced ringing is supported by applying the Ring signal to only one line, while Ground is applied to the other line.
For an overview of all DuSLIC operating modes see Table 13 for PEB 4264/-2, Table 14 for PEB 4265/-2 and Table 15 for PEB 4266.

4.7.2 Power Dissipation of the SLICOFI-2x

For an optimized power consumption unused EDSP functions have to be switched off.
Typical power dissipation values for different operating modes of the SLICOFI-2x are shown in Chapter 7.4.3 and Chapter 7.4.4.

DuSLIC

Preliminary

4.7.3 Power Dissipation of the SLIC

The SLIC power dissipation mainly comes from internal bias currents and the buffers output stage (to a lesser extent from the sensor) where additional power is dissipated whenever current is fed to the line.

4.7.3.1 Power Down Modes

In Power Down modes, the internal bias currents are reduced to a minimum and no current is fed to the line (see Table 19, Table 21 and Table 23). Even with active offhook detection, the power dissipation of $5 \mathrm{~mW}(6 \mathrm{~mW}$ for SLIC-P) is negligible. Note that this is the dominant factor for a low mean power value in large systems, as a large percentage of lines are always inactive.

4.7.3.2 Active Mode

In Active mode, the selected battery voltage $V_{\text {BATx }}{ }^{1)}$ has the strongest influence on power dissipation. The power dissipation in the output stage P_{O} (see Chapter 7.1.5 and Chapter 7.2.5) is determined by the difference between $V_{\text {BATx }}$ and the Tip-Ring voltage $V_{\text {TIP/RING. }}$. At constant DC line current $I_{\text {Trans }}$, the shortest lines (lowest R_{L}) cause lowest $V_{\text {TIP/RING }}$, and accordingly exhibit the highest on-chip power dissipation. However, the minimum battery voltage required is determined by the longest line and therefore the maximum line resistance $R_{\mathrm{L}, \mathrm{MAX}}$ and in addition R_{PROT} and R_{STAB}.

$$
V_{\mathrm{BATx}, \min }=I_{\mathrm{Trans}} \times\left(R_{\mathrm{L}, \mathrm{MAX}}+R_{\mathrm{PROT}}+R_{\mathrm{STAB}}\right)+V_{\mathrm{AC}, \mathrm{P}}+V_{\mathrm{DROP}}
$$

$V_{\mathrm{AC}, \mathrm{P} . P e a k ~ v a l u e ~ o f ~ A C ~ s i g n a l ~}^{\text {P }}$
$V_{\text {DROP }} \ldots \ldots$. Sum of voltage drop in the SLIC buffers (Table 17)
Table $17 \quad$ Typical Buffer Voltage Drops (Sum) for $I_{\text {TRANS }}\left(I_{T}\right.$ or $\left.I_{R}\right)$

Mode	Total Voltage drop $V_{\text {DROP }}[\mathrm{V}]$	
	SLIC-E/-E2/-S/-S2	SLIC-P
ACTL	$I_{\text {TRANS }} \times 96 \Omega$	$I_{\text {TRANS }} \times 88 \Omega$
ACTH	$I_{\text {TRANS }} \times 100 \Omega$	$I_{\text {TRANS }} \times 100 \Omega$
ACTR	$\left(I_{\text {TRANS }} \times 100 \Omega\right)+1 \mathrm{~V}$	$I_{\text {TRANS }} \times 92 \Omega$
ROR, ROT	-	$I_{\text {TRANS }} \times 92 \Omega$
HIR, HIT	$\left(I_{\text {T or R }} \times 48 \Omega\right)+1 \mathrm{~V}$	$I_{\text {T or }} \times 52 \Omega$

1) $V_{\mathrm{BATx}}=V_{\mathrm{BATL}}, V_{\mathrm{BATH}}$ or V_{BATR}

DuSLIC

Preliminary

The most efficient way to reduce short-loop power dissipation is to use a lower battery supply voltage ($V_{\text {BATL }}$) whenever line resistance is small enough. This method is supported on the SLIC-E/-E2 by integrating a battery switch. With a standard battery voltage of -48 V , long lines up to $2 \mathrm{k} \Omega$ can be driven at 20 mA line current.
The SLIC-P PEB 4266 "low-power" version even allows three battery voltages (typically the most negative one, e.g. - 48 V , is used in Active mode (On-hook) and Power Down mode).
DuSLIC contains two mechanism which can be used as indication for the battery switching:

1. A threshold for the voltage at Tip/Ring can be set for generating an interrupt
2. The change between constant current and resistive feeding will generate an interrupt

4.7.3.3 SLIC Power Consumption Calculation in Active Mode

A scheme for a typical calculation is shown in Figure 40.

Figure 40 Circuit Diagram for Power Consumption
$R_{\text {PROT }}=40 \Omega, R_{\text {STAB }}=60 \Omega, R_{\text {PHONE }}=150 \Omega, V_{\text {PHONE }}=7 \mathrm{~V}, I_{\mathrm{LINE}}=20 \mathrm{~mA}$
Conditions: $V_{\text {Voice peak }}=2 \mathrm{~V}, I_{\text {Voice peak }}=2 \mathrm{~mA}, V_{\mathrm{TTX}, \text { rms }}$ (see example below)

Typical Power Consumption Calculation with SLIC-E/-E2

Assuming a typical application where the following battery voltages are used:
$V_{\mathrm{DD}}=5 \mathrm{~V}, V_{\mathrm{BATL}}=-43 \mathrm{~V}, V_{\mathrm{BATH}}=-62 \mathrm{~V}, V_{\mathrm{HR}}=80 \mathrm{~V}$ and line feeding is guaranteed up to $R_{\mathrm{L}}=1900 \Omega$. For longer lines ($R_{\mathrm{L}}>1900 \Omega$) the extended battery feeding option can be used (Mode ACTR).
Requirement for TTX: $V_{\text {TTX }}=2.5 \mathrm{Vrms}$ at a load of 200Ω.

DuSLIC

Preliminary
Table 18 shows line currents and output voltages for different operating modes.
Table 18 Line Feed Conditions for Power Calculation of SLIC-E/-E2

Operating Mode	Line Currents	Output Voltages
PDRH, PDRHL	$I_{\text {TRANS }}=0 \mathrm{~mA}$	-
ACTL	$I_{\text {TRANS }}=20 \mathrm{~mA}$	$V_{\text {TIP/RING }}=32 \mathrm{~V}$
ACTH	$I_{\text {TRANS }}=20 \mathrm{~mA}$	$V_{\text {TIP/RING }}=50 \mathrm{~V}$
ACTR extended battery feeding at higher loop length $\left(R_{\mathrm{L}}>1900 \Omega\right)$	$I_{\text {TRANS }}=20 \mathrm{~mA}$	$V_{\text {TIP/RING }}=130 \mathrm{~V}$

With the line feed conditions given in the above table the total power consumption $P_{\text {TOT }}$ and its shares at different operating modes are shown in Table 19. The output voltage at Tip and Ring is calculated for the longest line ($R_{\mathrm{L}}=1900 \Omega$ in ACTH, $R_{\mathrm{L}}=996 \Omega$ in ACTL).

Table 19 SLIC-E/-E2 Typical Total Power Dissipation

	$\boldsymbol{P}_{\mathbf{Q}}{ }^{\mathbf{1}}$	$\boldsymbol{P}_{\mathbf{I}}$	$\boldsymbol{P}_{\mathbf{G}}$	$\boldsymbol{P}_{\mathbf{O}}$	$\boldsymbol{P}_{\text {TOT }}$
Operating Mode	$[\mathrm{mW}]$	$[\mathrm{mW}]$	$[\mathrm{mW}]$	$[\mathrm{mW}]$	$[\mathrm{mW}]$
PDH	4.6	0	0	0	$\mathbf{4 . 6}$
PDRH	5.6	0	0	0	5.6
ACTL	127	51.3	27.1	220	$\mathbf{4 2 5 . 4}$
ACTH	222	72.2	32.8	240	$\mathbf{5 6 7}$
ACTR	379	96.2	412	240	$\mathbf{1 1 2 7 . 3}$

1) The formulas for the calculation of the power shares $P_{\mathrm{Q}}, P_{\mathrm{l}}, P_{\mathrm{G}}$ and P_{O} can be found in Chapter 7.2.5.

Figure 41 shows the total power dissipation $P_{\text {TOT }}$ of the SLIC-E/-E2 in Active Mode (ACTH and ACTL) with switched battery voltage ($V_{\mathrm{BATH}}, V_{\mathrm{BATL}}$) as a function of $R_{\text {Line }}$. The power dissipation in the SLIC is strongly reduced for short lines.

DuSLIC

Preliminary

Figure 41 SLIC-E/-E2 Power Dissipation with Switched Battery Voltage

Typical Power Consumption Calculation with SLIC-P (Internal Ringing)

Assuming a typical application where the following battery voltages are used:
$V_{\mathrm{DD}}=5 \mathrm{~V}, \quad V_{\mathrm{BATL}}=-36 \mathrm{~V}, \quad V_{\mathrm{BATH}}=-48 \mathrm{~V}, \quad V_{\mathrm{BATR}}=-108 \mathrm{~V}$ and line feeding is guaranteed up to $R_{\mathrm{L}}=1200 \Omega$.
Requirement for TTX: $V_{\text {TTX }}=2.5 \mathrm{Vrms}$ at a load of 200Ω.
Table 20 shows line currents and output voltages for different operating modes.

Table 20 Line Feed Conditions for Power Calculation for SLIC-P

Operating Mode	Line Currents	Output Voltages
PDRH, PDRHL	$I_{\text {TRANS }}=0 \mathrm{~mA}$	-
ACTL	$I_{\text {TRANS }}=20 \mathrm{~mA}$	$V_{\text {TIP/RING }}=25.2 \mathrm{~V}$
ACTH	$I_{\text {TRANS }}=20 \mathrm{~mA}$	$V_{\text {TIP/RING }}=36 \mathrm{~V}$
ACTR	$I_{\text {TRANS }}=20 \mathrm{~mA}$	$V_{\text {TIP/RING }}=96 \mathrm{~V}$

With the line feed conditions given in the above table, the total power consumption $P_{\text {TOT }}$ and its shares at different operating modes are shown in Table 21. The output voltage at Tip and Ring is calculated for the longest line ($R_{\mathrm{L}}=1200 \Omega$ in ACTH, $R_{\mathrm{L}}=662 \Omega$ in ACTL).

DuSLIC

Preliminary

Table 21 SLIC-P PEB 4266 Power Dissipation

	$\boldsymbol{P}_{\mathbf{Q}}$	$\boldsymbol{P}_{\mathbf{I}}$	$\boldsymbol{P}_{\mathbf{G}}$	$\boldsymbol{P}_{\mathbf{O}}$	$\boldsymbol{P}_{\text {TOT }}$
Operating Mode	$[\mathrm{mW}]$	$[\mathrm{mW}]$	$[\mathrm{mW}]$	$[\mathrm{mW}]$	$[\mathrm{mW}]$
PDH	8.8	0	0	0	$\mathbf{8 . 8}$
PDRH	7.7	0	0	0	$\mathbf{7 . 7}$
PDRR	10.4	0	0	0	$\mathbf{1 0 . 4}$
ACTL	81.7	43.6	15.3	216	$\mathbf{3 5 7}$
ACTH	135	56.8	0	240	$\mathbf{4 3 2}$
ACTR (Extended Battery Feeding)	383	123	112	240	$\mathbf{8 5 7}$
ROR, ROT (Ring Pause)	263	0	102	0	$\mathbf{3 6 5}$

Figure 43 shows the total power dissipation PTOT of the SLIC-P in Active mode (ACTH and ACTL) with switched battery voltage ($V_{\mathrm{BATH}}, V_{\mathrm{BATL}}$) as a function of $R_{\text {Line }}$.

Figure 42 SLIC-P Power Dissipation (Switched Battery Voltage, Long Loops)

DuSLIC

Preliminary

Typical Power Consumption Calculation with SLIC-P (External Ringing)

Assuming a typical application where the following battery voltages are used:
$V_{\mathrm{DD}}=5 \mathrm{~V}, V_{\mathrm{BATL}}=-25 \mathrm{~V}, V_{\mathrm{BATH}}=-31 \mathrm{~V}, V_{\mathrm{BATR}}=-48 \mathrm{~V}$ and line feeding is guaranteed up to $R_{\mathrm{L}}=600 \Omega$.
Requirement for TTX: $V_{\mathrm{TTX}, \text { rms }}=0.7 \mathrm{~V}$.
This is a typical lowest-power application, where $V_{\text {BATR }}$ is used just in the On-hook state and $V_{\text {BATH }}$ and $V_{\text {BATL }}$ is used in the active modes with battery switching.
Table 22 shows line currents and output voltages for different operating modes.
Table 22 Line Feed Conditions for Power Calculation for SLIC-P

Operating Mode	Line Currents	Output Voltages
PDRH, PDRHL	$I_{\text {TRANS }}=0 \mathrm{~mA}$	-
ACTL	$I_{\text {TRANS }}=20 \mathrm{~mA}$	$V_{\text {TIP/RING }}=19.2 \mathrm{~V}$
ACTH	$I_{\text {TRANS }}=20 \mathrm{~mA}$	$V_{\text {TIP/RING }}=24 \mathrm{~V}$
ACTR	$I_{\text {TRANS }}=20 \mathrm{~mA}$	$V_{\text {TIP/RING }}=41 \mathrm{~V}$

With the line feed conditions given in the above table, the total power consumption $P_{\text {TOT }}$ and its shares at different operating modes are shown in Table 23. The output voltage at Tip and Ring is calculated for the longest line ($R_{\mathrm{L}}=600 \Omega$ in ACTH, $R_{\mathrm{L}}=358 \Omega$ in ACTL).

Table 23 SLIC-P PEB 4266 Power Dissipation

	$\boldsymbol{P}_{\mathbf{Q}}$	$\boldsymbol{P}_{\mathbf{I}}$	$\boldsymbol{P}_{\mathbf{G}}$	$\boldsymbol{P}_{\mathbf{O}}$	$\boldsymbol{P}_{\text {TOT }}$
Operating Mode	$[\mathrm{mW}]$	$[\mathrm{mW}]$	$[\mathrm{mW}]$	$[\mathrm{mW}]$	$[\mathrm{mW}]$
PDH	4.3	0	0	0	$\mathbf{4 . 3}$
PDRH	4.5	0	0	0	$\mathbf{4 . 5}$
PDRR	5.0	0	0	0	$\mathbf{5 . 0}$
ACTL	57.8	31.5	1.0	116	$\mathbf{2 0 6}$
ACTH	88.7	38.1	-28.6	140	$\mathbf{2 3 8}$
ACTR	172.5	56.8	-87.2	140	$\mathbf{2 8 2}$

Figure 43 shows the total power dissipation $P_{\text {TOT }}$ of the SLIC-P in Active mode (ACTH and ACTL) with switched battery voltage ($V_{\mathrm{BATH}}, V_{\mathrm{BATL}}$) as a function of $R_{\text {Line }}$ (Lowest Power Applications).

DuSLIC

Preliminary

Figure 43 SLIC-P Power Dissipation (Switched Battery Voltage, Short Loops)

4.7.3.4 Ringing Modes

Internal Balanced Ringing (SLIC-E/-E2 and SLIC-P)

The SLIC-E/-E2/-P internal balanced ringing facility requires a higher supply voltage (auxiliary voltage V_{HR}). The highest share of the total power is dissipated in the output stage of the SLIC-E/-E2/-P. The output stage power dissipation P_{O} (see Table 24, Table 25) depends on the ring amplitude ($V_{\text {RNG, PEAK }}$), the equivalent ringer load ($R_{\text {RNG }}$ and C_{RNG}), the ring frequency (via $\cos \phi_{\mathrm{L}}$) and the line length (R_{L}).
The minimum auxiliary voltage $V_{H R}$ necessary for a required ring amplitude can be calculated using:
$V_{\mathrm{HR}}-V_{\mathrm{BATH}}=V_{\mathrm{RNG}, \mathrm{PEAK}}+V_{\mathrm{RNG}, \mathrm{DC}}+V_{\mathrm{DROP}}=V_{\mathrm{RNG}, \mathrm{RMS}} \times$ crest factor $+V_{\mathrm{RNG}, \mathrm{DC}}+V_{\mathrm{DROP}}$

The crest factor is defined as peak value divided by RMS value (here always 1.41 because sinusoidal ringing is assumed).
$V_{\text {RNG,DC }} \quad$ Superimposed DC voltage for Ring trip detection (10 to 20 V)
$V_{\text {DROP }} \quad$ Sum of voltage drops in SLIC buffers (Table 17)
$V_{\text {RNG, PEAK }}$ Peak ring voltage at Tip/Ring

Preliminary

The strong influence of the ringer load impedance Z_{LD} and the number of ringers is demonstrated by the formula for the current sensor power dissipation ($P_{\mathrm{I}}+P_{\mathrm{O}}$) in Table 24 and Table 25.
The ringer load impedance Z_{LD} can be calculated as follows:
$Z_{\mathrm{LD}}=\left|Z_{\mathrm{LD}}\right| \times \mathrm{e}^{\mathrm{j} \mathrm{LLD}}=R_{\mathrm{L}}+R_{\mathrm{RNG}}+1 / \mathrm{j} \omega C_{\mathrm{RNG}}$ with
$Z_{\mathrm{LD}} \quad$ Load impedance
$R_{\text {RNG }} \quad$ Ringer resistance
$C_{\text {RNG }} \quad$ Ringer capacitance
$R_{\mathrm{L}} \quad$ Line resistance

Internal Unbalanced Ringing with SLIC-P

The ring signal is present just on one line (modes ROR, ROT), while the other line is connected to a potential of GND.
The minimum battery voltage $V_{\text {BATR }}$ necessary for a required ring amplitude can be calculated using:
$-V_{\text {BATR }}-V_{\text {DROP }}=2 \times V_{\text {RNG, }}$ PEAK $=2 \times V_{\text {RNG, RMS }} \times$ crest factor

External Ringing (SLIC-E/-E2 and SLIC-P)

When an external ring generator and ring relays are used, the SLIC can be switched to Power Down mode.
The "low-power" SLIC-P is optimized for extremely power-sensitive applications (see Table 23). SLIC-P has three different battery voltages. $V_{\text {BATR }}$ can be used for on-hook, while $V_{\text {BATH }}$ and $V_{\text {BATL }}$ are normally used for off-hook mode.

4.7.3.5 SLIC Power Consumption Calculation in Ringing Mode

The average power consumption for a ringing cadence of 1 second on and 4 seconds off is given by
$\boldsymbol{P}_{\text {TOT, average }}=k \times \boldsymbol{P}_{\text {TOT, Ringing }}+(1-k) \times \boldsymbol{P}_{\text {TOT, RingPause }}$ with $\mathrm{k}=0.20$

The typical circuit for ringing is shown in Figure 44.

Circuit Diagram for Ringing

ezm35004.emf
Figure 44 Circuit Diagram for Ringing

Preliminary

- Power Consumption Calculation for SLIC-E/-E2 in Balanced Ringing Mode

With the example of the above calculation for SLIC-E/-E2 (see Chapter 4.7.3.3) and a typical ringer load.
$R_{\mathrm{RNG}}=450 \Omega, C_{\mathrm{RNG}}=3.4 \mu \mathrm{~F}$, required ringing voltage $V_{\mathrm{RNG}}=58 \mathrm{Vrms}$ and ringing frequency $f_{\mathrm{RNG}}=20 \mathrm{~Hz}$. DC Offset Voltage for ring trip detection $V_{\mathrm{DC}}=20 \mathrm{~V}$.
Table 24 shows the power calculation for the total power dissipation $P_{\text {TOT }}$ of the SLIC-E/ -E2 in balanced ringing mode consisting of the quiescent power dissipation P_{Q}, the current sensor power dissipation P_{l}, the gain stage power dissipation P_{G} and the output stage power dissipation P_{O}.

Table 24 SLIC-E/-E2 Balanced Ringing Power Dissipation (typical)

$P_{\text {TOT, RingPause }}=P_{\mathrm{Q}}+P_{\mathrm{I}}+P_{\mathrm{G}}+P_{\mathrm{O}}\left(I_{\text {Trans }}=0 \mathrm{~mA}\right)$	710 mW
$\boldsymbol{P}_{\text {TOT, Ringing }}=P_{\mathrm{Q}}+P_{1}+P_{\mathrm{G}}+P_{\mathrm{O}}$	2481 mW ${ }^{1)}$
$P_{\mathrm{Q}}=V_{\mathrm{DD}} \times I_{\mathrm{DD}}+\left\|V_{\mathrm{BATH}}\right\| \times I_{\mathrm{BATH}}+\mid V_{\mathrm{BATL}} I \times I_{\mathrm{BATL}}+V_{\mathrm{HR}} \times I_{\mathrm{HR}}$	390 mW
$\begin{aligned} & \hline P_{1}=0.015 \times I_{\text {Trans }, \text { rms }} \times V_{\mathrm{HR}}+0.055 \times I_{\text {Trans }, \mathrm{ms}} \times\left\|V_{\mathrm{BATH}}\right\| \\ & +0.04 \times I_{\text {Trans }, \text { ms }} \times V_{\mathrm{DD}} \text { with } I_{\text {Trans }, \text { rms }}=V_{\text {TIP } / \mathrm{RING}, \text { rms }}\left\|Z_{\mathrm{LD}}\right\| \\ & \hline \end{aligned}$	118 mW
$\begin{aligned} & \hline P_{\mathrm{G}}=\left(V_{\mathrm{HR}}+\left\|V_{\mathrm{BATH}}\right\|\right) \times\left(\mathrm { SQRT } \left(\left(V_{\mathrm{HR}}+V_{\mathrm{BATH}}+V_{\mathrm{DC} \text {-offset }}\right)^{2}+\left(V_{\text {TIP } /}\right.\right.\right. \\ & \left.\left.\mathrm{RING}^{2}\right) / 2\right)-1 V_{\mathrm{HR}}+V_{\mathrm{BATH}} \mathrm{I} / 60 \mathrm{k}+\left(V_{\mathrm{HR} 2}-322+V_{\mathrm{BATH}}{ }^{2}-48^{2}\right) \times \\ & (1 / 60 \mathrm{k}+1 / 216 \mathrm{k}) \end{aligned}$	320 mW
$\begin{aligned} & \hline P_{\mathrm{O}}=\left(V_{\mathrm{HR}}+\mathrm{I} V_{\mathrm{BATH}} \mathrm{I}\right) \times I_{\text {Trans }, \text { rms }} \times 2 \times \mathrm{SQRT}(2) / \pi-V_{\text {TIP } / \mathrm{RING}, \mathrm{rms}} \times \\ & I_{\text {Trans }, \text { rms }} \times \cos \left(\phi_{\text {Load }}\right) \end{aligned}$	1653 mW

Preliminary

- Power Consumption Calculation for SLIC-P in Balanced Ringing Mode

With the example of the above calculation with $R_{\mathrm{L}}=1200 \Omega$ line length for SLIC-P (see Chapter 4.7.3.3) when the internal ringing feature will be used.
Typical ringer load: $R_{\mathrm{RNG}}=1000 \Omega, C_{\mathrm{RNG}}=3.7 \mu \mathrm{~F}$. Required ringing voltage $V_{\mathrm{RNGr}}=45 \mathrm{Vrms}$ and ringing frequency $f_{\mathrm{RNG}}=20 \mathrm{~Hz}$. DC Offset voltage for ring trip detection $V_{\mathrm{DC}}=20 \mathrm{~V}$.
Table 25 shows the power calculation for the total power dissipation $P_{\text {TOT }}$ of the SLIC-P in balanced ringing mode consisting of the quiescent power dissipation P_{Q}, the current sensor power dissipation P_{l}, the gain stage power dissipation P_{G} and the output stage power dissipation P_{O}.

Table 25 SLIC-P Balanced Ringing Power Dissipation (typical)

$P_{\text {TOT, RingPause }}=P_{\mathrm{Q}}+P_{\mathrm{I}}+P_{\mathrm{G}}+P_{\mathrm{O}}\left(I_{\text {Trans }}=0 \mathrm{~mA}\right)$	482 mW
$\boldsymbol{P}_{\text {TOT, Ringing }}=P_{\mathrm{Q}}+\boldsymbol{P}_{1}+P_{\mathrm{G}}+P_{\mathrm{O}}$	$1618 \mathrm{~mW}^{1)}$
$P_{\text {Q }}=V_{\mathrm{DD}} \times I_{\mathrm{DD}}+I V_{\mathrm{BATR}} I \times I_{\mathrm{BATR}}+\mid V_{\mathrm{BATH}} I \times I_{\mathrm{BATH}}+I V_{\mathrm{BATL}} I \times I_{\mathrm{BATL}}$	370 mW
$\begin{aligned} & P_{1}=0.055 \times I_{\text {Trans }, \text { rms }} \times I V_{\text {BATR }} I+0.04 \times I_{\text {Trans }, \mathrm{ms}} \times V_{\mathrm{DD}} \\ & \text { with } I_{\text {Trans }, \mathrm{ms}}=V_{\text {TIP } / R I N G, ~} \text { rms } \end{aligned} I_{\mathrm{LD}} \mathrm{I} .$	117 mW
$P_{\mathrm{G}}=\left(V_{\mathrm{BATR}}{ }^{2}-80^{2}\right) \times(1 / 60 \mathrm{k}+1 / 216 \mathrm{k})$	112 mW
$\begin{aligned} & \hline P_{\mathrm{O}}=V_{\text {BATR }} I \times I_{\text {Trans }, \text { rms }} \times 2 \times \mathrm{SQRT}(2) / \pi- \\ & V_{\text {TIP } / R I N G, ~ r m s ~} \times I_{\text {Trans }, \mathrm{rms}} \times \cos \left(\phi_{\text {Load }}\right) \end{aligned}$	1019 mW

Preliminary

- Power Consumption Calculation for SLIC-P in Unbalanced Ringing Mode

A similar power calculation is valid for internal unbalanced ringing mode, which is only available for the SLIC-P.
With the following example:
$V_{\mathrm{DD}}=5 \mathrm{~V}, \quad V_{\mathrm{BATL}}=-30 \mathrm{~V}, \quad V_{\mathrm{BATH}}=-36 \mathrm{~V}, \quad V_{\mathrm{BATR}}=-150 \mathrm{~V}$ and line feeding is guaran-teed up to 600Ω.
Typical ringer load $R_{\mathrm{RNG}}=1000 \Omega, \quad C_{\mathrm{RNG}}=3.7 \mu \mathrm{~F}$, required ringing voltage $V_{\mathrm{RNG}}=45 \mathrm{Vrms}$ and ringing frequency $f_{\mathrm{RNG}}=20 \mathrm{~Hz}$.
Table 26 shows the power calculation for the total power dissipation $P_{\text {TOT }}$ of the SLIC-P in unbalanced ringing mode.

Table 26 SLIC-P Unbalanced Ringing Power Dissipation (typical)

$P_{\text {TOT, RingPause }}=P_{\mathrm{Q}}+P_{1}+P_{\mathrm{G}}+P_{\mathrm{O}}\left(I_{\text {Trans }}=0 \mathrm{~mA}\right)$	644 mW
$\boldsymbol{P}_{\text {TOT, Ringing }}=P_{\mathrm{Q}}+\boldsymbol{P}_{\mathbf{I}}+P_{\mathrm{G}}+P_{\mathrm{O}}$	2756 mW ${ }^{1}$
$P_{\mathrm{Q}}=V_{\mathrm{DD}} \times I_{\mathrm{DD}}+\left\|V_{\mathrm{BATR}} I \times I_{\mathrm{BATR}}+\right\| V_{\mathrm{BATH}} I \times I_{\mathrm{BATH}}+I V_{\mathrm{BATL}} I \times I_{\mathrm{BATL}}$	349 mW
$\begin{aligned} & P_{1}=0.055 \times I_{\text {Trans,rms }} \times I V_{\mathrm{BATR}} I+0.04 \times I_{\text {Trans }, \mathrm{rms}} \times V_{\mathrm{DD}} \\ & \text { with } I_{\text {Trans }, \mathrm{rms}}=V_{\mathrm{TIP} / \mathrm{RING}, \mathrm{rms}} / Z_{\mathrm{LD}} \mathrm{I} \end{aligned}$	160 mW
$\begin{aligned} & P_{\mathrm{G}}=\left(0.5 \times V_{\mathrm{TIP} / \mathrm{RING}}{ }^{2}-\left(V_{\mathrm{BATR}} / 2\right)^{2}\right) / 60 \mathrm{k}+\left(V_{\mathrm{BATR}^{2}}-80^{2}\right) \times \\ & (1 / 60 \mathrm{k}+1 / 216 \mathrm{k}) \end{aligned}$	295 mW
$\begin{aligned} & P_{\mathrm{O}}=I V_{\mathrm{BATR}} I \times I_{\text {Trans }, \mathrm{rms}} \times 2 \times \operatorname{SQRT}(2) / \pi- \\ & V_{\text {TIP/RING, rms }} \times I_{\text {Trans }, \mathrm{rms}} \times \cos \left(\phi_{\text {Load }}\right) \end{aligned}$	1952 mW

DuSLIC

$4.8 \quad$ Integrated Test and Diagnosis Functions (ITDF) ${ }^{1)}$

4.8.1 Introduction

Subscriber loops are affected by a variety of failures which have to be monitored. Monitoring the loop supposes the access to the subscriber loop and to have test equipment in place which are capable to perform certain measurements. The measurements or tests involve resistance, capacitance, leakage, and measurements of interfering currents and voltages.

4.8.1.1 Conventional Line Testing

Conventional linecards in Central Office (CO) applications usually need two test relays per channel to access the subscriber loop with the appropriate test equipment. One relay (test-out) connects the actual test unit to the local loop. All required line tests can be accomplished that way. The second relay (test-in) separates the local loop from the SLIC-E/-E2/-P and connects a termination impedance to it. Hence, by sending a tone signal the entire loop can be checked, including the SLICOFI-2 and SLIC-E/-E2/-P.

4.8.1.2 DuSLIC Line Testing

The DuSLIC with its Integrated Test and Diagnosis Functions (ITDF) is capable to perform all tests necessary to monitor the local loop without an external test unit and test relays. The fact, that measurements can be accomplished much faster as with conventional test capabilities makes it even more a compelling argument for the DuSLIC. With the DuSLIC both channels are able to perform line tests concurrently, which also has a tremendous impact on the test time. All in all, the DuSLIC increases the quality of service and reduces the costs in various applications.
${ }^{1)}$ only available with DuSLIC-E/-E2/-P

DuSLIC

Preliminary

4.8.2 Diagnostics

The two-channel chip set has a set of signal generators and features implemented to accomplish a variety of diagnostic functions. The SLICOFI-2 device generates all test signals, processes the information that comes back from the SLIC-E/-E2/-P and provides the data to a higher level master device, e.g. a microprocessor. All the tests can be initiated by the micropocessor and the results can be read back very easily. The Integrated Test and Diagnosis Functions (ITDF) might prevent any problem which affects service caused by the subscriber line or line equipment before the customer complains. IDTF has been integrated to facilitate the monitoring of the subscriber loop.

4.8.2.1 Line Test Capabilities

The line test comprises the following functions:

- Loop resistance
- Leakage current Tip/Ring
- Leakage current Tip/GND
- Leakage current Ring/GND
- Ringer capacitance
- Line capacitance
- Line capacitance Tip/GND
- Line capacitance Ring/GND
- Foreign voltage measurement Tip/GND
- Foreign voltage measurement Ring/GND
- Foreign voltage measurement Tip/Ring
- Measurement of ringing voltage
- Measurement of line feed current
- Measurement of supply voltage V_{DD} of the SLICOFI-2
- Measurement of transversal- and longitudinal current

Two main transfer paths (levelmeter) are implemented to accomplish all the different line measurement functions (refer to Figure 45).

4.8.2.2 Integrated Signal Sources

The signal sources available on the DuSLIC chip set are:

- Constant DC voltage (three programmable ringing DC offset voltages)

Please refer to the CRAM coefficient set and register LMCR3 (bits RNGOFFSET[1:0]) on Page 206.

- 2 independent tone generators TG1 and TG2:

Please refer to the CRAM coefficient set and register DSCR (bits PTG, TG2-EN, TG1EN) on Page 200.

Preliminary

- TTX metering signal generator ($12 / 16 \mathrm{kHz}$)

Please refer to the CRAM coefficient set and register BCR2 (bits TTX-DIS, TTX-12k) on Page 192.

- Ramp generator (used for capacitance measurements)

Please refer to the CRAM coefficient set and register LMCR2 (bit RAMP-EN) on Page 204.

- Ring generator ($5 \mathrm{~Hz}-300 \mathrm{~Hz}$)

Please refer to the CRAM coefficient Table 51 "CRAM Coefficients" on Page 226.
Figure 45 shows the entire levelmeter block for $A C$ and DC:

Figure 45 Blockdiagram Levelmeter

DuSLIC

Preliminary

4.8.2.3 Result Register Data Format

The result of any measurement can be read via the result registers LMRES1/2. This gives a 16 bit value with LMRES1 being the high and LMRES2 being the low byte.
The result is coded in 16 bit two's complement:
Table 27 Levelmeter Result Value Range

Negative Value Range		Positive Value Range	
- Fullscale			+ Fullscale
0×8000	$0 \times F F F F$	0	$0 \times 7 F F F$
-32768	-1	0	+32767

4.8.2.4 Using the Levelmeter Integrator

Both AC and DC levelmeter allow to use a programmable integrator. The integrator may be configured to run continuously or single.

Single Measurement Sequence (AC \& DC Levelmeter)

Figure 46 Single Measurement Sequence (AC\&DC Levelmeter)

Preliminary

Continuous Measurement Sequence (DC Levelmeter)

Figure 47 Continuous Measurement Sequence (DC Levelmeter)

Continuous Measurement Sequence (AC Levelmeter)

Figure 48 Continuous Measurement Sequence (AC Levelmeter)

4.8.2.5 DC Levelmeter

The path of the DC levelmeter is shown in Figure 45. Hereby, the DC levelmeter results will be determined and prepared depending on certain configuration settings. The selected input signal becomes digitized after pre-filtering and analog-to-digital conversion. The DC levelmeter is selected and enabled as shown in Table 28:

Table 28 Selecting DC Levelmeter Path

LM-SEL[3:0] in register LMCR2	DC Levelmeter Path
0100	DC out voltage on DCP-DCN
0101	DC current on IT
1001	DC current on IL
1010	Voltage on IO3
1011	Voltage on IO4
1101	$V_{\text {DD }}$
1110	Offset of DC-pre-filter (short circuit on DC-pre-filter input)
1111	Voltage on IO4 - IO3

The effective sampling rate after the decimation stages is 2 kHz . The decimated value has a resolution of 19 bits. The offset compensation value (see Chapter 4.8.2.8) within the offset registers OFR1 (bits OFFSET-H[7:0]) and OFR2 (bits OFFSET-L[7:0]) can be set to eliminate the offset caused by the SLIC-E/-E2/-P current sensor, pre-filter, and analog-to-digital converter. After the summation point the signal passes a programmable digital gain filter. The additional gain factor is either 1 or 16 depending on register LMCR1 (bit DC-AD16):

- LMCR1 (bit DC-AD16) = 0: No additional gain factor
- LMCR1 (bit DC-AD16) = 1: Additional gain factor of 16

The rectifier after the gain filter can be turned on/off with:

- LMCR2 (bit LM-RECT) $=0$: Rectifier disabled
- LMCR2 (bit LM-RECT) $=1$: Rectifier enabled

A shift-factor $\mathrm{K}_{\text {INTDC }}$ in front of the integrator prevents the levelmeter during an integration operation to create an overflow. If an overflow in the levelmeter occurs, the output result will be \pm fullscale (see Table 27).
If the shift factor $\mathrm{K}_{\text {INTDC }}$ is set to e.g. $1 / 8$, the content of the levelmeter result register is the integration result divided by 8.
The shift factor $\mathrm{K}_{\text {INTDC }}$ is set in the CRAM (offset address 0×76):

CRAM:
Address 0x76: LMDC2/LMDC1
Address 0x77: 0/LMDC3
LMDC1, LMDC2 and LMDC3 are 4 bit nibbles which contain $\mathrm{K}_{\text {INTDC }}$.
Table $29 \quad \mathrm{~K}_{\text {INTDC }}$ Setting Table

LMDC1	LMDC2	LMDC3	K $_{\text {INTDC }}$
8	8	0	1
8	8	1	$1 / 2$
8	8	$:$	$:$
8	8	6	$1 / 64$
8	8	7	$1 / 128$

DuSLICOS allows to automatically calculate the coefficients for $\mathrm{K}_{\text {INTDC }}$ for $I_{\text {TRANS }}$ measurement. The expected "Current for Ring Off-hook Detection" (see DuSLICOS DC Control Parameter 2/3) of e.g. 20 mA is entered in to the program and then $\mathrm{K}_{\text {INTDC }}$ is automatically calculated to achieve 50% full scale if the current of 20 mA is integrated over the set ringer period.
The integration function accumulates and sums up the levelmeter values over a set time period. The time period is determined by the programmed ring frequency. A ring frequency $f_{\text {RING }}$ of 20 Hz results in 100 samples ($\mathrm{N}_{\text {Samples }}$), because of the 2 kHz effective DC sampling rate $\mathrm{f}_{\mathrm{S}, \mathrm{DC}}$.
$N_{\text {Samples }}=\frac{f_{\text {S, DC }}}{f_{\text {RING }}}=\frac{2000 \mathrm{~Hz}}{f_{\text {RING }}}$
The number of integration samples $\mathrm{N}_{\text {Samples }}$ may also be programmed directly by accessing dedicated bytes in the Coefficient RAM (CRAM).
CRAM:
Address 0x73: RGF2/RGF1
Address 0x74: RGA1/RGF3
RGF1, RGF2 and RGF3 are 4 bit nibbles which control the ring frequency $f_{\text {RING. }}$.
RGA1 is a 4 bit nibble which is calculated by DuSLICOS and controls the ringer amplitude (see DuSLICOS byte file). To ensure that RGA1 is not changed please perform a read/modify/write operation.

Table 30	N $_{\text {Samples }}$ Setting Table			
RGF1	RGF2	RGF3	$\mathbf{f}_{\text {RING }}$	N $_{\text {Samples }}$
8	8	0	500	4
8	8	1	250	8
8	8	$:$	$:$	$:$
8	8	6	7.81	256
8	8	7	3.91	512

The integration function can be turned on and off by bit LM-EN in register LMCR1.
The levelmeter result of the selected signal source will be stored in the result registers LMRES1 (bits LM-VAL-H[7:0]) and LMRES2 (bits LM-VAL-L[7:0]) depending on the LM-SEL[3:0] bits in register LMCR2. The result registers get frequently updated every $500 \mu \mathrm{~s}$ if bit LM-EN in register LMCR1 = 0, or after an integration period, if bit LM-EN in register LMCR1 $=1$. If the bit LM-ONCE in register LMCR1 is set to 1 then the integration is executed only once. To start again bit LM-EN has to be set from 0 to 1.
The levelmeter source/result can be transferred to the PCM/IOM-2 interface, depending on the bit LM2PCM in register LMCR1.
Table 31 shows the levelmeter results without and with integrator function. The integrator is enabled if bit LM-EN in register LMCR1 $=1$.
The levelmeter result LM Value is a 16 bit two's complement value of LM-VAL-H[7:0] and LM-VAL-L[7:0].
The factor $\mathrm{LM}_{\text {Result }}$ used in Table 31 is defined:
LM $_{\text {Result }}=\frac{L M_{\text {Value }}}{32768}$

- Example for positive value of $L M_{\text {Result }}$:

LM-VAL-H = "0010 0100" $=0 \times 24$
LM-VAL-L = "1010 0101" = 0xA5
$L M_{\text {Value }}=0 \times 24 \mathrm{~A} 5=9381$
LM Result $=0.2863$

- Example for negative value of $\mathrm{LM}_{\text {Result }}$:

LM-VAL-H = "1001 1001" $=0 \times 99$
LM-VAL-L = "0110 0010" $=0 \times 62$
$L M_{\text {Value }}=0 \times 9962=-26270$
$\mathrm{LM}_{\text {Result }}=-0.8017$

Table 31 Levelmeter Results with and without Integrator Function

	LM-EN = 0 (without Integrator)	LM-EN = 1 (with Integrator)
$\mathrm{I}_{\text {TRANS }}{ }^{1)}$: Power Down Resistive	$\begin{aligned} & I_{\text {TRANS }}=L M_{\text {Result }} \times \frac{K_{I T, P D R}}{R_{I T 2}} \times V_{A D} \\ & I_{\text {TRANS }}=L M_{\text {Result }} \times 7.966 \mathrm{~mA} \end{aligned}$	
$I_{\text {TRANS }}{ }^{1)}$: any other mode	$\left\{\begin{array}{l} I_{\text {TRANS }}=L M_{\text {Result }} \times \frac{K_{I T}}{R_{I T 2}} \times V_{A D} \\ I_{\text {TRANS }}=L M_{\text {Result }} \times 79.66 \mathrm{~mA} \end{array}\right.$	$\begin{aligned} & I_{\text {TRANS }}=L M_{\text {Result }} \times \frac{K_{\text {IT }} \times V_{\text {AD }}}{R_{\text {IT }} \times N_{\text {Samples }} \times K_{\text {INTDC }}} \\ & I_{\text {TRANS }}=L M_{\text {Result }} \times \frac{79.66 \mathrm{~mA}}{N_{\text {Samples }} \times K_{\text {INTDC }}} \end{aligned}$
$\mathrm{LLONG}^{2)}$	$\begin{aligned} & \text { LLONG }=-\mathrm{LM}_{\text {Result }} \times \frac{\mathrm{K}_{\mathrm{IL}}}{R_{I I}} \times \mathrm{v}_{\mathrm{AD}} \\ & \mathrm{~L}_{\text {LONG }}=-\mathrm{LM}_{\text {Result }} \times 67.7 \mathrm{~mA} \end{aligned}$	$\left\{\begin{array}{l} \text { LONG }=- \text { LM }_{\text {Result }} \times \frac{K_{\text {IL }} \times V_{\text {AD }}}{R_{\text {IL }} \times N_{\text {Samples }} \times \mathrm{K}_{\text {INTDC }}} \\ \text { LONG }=-L M_{\text {Result }} \times \frac{67.7 \mathrm{~mA}}{N_{\text {Samples }} \times \mathrm{K}_{\text {INTDC }}} \end{array}\right.$
Voltage: $103^{3)}$, 1044), IO4-IO3 ${ }^{5}$	$\mathrm{V}_{\text {INPUT }}=-L M_{\text {Result }} \times \mathrm{V}_{\text {AD }}$	$\mathrm{V}_{\text {INPUT }}=-$ LM $_{\text {Result }} \times \frac{\mathrm{V}_{\text {AD }}}{}{ }_{\text {Samples }} \times \mathrm{K}_{\text {INTDC }}$
$V_{\text {DD }}$	$V_{\text {DD }}=-\mathrm{LM}_{\text {Result }} \times 3.9 \mathrm{~V}$	$\mathrm{V}_{\text {DD }}=-\mathrm{LM}_{\text {Result }} \times \frac{3.9 \mathrm{~V}}{}{ }_{\text {Samples }} \times \mathrm{K}_{\text {INTDC }}$
$\begin{aligned} & \hline V_{\mathrm{DC}}{ }^{6)} \\ & \text { with } \\ & \text { ACTL, } \\ & \text { ACTH } \end{aligned}$	$\mathrm{V}_{\text {DC }}=-L \mathrm{M}_{\text {Result }} \times 76.35 \mathrm{~V}$	$V_{\text {DC }}=- \text { LM }_{\text {Result }} \times \frac{76.35 \mathrm{~V}}{\mathrm{~N}_{\text {Samples }} \times \mathrm{K}_{\text {INTDC }}}$
$V_{\mathrm{DC}}{ }^{6)}$ with ACTR, ringing mode	$V_{\text {DC }}=-\mathrm{LM}_{\text {Result }} \times 152.7 \mathrm{~V}$	$V_{\text {DC }}=- \text { LM }_{\text {Result }} \times \frac{152.7 \mathrm{~V}}{N_{\text {Samples }} \times \mathrm{K}_{\text {INTDC }}}$

1) DC current on pin IT (bits LM-SEL[3:0] = 0101)
2) DC current on pin IL (bits LM-SEL[3:0] $=1001$)
3) Voltage on 103 referenced to $\mathrm{V}_{\mathrm{VC} . \mathrm{M}}($ typical 1.5 V$)($ bits $L M-S E L[3: 0]=1010)$
4) Voltage on 104 referenced to $\mathrm{V}_{\mathrm{VCM}}$ (typical 1.5 V) (bits LM-SEL[3:0] $=1011$)
${ }^{5)}$ Voltage on 104 - 103 referenced to $\mathrm{V}_{\mathrm{V} . \mathrm{M}}$ (typical 1.5 V) (bits LM-SEL[3:0] $=1111$)
${ }^{6}$) DC output voltage at SLIC measured via DCN $-\operatorname{DCP}$ (bits $L M-S E L[3: 0]=0100$)

$\mathrm{K}_{\text {INTDC }}$	Shift Factor (see Table 29)	
$\mathrm{K}_{\text {IT,PDR }}$	Value of the current divider in power down resistive mode	5
$\mathrm{~K}_{\text {IT }}$	Value of the current divider for transversal current	50
$\mathrm{~K}_{\text {IL }}$	Value of the current divider for longitudinal current	100
$\mathrm{R}_{\text {IT2 }}$	Sense resistor for transversal current	680Ω
R_{IL}	Sense resistor for longitudinal current	1600Ω
$V_{\text {AD }}$	Voltage at A/D converter refered to digital fullscale	1.0834
V_{DC}	DC output voltage at SLIC measured via DCN - DCP	

Note: Measurement of pins IL, IO3, IO4, IO4-IO3 and VDD can cause problems in the $D C$ loop. The measured value is always interpreted as I TRANS current. This can disturb the DC regulation and the off-hook indication. In active mode you can freeze the output of the DC loop by setting the bit LM-HOLD to '1'. In ringburst mode it is possible that DuSLIC automatically switches back to ringpause mode because the measurement result was interpreted as off-hook. This can be avoided by programming the off-hook current to the maximum value (79.66 mA).

Measurement of AC signals via DC levelmeter

This method is applicable for a single frequency sinusoidal AC signal which is superimposed on a DC signal.

1. Set the ring frequency $f_{\text {RING }}$ to the frequency of the signal to be measured. Multiples of the expected signal period may also be used.
2. Set the offset registers OFR1 and OFR2 to 0x00.
3. Measure the DC content with disabled rectifier (bit LM-RECT $=0$).

The DC content can be calculated as described in Table 31.
Note: If there was an overflow inside the integrator during the integration period, the result will be \pm fullscale. Reduce the shift factor $K_{\text {INTDC }}$ or the number of samples $N_{\text {Samples }}$ and start the measurement again.
4. The offset registers OFR1 and OFR2 have to be programmed to the value OFFSET $=-\frac{\text { LM }_{\text {Value }}}{\mathrm{N}_{\text {Samples }} \times \mathrm{K}_{\text {INTDC }}}$
where OFR1 is the high byte and OFR2 is the low byte of the 16 bit word OFFSET.
5. Repeating the measurement of the DC content should result in a $\mathrm{LM}_{\text {Value }}$ of zero.
6. Perform a new measurement with the rectifier enabled (bit LM-RECT $=1$). The result is the rectified mean value of the measured signal an can be calculated with the formulas of Table 31.
7. From this result the peak value and the RMS value can be calculated:

DuSLIC

Preliminary

$$
\begin{aligned}
& V_{\text {Peak }}=\frac{|\mathrm{V}|_{\text {Mean }} \times \pi}{2} \\
& V_{\text {RMS }}=\frac{V_{\text {Peak }}}{\sqrt{2}}
\end{aligned}
$$

4.8.2.6 AC Levelmeter

The AC levelmeter is selected and enabled as shown in Table 32:
Table 32 Selecting AC Levelmeter Path

LM-SEL[3:0] in register LMCR2	AC Levelmeter Path
0000	AC levelmeter in transmit
0110	AC levelmeter in receive
0111	AC levelmeter receive + transmit

Figure 45 on Page 109 shows the path of the AC/TTX levelmeter functions. The AC levelmeter allows access to the voice signal while the active voice signal is being processed. The input signal for the AC levelmeter might get processed with a programmable filter characteristic, i.e. bandpass- or notch filter. Depending on the following settings, the bandpass or notch filter is turned on or off:

- Register LMCR2 bit LM-FILT = 0: No filter enabled (normal operation)
- Register LMCR2 bit LM-FILT = 1: Bandpass/notch filter characteristics enabled
- Register LMCR2 bit LM-NOTCH $=0$: Notch filter enabled, bandpass filter disabled
- Register LMCR2 bit LM-NOTCH = 1: Bandpass filter enabled, notch filter disabled

The rectifier cannot be turned off, it is always active in the AC path. A shift-factor in front of the integrator prevents the levelmeter during an integration operation to create an overflow. The shift-factor can be set by the coefficient LM-AC gain (see CRAM coefficient set Table 51 "CRAM Coefficients" on Page 226).
$\mathrm{K}_{\text {INTAC }}$ can be set via coefficient LM-AC:
CRAM:
Address 0x34: CG1/LM-AC
LM-AC is a 4 bit nibble which contains $\mathrm{K}_{\text {INTAC }}$.
CG1 is a 4 bit nibble which is calculated by DuSLICOS and controls the conference gain (see DuSLICOS byte file). To ensure that CG1 is not changed please perform a read/ modify/write operation.

| Table 33 | |
| :--- | :--- | K $_{\text {INTAC }}$ Setting Table

The integration function accumulates and sums up the levelmeter values over a set time period. The time period from $1^{*} 16 \mathrm{~ms}$ to $16 * 16 \mathrm{~ms}$ is set by the bits LM-ITIME[3:0] in register LMCR3. The integration function can be turned on and off by bit LM-EN in register LMCR1.

The number of samples $\mathrm{N}_{\text {Samples }}$ for the integrator is defined by:
$\mathrm{N}_{\text {Samples }}=$ LM-ITIME * 8000
The level can be calculated by:

$$
\mathrm{U}_{\mathrm{dBm} 0}=20 \times \log \left(\mathrm{LM}_{\text {Result }} \times \frac{\pi}{2 \times \mathrm{K}_{\mathrm{INT}} \times \mathrm{N}_{\text {Samples }}}\right)+3.14
$$

The result registers get frequently updated after an integration period, if bit LM-EN in register LMCR1 = 1. If the bit LM-ONCE in register LMCR1 is set to 1 then the integration is executed only once. To start again bit LM-EN has to be set from 0 to 1 .
The levelmeter result can be transferred to the PCM/IOM-2 interface, depending on bit LM2PCM in register LMCR1.

Measurement of currents via ITAC

In order to do current measurements via pin ITAC, all feedback loops (IM-filters and THfilters) should be disabled. To simplify the formulas, the programmable receive and transmit gain is disabled.
This is done by setting the following bits:

Register BCR4: \quad AR-DIS $=1, A X-D I S=1, T H-D I S=1$,
$I M-D I S=1, F R R-D I S=1, F R X-D I S=1$
Register TSTR4: OPIM-AN = 1, OPIM-4M = 1
Register LMCR1: TEST-EN = 1

Preliminary

This setting results in a receive gain of 11.88 dB caused by the internal filters. Based on this a factor K_{AD} (analog to digital) can be defined:

$$
K_{A D}=\frac{10^{\frac{\text { filter }_{A D}}{20}}}{V_{A D C}}=\frac{10^{\frac{11.88 \mathrm{~V}}{20}}}{1.2}=3.272 \mathrm{~V}^{-1}
$$

Transversal current I $\mathrm{I}_{\text {MS }}$ measured at SLIC:

$$
\mathrm{I}_{\text {RMS }}=\frac{L M_{\text {Result }} \times \mathrm{K}_{\text {IT }} \times \pi}{\mathrm{K}_{\text {AD }} \times \mathrm{R}_{\text {ITAC }} \times \mathrm{K}_{\text {INTAC }} \times N_{\text {Samples }} \times 2 \times \sqrt{2}}=\frac{L M_{\text {Result }}}{\mathrm{K}_{\text {INTAC }} \times N_{\text {Samples }}} \times 14.76 \mathrm{~mA}
$$

$\mathrm{R}_{\text {ITAC }} \quad$ Sense resistor for $A C$ transversal current $\left(\mathrm{R}_{\text {IT } 1}+\mathrm{R}_{\text {IT2 }}\right) \quad 1150 \Omega$
$\mathrm{K}_{\mathrm{AD}} \quad$ Constant factor from Analog to Digital $3.272 \mathrm{~V}^{-1}$
$V_{\text {ADC }} \quad$ Voltage at A/D converter refered to digital fullscale 1.2 V
$\mathrm{K}_{\text {IT }} \quad$ Value of the current divider for transversal current 50

In order not to overload the analog input, the maximum AC transversal current may not be higher than 9 mA rms.

Usage of Tone Generator as Signal Source

To simplify the formulas, the programmable receive and transmit gain is disabled.
This is done by setting the following bits:

Register BCR4: \quad AR-DIS $=1$, AX-DIS $=1, T H-D I S=1$, IM-DIS $=1$, FRR-DIS $=1$, FRX-DIS $=1$
Register TSTR4: \quad OPIM-AN $=1$, OPIM-4M $=1$
Register LMCR1: TEST-EN = 1

The tone generator level is influenced by a factor K_{TG} which is set in the tone generator coefficients. The internal filter attenuation is 2.87 dB .

$$
K_{D A}=V_{D A C} \times 10^{\frac{-2.87}{20}} \times \frac{\text { Trapez }}{\sqrt{2}} \times K_{A C, S L I C}=1.2 \times 10^{\frac{-2.87}{20}} \times \frac{1.05}{\sqrt{2}} \times 6
$$

Preliminary

$\mathrm{K}_{\text {DA }}$	Constant factor from Digital to Analog	3.84 Vrms
$\mathrm{K}_{\mathrm{AC}, \text { SLIC }}$	Amplification factor of the SLIC	6
$\mathrm{~V}_{\mathrm{DAC}}$	Voltage at D/A converter refered to digital fullscale	1.2 V
Trapez	Crestfactor of the trapazoidal signal	1.05

Output voltage between Tip and Ring:
$\mathrm{V}_{\text {OUT }}=\mathrm{K}_{\mathrm{DA}} * \mathrm{~K}_{\mathrm{TG}}$
The bytes below are valid for tone generator TG1 an a frequency of 1000 Hz .
CRAM:
Address 0x38: 0x08
Address 0x39:T11G/0
Address 0x40:T13G/T12G
Address 0x41:0x05
Address 0x42: 0xB3
Address 0x43: 0x01
T11G, T12G and T13G are 4 bit nibbles which control the amplitude of the tone generator TG1.

Table 34	K $_{\text {TG }}$ Setting Table		
T11G	T12G	T13G	K $_{\text {TG }}$
8	9	1	$7 / 8$
8	0	8	$1 / 2$
8	1	8	$1 / 4$
8	$:$	8	$:$
8	5	8	$1 / 64$
8	6	8	$1 / 128$
8	7	8	$1 / 256$

Preliminary

4.8.2.7 Levelmeter Threshold

For the levelmeter result a threshold can be set. When the result exceeds the threshold then bit LM-THRES in register INTREG 2 is set to ' 1 '. It is also possible to activate an interrupt when the LM-THRES bit changes by setting the bit LM-THM (levelmeter threshold mask bit) in register LMCR2 to ' 0 '.
The levelmeter threshold can be calculated with DuSLICOS or taken from Table 35.
CRAM:
Address 0x32: LMTH2/LMTH1
Address 0x33: 0/LMTH3
(LMTH1, LMTH2 and LMTH3 are 4 bit nibbles)
Table $35 \quad$ Threshold Setting Table

LMTH1	LMTH2	LMTH3	Threshold
1	0	0	75.0%
0	1	0	62.5%
8	8	0	50.0%
8	9	0	37.5%
9	0	0	25.0%
8	1	0	12.5%
8	0	0	0.0%

4.8.2.8 Current Offset Error Compensation

The current offset error caused by the current sensor inside the SLIC-E/-E2/-P can be compensated by programming the compensation registers OFR1 and OFR2 accordingly. The current offset error can be measured with the DC levelmeter. The following settings are necessary to accomplish this:

- The DuSLIC has to be set into the HIRT mode by setting the bits HIR and HIT in register BCR1 to 1.
In HIRT mode the line-drivers of the SLIC-E/-E2/-P are shut down and no resistors are switched to the line. As a matter of fact, no current is present in that mode, but the current sensor wrongly indicates a current flowing (current offset error).
- The DC path for I TRANS current levelmeter must be selected by setting the LMSEL[3:0] bits in register LMCR2 to 0101 (see Table 28).
- The offset registers OFR1 and OFR2 must be set to 0000h.
- $\mathrm{I}_{\text {Off-Err }}$ can be calculated like shown for "I TRANs: any other mode" in Table 31 (see also example below).
The current offset error can be eliminated by programming the offset registers OFR1 and OFR2 according to the inverse value of the measured current offset error.
Example:
$\mathrm{K}_{\text {INTDC }}=1, \mathrm{~N}_{\text {Samples }}=256$, LM $_{\text {Value }}=0 \times 0605=1541$

$$
\begin{aligned}
& \mathrm{LM}_{\text {Result }}=\frac{\mathrm{LM} \mathrm{~V}_{\text {Value }}}{32768}=\frac{1541}{32768}=0.047 \\
& \mathrm{I}_{\text {off-Err }}=\mathrm{LM} \text { Result } \times \frac{79.66 \mathrm{~mA}}{\mathrm{~N}_{\text {Samples }} \times \mathrm{K}_{\text {INTDC }}}=0.047 \times \frac{79.66 \mathrm{~mA}}{256 \times 1}=0.0146 \mathrm{~mA}
\end{aligned}
$$

OFFSET $=-\frac{\mathrm{I}_{\mathrm{Off}-\mathrm{Err}}}{79.66 \mathrm{~mA}} \times 32768=-\frac{0.0146 \mathrm{~mA}}{79.66 \mathrm{~mA}} \times 32768 \approx-6=0 \times F F F A$
Short form:
OFFSET $=-\frac{\mathrm{LM}_{\text {Value }}}{\mathrm{N}_{\text {Samples }} \times \mathrm{K}_{\text {INTDC }}}$

OFR1 = OFFSET-H = 0xFF
OFR2 $=$ OFFSET-L $=0 \times F A$

Preliminary

4.8.2.9 Loop Resistance Measurements

The DC loop resistance can be determined by supplying a constant DC voltage $\mathrm{V}_{\text {TR,DC }}$ to the Ring- and Tip line and measuring the DC loop current via IT pin. The following steps are necessary to accomplish this:

- Program a certain ring offset voltage RO1, RO2, RO3 (see DuSLICOS DC Control Parameter 2/3).
- Select ring offset voltage RNG-OFFSET[1:0] in register LMCR3 either to 01, 10 or 11. If 00 is selected, the DC regulation would be still active and would not allow resistance measurement.
- Choose an operation mode, either Active High (ACTH) or Ring Pause.
- Select the DC path for levelmeter by setting the bits LM-SEL[3:0] in register LMCR2 to 0101 (DC current on IT).
- The transversal current can be determined by reading the levelmeter result registers LMRES1, LMRES2.
- Based on the known constant output voltage $\mathrm{V}_{\mathrm{TR}, \mathrm{DC}}$ (DC voltage according to RNG-OFFSET[1:0]) and the measured ITRANS current, the resistance can be calculated. It should be noted, that the calculated resistance includes also the onboard resistors $R_{\text {PROT }}$ and $R_{\text {STAB }}$.
In order to increase the accuracy of the result, either the current offset can be compensated or the measurement can be done differentially. The latter one eliminates the current- and voltage offsets.
Figure 49 shows an example circuit for resistance measurement:

Figure 49 Example Resistance Measurement

Preliminary

Assumption:

- Loop resistance $\mathrm{R}_{\text {Ioop }}=1000 \Omega ; \mathrm{R}_{\text {Ioop }}=\mathrm{R}_{\text {LINE }}+2^{*} \mathrm{R}_{\text {PROT }}+2^{*} \mathrm{R}_{\text {STAB }}$
- Ring offset RO2 $=60 \mathrm{~V}$ (CRAM coefficient set accordingly). Ring offset RO2 is selected by setting bits RNG-OFFSET[1:0] in register LMCR3 to 10.
The exact value for the Ring offset voltage can be determined from the *.res result file generated by DuSLICOS during the calculation of the appropriate coefficients.
- Select Active High (ACTH) mode by setting the line mode command CIDD/CIOP bits $M 2, M 1, M 0$ to 010 . In ACTH mode half of the ring offset voltage RO2 of e.g. 60 V will be present and applied to Ring and Tip.
Sequence to determine the loop resistance $\mathrm{R}_{\text {loop }}$ differentially:
- Select DC levelmeter by setting bits LM-SEL[3:0] in register LMCR2 to 0101.
- Read levelmeter result registers LMRES1, LMRES2.
- Switch into reverse polarity mode by setting bit REVPOL in register BCR1 to 1.
- Read levelmeter result registers LMRES1, LMRES2.

If the loop resistor connected between Ring and Tip is $1000 \Omega\left(R_{\text {LINE }}+R_{\text {PROT }}+R_{\text {STAB }}\right)$, the expected current will be 30 mA , because the actual voltage applied to Ring and Tip is 30 V . Considering the fact, that the current measurement in reverse polarity mode will also become inverted, the read results have to be added. The sum of both levelmeter results (normal- and reverse polarity) should therefore be 60 mA current difference.
Figure 50 shows the differential measurement method and the elimination of the offsets.

Figure 50 Differential Resistance Measurement
The following calculation shows the elimination of the voltage and current offset caused by output stage and current sensor. This differential measurement method both

Preliminary

eliminates the offsets caused by the SLIC-E/-E2/-P current sensor and the offset caused by the DC voltage output (Ring offset voltage).

Differential Resistance Calculation:

$$
\begin{aligned}
& I_{\text {measure(normal) }}=\frac{V_{\text {TR, prog }}+V_{\text {offset }}}{R}+I_{\text {offset }} \\
& I_{\text {measure(reverse })}=\frac{-V_{\text {TR, prog }}+V_{\text {offset }}}{R}+I_{\text {offset }} \\
& I_{\text {measure(normal) }}-I_{\text {measure(reverse) }}=\frac{2 \times V_{\text {TR, prog }}}{R} \\
& R=\frac{2 \times V_{\text {TR, prog }}}{I_{\text {measure(normal) }}-I_{\text {measure(reverse })}}=R_{\text {LINE }}+R_{\text {PROT }}+R_{\text {STAB }}
\end{aligned}
$$

4.8.2.10 Line Resistance Tip/GND and Ring/GND

The DuSLIC offers the modes of setting either the Tip- or the Ring line to high impedance or even both by setting the bits HIR and HIT in register BCR1 accordingly. While one of both lines is set to high impedance, the other line is still active and able to supply a known voltage. The transversal and/or longitudinal current can be measured and the line impedance can be calculated.
Because of one line (Tip or Ring) being high impedance, there is only current flowing in either Tip or Ring line. This causes the calculated current (according Table 31) to be half the actual value. Therefore in either HIR or HIT mode the calculated current has to be multiplied by a factor of 2 .

4.8.2.11 Capacitance Measurements

Capacitance measurements with the DuSLIC are accomplished by using the integrated ramp generator function. The ramp generator is capable of applying a voltage ramp to the Ring- and Tip line with the flexibility of:

- Programmable slopes from $30 \mathrm{~V} / \mathrm{s}$ to $2000 \mathrm{~V} / \mathrm{s}$
- Programmable start- and stop DC voltage offsets via ring offsets
- Programmable start time of the voltage ramp after enabling the levelmeter function

Figure 51 shows the voltage ramp and the voltage levels at the Ring and Tip line.
The slope of the ramp can be programmed (refer to CRAM coefficients). The ring offset voltages RO1, RO2 and RO3 might be used as start and stop voltages. The ramp starts for instance at RO1 and stops at RO2. The current can be calculated as $i(t)=C_{\text {Measure }}{ }^{*} d U / d t$, where $d U / d t$ is the slope and $i(t)$ is the current which will be measured by the levelmeter. In order to measure accurate values, the integration has to start after the current has settled to a constant value. This can be calculated by the time constant of the ringer load. It is recommended to set the programmable ring generator delay higher than 3 times the time constant of the ringer load. When there is a resistor in parallel to the capacitor (e.g. leakage), it is recommended to measure symmetrically around the voltage zero crossing. This can be achieved by programming the ring generator delay appropriately (see DuSLICOS DC Control Parameter 2/3). The integration time for the current measurement is determinded by the ring frequency (refer to CRAM coefficients, see Table 30). After the integration time the measurement automatically stops only when the bit LM-ONCE in register LMCR1 is set. Otherwise the levelmeter would continuously measure the current even if the ramp is finished and turned into its constant voltage position, i.e., that because of the constant voltage no current will flow.

Preliminary

Operational Description

Figure 51 Capacitance Measurement

DuSLIC

Preliminary

Example:

- Assumptions:
- Capacitance as object to be determined: $\mathrm{C}_{\text {Measure }}=9.8 \mu \mathrm{~F}$
- Resistor $\mathrm{R}_{\text {Measure }}$ in series to $\mathrm{C}_{\text {Measure }}: \mathrm{R}_{\text {Measure }}=6930 \Omega$
- $\tau=\mathrm{R}_{\text {Measure }}{ }^{*} \mathrm{C}_{\text {Measure }}=67.9 \mathrm{~ms}$
- Calculating parameter values:
- Choose Ring Offset voltage 1: RO1 = 70 V (Start voltage on Ring/Tip where the ramp should start; programmed by ring offset voltage RO1)
- Choose Ring Offset voltage 2: RO2 $=-30 \mathrm{~V}$ (End voltage on Ring/Tip where the ramp should stop; programmed by ring offset voltage RO2)
- Choose slope of ramp while testing: $\mathrm{dU} / \mathrm{dt}=200 \mathrm{~V} / \mathrm{s}$
- Time from start to stop of the ramp from RO1 to RO2 is $100 \mathrm{~V} / 200 \mathrm{~V} / \mathrm{s}=500 \mathrm{~ms}$
- Time from start to zero cross is $70 \mathrm{~V} / 200 \mathrm{~V} / \mathrm{s}=350 \mathrm{~ms}$
- Choose Integration time: $\mathrm{T}_{\mathrm{I}}=1 / \mathrm{f}_{\mathrm{RING}}=1 / 100 \mathrm{~Hz}=10 \mathrm{~ms}$
- Measure around zero cross \rightarrow from 345 ms to 355 ms
- $T_{\text {RING,DELAY }}$ is programmed to 345 ms
- Check ring generator delay: $\mathrm{T}_{\text {RING,DELAY }}>3^{*} \tau=204 \mathrm{~ms} \rightarrow$ OK!
- Expected current $\mathrm{i}=\mathrm{C}_{\text {Measure }}{ }^{*} \mathrm{dU} / \mathrm{dt}=1.96 \mathrm{~mA}$
- Choose current for LM off-hook threshold $\mathrm{I}_{\mathrm{LM}, \mathrm{DC}}=2 \mathrm{~mA}$ Note: A current of 2 mA will result in $\mathrm{LM}_{\text {Result }}=0.5$ (half of the fullscale value)

Program Sequence:

- Set the following parameter values:

Parameter	Symbol \& Value	DuSLICOS
Slope of ramp while testing	$\mathrm{dU} / \mathrm{dt}=200 \mathrm{~V} / \mathrm{s}$	DC Control Parameter 3/3
Ring frequency	$\mathrm{f}_{\text {RING }}=100 \mathrm{~Hz}$	DC Control Parameter 2/3
Ring generator delay	$\mathrm{T}_{\text {RING }, \text { DELAY }}=345 \mathrm{~ms}$	DC Control Parameter 2/3
Ring offset voltage 1	RO1 $=70 \mathrm{~V}$	DC Control Parameter 2/3
Ring offset voltage 2	RO2 $=-30 \mathrm{~V}$	DC Control Parameter 2/3
Current for LM off-hook threshold	$\mathrm{I}_{\mathrm{LM}, \mathrm{DC}}=2 \mathrm{~mA}$	DC Control Parameter 2/3

- Integration time $T_{1}=1 / f_{\text {RING }}=1 / 100 \mathrm{~Hz}=10 \mathrm{~ms}$
- Select the DC levelmeter by setting bits LM-SEL[3:0] in register LMCR2 to 0101
- Execute the levelmeter only once by setting bit LM-ONCE in register LMCR1 to 1.
- Apply Ring Offset voltage RO1 to Ring and Tip line by setting bits RNG-OFFSET[1:0] in register LMCR3 to 01.
- Enable the ramp generator by setting bit RAMP-EN in register LMCR2 to 1.

DuSLIC

Preliminary

- Apply Ring Offset voltage RO2 to Ring and Tip line by setting bits RNG-OFFSET[1:0] in register LMCR3 to 10.
- Enable the levelmeter by setting bit LM-EN in register LMCR1 to 1 .
- Comment: The voltage ramp starts at RO1 and ramps up/down until RO2 is achieved. After the integration time, the result will be stored within LMRES1 and LMRES2 registers.
- Read the result registers LMRES1 and LMRES2

The actual current I_{CM} easure amounts to:

$$
I_{C M e a s u r e}=2 \times I_{L M, D C} \times L M_{\text {Result }}
$$

The capacitance $\mathrm{C}_{\text {Measure }}$ calculates as:

$$
\mathrm{C}_{\text {Measure }}=\frac{\mathrm{I}_{\mathrm{CMeasure}}}{\frac{\mathrm{dU}}{\mathrm{dt}}}
$$

Example:

$$
L M_{\text {Value }}=0 \times 3 A F 2=15090
$$

$$
\mathrm{LM}_{\text {Result }}=0.4605
$$

$$
I_{\text {CMeasure }}=2^{*} 2 \mathrm{~mA}^{*} 0.4605=1.842 \mathrm{~mA}
$$

$$
\mathrm{C}_{\text {Measure }}=1,842 \mathrm{~mA} / 200 \mathrm{~V} / \mathrm{s}=9.21 \mu \mathrm{~F}
$$

4.8.2.12 Line Capacitance Measurements Ring and Tip to GND

The voltage ramp can be applied to either line, whereas the other line is set to high impedance by setting bits HIR and HIT in register BCR1 accordingly. That way capacitance measurements from Ring and Tip to GND may be accomplished.
Because of one line being high impedance, the actual line current will be twice the calculated one (multiplication by a factor of 2 necessary).

4.8.2.13 Foreign- and Ring Voltage Measurements

The DuSLIC supports two user-programmable input/output pins (IO3, IO4) which can be used for measuring external voltages. If the pins IO3 and/or IO4 are led properly over a voltage divider to the Ring- and Tip wire, foreign voltages from external voltage sources supplied to the lines can be measured on either pin, even a differential measurement will be supported (IO4-IO3). The selection of which input information shall be taken for the measurement is done via bits LM-SEL[3:0] in configuration register LMCR2 (Table 36).

Table 36 Measurement Input Selection

LM-SEL[3:0] in register LMCR2	Measurement Input
1010	Voltage on IO3
1011	Voltage on IO4
1111	Voltage IO4 - IO3

The measurement is accomplished by the DC levelmeter function.

Figure 52 Foreign Voltage Measurement Principle
Figure 52 shows the connection and external resistors used for supporting foreign voltage measurements at the Ring and Tip lines.
Since the pins IO3 and IO4 support analog input functionality and are limited to a certain voltage range of $\mathrm{V}_{\mathrm{VCM}} \pm 1.0 \mathrm{~V}$ (typ. $1.5 \mathrm{~V} \pm 1.0 \mathrm{~V}$), the values for the voltage divider has to be determined according to following conditions:

- Maximum level of the expected foreign voltages
- Voltage range of IO 3 and $\mathrm{IO} 4=\mathrm{V}_{\mathrm{VCM}} \pm 1.0 \mathrm{~V}$

The voltage on IO3 or IO4 is measured with a reference to VCM. Hence an input voltage of $\mathrm{V}_{\mathrm{VCM}}$ on either input pin would result into zero output value. Whereas a voltage of $\mathrm{V}_{\mathrm{VCM}}+1 \mathrm{~V}$ would result into the negative full scale value, $\mathrm{V}_{\mathrm{VCM}}-1 \mathrm{~V}$ would result into the positive full scale value respectively. For that reason the voltage divider has to be referenced to VCM. The unknown foreign voltage $\mathrm{V}_{\text {FOREIGN }}$ can be calculated as:
$\mathrm{V}_{\text {FOREIGN }}=\mathrm{V}_{\text {INPUT }} \times \frac{R 1+R 2}{R 2}+\mathrm{V}_{\text {VCM }}$
$\mathrm{V}_{\text {INPUT }}=\mathrm{V}_{\text {IOX }}-\mathrm{V}_{\text {VCM }}$ (refer to Table 31)
$\mathrm{V}_{\text {IOx }}=$ Voltage on pins IOx (e.g. pins IO3, IO4)
The resistor directly connected to either Ring or Tip (R1, R3) should be high enough so that the loop impedance will not be affected by them. Several $\mathrm{M} \Omega \mathrm{s}$, e.g. $10 \mathrm{M} \Omega$ would be a reasonable value. The following example illustrates the potential voltage range that can be measured by chosing the values as:

- $\mathrm{R} 1=\mathrm{R} 3=10 \mathrm{M} \Omega$
- R2 = R4 = $47 \mathrm{k} \Omega$

The values given for the maximum and minimum voltage levels are:

- $\mathrm{V}_{\mathrm{VCM}}=1.5 \mathrm{~V}$
- $\mathrm{V}_{\text {INPUT, } \text { max }}=1 \mathrm{~V} \rightarrow \mathrm{~V}_{\text {IOX, } \text { max }}=2.5 \mathrm{~V}$
- $\mathrm{V}_{\text {INPUT, } \text { min }}=-1 \mathrm{~V} \rightarrow \mathrm{~V}_{\text {IOX, }}$ min $=0.5 \mathrm{~V}$
$\mathrm{V}_{\text {FOREIGN, max }}=\mathrm{V}_{\text {INPUT, max }} \times \frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 2}+\mathrm{V}_{\mathrm{VCM}}=215 \mathrm{~V}$
$\mathrm{V}_{\text {FOREIGN, min }}=\mathrm{V}_{\text {INPUT, min }} \times \frac{\mathrm{R} 1+\mathrm{R} 2}{\mathrm{R} 2}+\mathrm{V}_{\mathrm{VCM}}=-212 \mathrm{~V}$
The voltage range would span from 215 V to -212 V .
In order to measure small input voltages on IO3/IO4 more accurately the user might consider to enable the integration function (see Figure 45) by setting bit LM-EN in register LMCR1 to 1 .
In case of measuring the ring voltage supplied to either Ring or Tip or even both (balanced ringing) pins via IO3 and IO4, the rectifier can be enabled by setting bit LM-RECT in register LMCR2 to 1.

Preliminary

$4.9 \quad$ Signal Path and Test Loops

The following figures show the main AC and DC signal path and the integrated analog and digital loops of DuSLIC-E/-E2/-P, DuSLIC-S and DuSLIC-S2.
Please note the interconnections between the AC and DC pictures of the respective chip set.

4.9.1 Test Loops DuSLIC-E/-E2/-P

Figure 53 AC Test Loops DuSLIC-E/-E2/-P

Preliminary

Figure 54 DC Test Loops DuSLIC-E/-E2/-P

Preliminary

4.9.2 Test Loops DuSLIC-S/-S2

The AC test loops for DuSLIC-S (Figure 55) and DuSLIC-S2 (Figure 56) are different since Teletax (TTX) is not available with SLICOFI-2S2. The DC test loops are identical.

Figure 55 AC Test Loops DuSLIC-S

Preliminary

Figure 56 AC Test Loops DuSLIC-S2

Figure 57 DC Test Loops DuSLIC-S/-S2

4.10 Caller ID Buffer Handling of SLICOFI-2

This chapter intends to describe the handling of the caller ID buffer and the corresponding handshake bits in the interrupt registers.

Programming Sequence

In order to send a caller ID information over the telephone line the following sequence should be programmed between the first and the second ring burst. The initialization part of the coefficients in the POP registers 43 h to 4 Ah must be done prior to that sequence.

1. Enable the extended feature DSP in register XCR (EDSP-EN = 1)
2. Enable the caller ID sender feature in register BCR5 (CIS-EN = 1)
3. Wait for an interrupt.
4. Read out all 4 interrupt registers to serve the interrupt and check the CIS-REQ bit.
5. If this bit is set, send at least BRS + 2 bytes (see POP register CIS-BRS) of caller ID data but not more than 48 bytes to the caller ID sender buffer register CIS-DAT.
6. Wait for the next interrupt and check again the CIS-REQ bit.
7. If this bit is set, send the next data to the caller ID-data buffer but not more than (48BRS) bytes. CIS-REQ bit gets reset to zero, if the data buffer is filled again above the Caller ID sender buffer request size (BRS).
8. Repeat steps 6 and 7 as long as there is data to be sent.
9. Right after sending the last data byte to the caller ID sender buffer, set the bit CISAUTO to 1 and the bit CIS-EN to 0 . After processing the last bit the caller ID sender will stop automatically and set the CIS-ACT bit in INTREG4 to zero. No more CIS interrupt will be generated until the caller ID sender will be enabled again (interrupt bits: CIS-BOF, CIS-BUF and CIS-REQ).

The end of the CID transmission can also be controlled by not setting CIS-AUTO and leaving CIS-EN at one. If the caller ID buffer gets empty, an interrupt is generated to indicate buffer underflow (CIS-BUF). If CIS-BUF is set, set CIS-EN to zero with at least 1 ms delay, in order to allow to send the last bit of caller ID data.
In case of errors in the handling of the CID data buffer CIS-BUF (buffer underflow) and CIS-BOF (buffer overflow) indicate these errors. Please stop CID transmission in any of these cases since unpredictable results may occur.
Note: CID data will be sent out LSB first
If CIS-FRM is set to one: seizure and mark bits are generated automatically (according to the settings of CIS-SEIZ-H/L and CIS-MARK-H/L) as well as start and stop bits for every byte

DuSLIC

Preliminary
Interfaces

5 Interfaces

The DuSLIC connects the analog subscriber to the digital switching network by two different types of digital interfaces to allow for the highest degree of flexibility in different applications:

- PCM interface combined with a serial microcontroller interface
- IOM-2 interface.

The PCM $\overline{\mathrm{IOM}-2}$ pin selects the interface mode.
$\mathrm{PCM} / \overline{\mathrm{IOM}-2}=0$: The IOM-2 interface is selected.
PCM $/ \overline{\mathrm{IOM}}-2=1$: The PCM $/ \mu \mathrm{C}$ interface is selected.
The analog TIP/RING interface connects the DuSLIC to the subscriber.

5.1 PCM Interface with a Serial Microcontroller Interface

In PCM $/ \mu \mathrm{C}$ interface mode, voice and control data are separated and handled by different pins of the SLICOFI-2x. Voice data are transferred via the PCM highways while control data are using the microcontroller interface.

5.1.1 PCM Interface

The serial PCM interface is used to transfer A-law or μ-law-compressed voice data. In test mode, the PCM interface can also transfer linear data. The eight pins of the PCM interface are used as follows (two PCM highways):

PCLK: PCM Clock, 128 kHz to 8192 kHz
FSC: Frame Synchronization Clock, 8 kHz
DRA: Receive Data Input for PCM Highway A
DRB: Receive Data Input for PCM Highway B
DXA: Transmit Data Output for PCM Highway A
DXB: \quad Transmit Data Output for PCM Highway B
TCA: \quad Transmit Control Output for PCM Highway A, Active low during transmission
TCB: \quad Transmit Control Output for PCM Highway B, Active low during transmission

The FSC pulse identifies the beginning of a receive and transmit frame for both channels. The PCLK clock signal synchronizes the data transfer on the DXA (DXB) and DRA (DRB) lines. On all channels, bytes are serialized with MSB first. As a default setting, the rising edge indicates the start of the bit, while the falling edge is used to buffer the contents of the received data on DRA (DRB). If double clock rate is selected (PCLK

Preliminary

clock rate is twice the data rate), the first rising edge indicates the start of a bit, while, by default, the second falling edge is used to buffer the contents of the data line DRA (DRB).

Figure 58 General PCM Interface Timing
The data rate of the interface can vary from 2*128 kbit/s to 2*8192 kbit/s (two highways). A frame may consist of up to 128 time slots of 8 bits each. The time slot and PCM

DuSLIC
technologies

Preliminary

highway assignment for each DuSLIC channel can be programmed. Receive and transmit time slots can also be programmed individually.
When DuSLIC is transmitting data on DXA (DXB), pin $\overline{T C A}(\overline{T C B})$ is activated to control an external driving device.
The DRA/B and DXA/B pins may be connected to form a bidirectional data pin for special purposes, e.g., for the Serial Interface Port (SIP) with the Subscriber Line Data (SLD) bus. The SLD approach provides a common interface for analog or digital per-line components. For more details, please see the "ICs for Communications"1) User's Manual available from Infineon Technologies on request.
Table 37 shows PCM interface examples; other frequencies (e.g., 1536 kHz) are also possible.
Table 37 SLICOFI-2x PCM Interface Configuration

Clock Rate PCLK $[\mathrm{kHz}]$	Single/Double Clock [1/2]	Time Slots [per highway]	Data Rate [kbit/s per highway]
128	1	2	128
256	2	2	128
256	1	4	256
512	2	4	256
512	1	8	512
768	2	6	384
768	1	12	768
1024	2	8	512
1024	1	16	1024
2048	2	16	1024
2048	1	32	2048
4096	2	32	2048
4096	1	64	4096
8192	2	64	4096
8192	1	128	8192
f	1	f/64	f
f	2	f/128	f/2

Valid PCLK clock rates are: $f=\mathrm{n} \times 64 \mathrm{kHz}(2 \leq \mathrm{n} \leq 128)$

1) Ordering No. B115-H6377-X-X-7600, published by Infineon Technologies.

Preliminary

Figure 59 Setting of Slopes in Register PCMC1

5.1.2 Control of the Active PCM Channels

The SLICOFI-2x offers additional functionality on the PCM interface including threeparty conferencing and a 16 kHz sample rate. Five configuration bits control, together with the PCM configuration registers, the activation of the PCM transmit channels. For details of the different functions see Chapter 6.2.
Table 38 gives an overview of the data transmission configuration of the PCM channels. X 1 L is used only when linear data are transmitted. In this case the time slot for X 1 is defined by the number X1-TS from the PCMX1 register. The time slot for X1L is defined by the number $\mathrm{X} 1-\mathrm{TS}+1$.

Table 38 Active PCM Channel Configuration Bits

Control Bits					Transmit PCM Channel			
PCMX- EN	CONF- EN	CONFX- EN	PCM16K	LIN	X1	X1L	X2	X3

Note: PCM means PCM-coded data (A-law / μ-law)
HB1, HB2, LB1, LB2 indicate the high byte, low byte of linearly transmitted data for an $8 \mathrm{kHz}(16 \mathrm{kHz})$ sample rate.
Modes in rows with gray background are for testing purposes only.

5.1.3 Serial Microcontroller Interface

The microcontroller interface consists of four lines: $\overline{\mathrm{CS}}, \mathrm{DCLK}, \mathrm{DIN}$ and DOUT.
$\overline{\mathrm{CS}} \quad$ A synchronization signal starting a read or write access to SLICOFI-2x.
DCLK A clock signal (up to 8.192 MHz) supplied to SLICOFI-2x.
DIN Data input carries data from the master device to the SLICOFI-2x.
DOUT Data output carries data from SLICOFI-2x to a master device.

There are two different command types. Reset commands have just one byte. Read/ write commands have two command bytes with the address offset information located in the second byte.

A write command consists of two command bytes and the following data bytes. The first command byte determines whether the command is read or write, how the command field is to be used, and which DuSLIC channel (A or B) is written. The second command byte contains the address offset.
A read command consists of two command bytes written to DIN. After the second command byte is applied to DIN, a dump-byte consisting of ' 1 's is written to DOUT. Data transfer starts with the first byte following the 'dump-byte'.

Figure 60 Serial Microcontroller Interface Write Access ${ }^{1)}$

1) for n data bytes and single byte command

Preliminary

Figure 61 Serial Microcontroller Interface Read Access
Programming the Microcontroller Interface Without Clocks at FSC, MCLK, PCLK
The SLICOFI-2x can also be programmed via the $\mu \mathrm{C}$ interface without any clocks connected to the FSC, MCLK, PCLK pins. This can be useful in Power Down modes when further power saving on system level is necessary. In this case a data clock of up to 1.024 MHz can be used on pin DCLK.
Since the SLICOFI- $2 x$ will leave the basic reset routine only if clocks at the FSC, MCLK and PCLK pins are applied, it is not possible to program the SLICOFI-2x without any clocks at these pins directly after the hardware reset or power on reset.

DuSLIC

Preliminary

5.2 The IOM-2 Interface

IOM-2 defines an industry-standard serial bus for interconnecting telecommunication ICs for a broad range of applications - typically ISDN-based applications.
The IOM-2 bus provides a symmetrical full-duplex communication link containing data, control/programming and status channels. Providing data, control and status information via a serial channel reduces pin count and cost by simplifying the line card layout.
The IOM-2 Interface consists of two data lines and two clock lines as follows:

DU: \quad Data Upstream carries data from the SLICOFI-2x to a master device.
DD: Data Downstream carries data from the master device to the SLICOFI-2x.
FSC: A Frame Synchronization Signal (8 kHz) supplied to SLICOFI-2x.
DCL: A Data Clock Signal (2048 kHz or 4096 kHz) supplied to SLICOFI-2x.
SLICOFI-2x handles data as described in the IOM-2 specification ${ }^{1)}$ for analog devices.

Figure 62 IOM-2 Int. Timing for up to 16 Voice Channels (Per 8-kHz Frame)

1) Available on request from Infineon Technologies.

Preliminary

The information is multiplexed into frames, which are transmitted at an $8-\mathrm{kHz}$ rate. The frames are subdivided into 8 sub-frames, with one sub-frame dedicated to each transceiver or pair of codecs (in this case, two SLICOFI-2x channels). The sub-frames provide channels for data, programming and status information for a single transceiver or codec pair.

Figure 63 IOM-2 Interface Timing (DCL = 4096 kHz, Per 8-kHz Frame)

DuSLIC

Preliminary

Figure 64 IOM-2 Interface Timing (DCL = 2048 kHz, Per 8-kHz Frame)
Both DuSLIC channels (see Figure 62) can be assigned to one of the eight time slots. Set the IOM-2 time slot selection as shown in Table 39 below by pin-strapping. In this way, up to 16 channels can be handled with one IOM-2 interface on the line card.

Table 39 IOM-2 Time Slot Assignment

TS2	TS1	TS0	IOM-2 Operating Mode
0	0	0	Time slot $0 ; D C L=2048,4096 \mathrm{kHz}$
0	0	1	Time slot $1 ; D C L=2048,4096 \mathrm{kHz}$
0	1	0	Time slot $2 ; D C L=2048,4096 \mathrm{kHz}$
0	1	1	Time slot 3; $D C L=2048,4096 \mathrm{kHz}$
1	0	0	Time slot $4 ; D C L=2048,4096 \mathrm{kHz}$
1	0	1	Time slot $5 ; D C L=2048,4096 \mathrm{kHz}$
1	1	0	Time slot $6 ; D C L=2048,4096 \mathrm{kHz}$
1	1	1	Time slot 7; $D C L=2048,4096 \mathrm{kHz}$

2 MHz or 4 MHz DCL is selected by the SEL24 pin:
SEL24 = 0: DCL $=2048 \mathrm{kHz}$
SEL24 = 1: DCL $=4096 \mathrm{kHz}$

DuSLIC

Preliminary

5.2.1 IOM-2 Interface Monitor Transfer Protocol

Monitor Channel Operation

The monitor channel is used for the transfer of maintenance information between two functional blocks. Using two monitor control bits (MR and MX) per direction, the data are transferred in a complete handshake procedure. The MR and MX bits in the fourth byte (C/I channel) of the IOM-2 frame are used for the handshake procedure of the monitor channel.
The monitor channel transmission operates on a pseudo-asynchronous basis:
Data transfer (bits) on the bus is synchronized to Frame Sync FSC.
Data flow (bytes) is asynchronously controlled by the handshake procedure.
For example: Data is placed onto the DD-Monitor-Channel by the monitor transmitter of the master device (DD-MX-Bit is activated, i.e., set to zero). This data transfer will be repeated within each frame ($125 \mu \mathrm{~s}$ rate) until it is acknowledged by the SLICOFI-2x monitor receiver by setting the DU-MR-bit to zero, which is checked by the monitor transmitter of the master device. The data rate on IOM-2 monitor channels is $4 \mathrm{~kb} / \mathrm{s}$.

Figure 65 IOM-2 Interface Monitor Transfer Protocol

DuSLIC

Preliminary
Interfaces

Monitor Handshake Procedure

The monitor channel works in three states

- idle state: A pair of inactive (set to ' 1 ') MR and MX bits during two or more consecutive frames: End of Message (EOM)
- sending state: MX bit is activated (set to zero) by the monitor transmitter, together with data bytes (can be changed) on the monitor channel
- acknowledging: MR bit is set to active (set to zero) by the monitor receiver, together with a data byte remaining in the monitor channel.
A start of a transmission is initiated by a monitor transmitter in sending out an active $M X$ bit together with the first byte of data (the address of the receiver) to be transmitted in the monitor channel.

The monitor channel remains in this state until the addressed monitor receiver acknowledges the received data by sending out an active MR bit, which means that the data transmission is repeated each $125 \mu \mathrm{~s}$ frame (minimum is one repetition). During this time the monitor transmitter evaluates the MR bit.

Flow control can only take place when the transmitter's MX and the receiver's MR bit are in active state.
Since the receiver is capable to receive the monitor data at least twice (in two consecutive frames), it is able to check for data errors. If two different bytes are received, the receiver will wait for the receipt of two identical successive bytes (last look function).
A collision resolution mechanism (checking whether another device is trying to send data during the same time) is implemented in the transmitter. This is done by looking for the inactive ('1') phase of the MX bit and making a per-bit collision check on the transmitted monitor data (check if transmitted '1's are on DU/DD line; DU/DD line are open-drain lines).
Any abort leads to a reset of the SLICOFI- $2 x$ command stack, the device is ready to receive new commands.

To maximum speed during data transfers the transmitter anticipates the falling edge of the receivers acknowledgment.
Due to the programming structure, duplex operation is not possible. It is not allowed to send any data to the SLICOFI- $2 x$, while transmission is active.

Data transfer to the SLICOFI-2x starts with a SLICOFI-2x-specific address byte $\left(81_{\mathrm{H}}\right)$.
Attention: Each byte on the monitor channel has to be sent twice at least according to the IOM-2 Monitor handshake procedure.

DuSLIC

Preliminary

Figure 66 State Diagram of the SLICOFI-2x Monitor Transmitter
MR ... MR bit received on DD line
$M X \ldots \quad M X$ bit calculated and expected on DU line
MXR ... MX bit sampled on DU line
CLS ... Collision within the monitor data byte on DU line
RQT ... Request for transmission form internal source
ABT ... Abort request/indication

Preliminary

Figure 67 State Diagram of the SLICOFI-2x Monitor Receiver
MR ... MR bit calculated and transmitted on DU line
MX ... MX bit received data downstream (DD line)
LL ... Last lock of monitor byte received on DD line
ABT ... Abort indication to internal source

Preliminary

Address Byte

Messages to and from the SLICOFI-2x start with the following byte:
Bit

7	6	5	4	3	2	1	0
1	0	0	0	0	0	0	1

5.2.2 SLICOFI-2x Identification Command (only IOM-2 Interface)

In order to unambiguously identify different devices by software, a two-byte identification command is defined for analog line IOM-2 devices. A device requesting the identification of the SLICOFI-2x will send the following two byte code:

1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Each device will then respond with its specific identification code. For the SLICOFI-2x this two byte identification code is:

1	0	0	0	0	0	0	0
1	0	0	0	0	1	0	1

5.3 TIP/RING Interface

The TIP/RING interface is the interface that connects the subscriber to the DuSLIC. It meets the ITU-T recommendation Q. 552 for a Z interface and applicable LSSGR.
For the performance of the TIP/RING interface see Chapter 7.5 and Chapter 7.6, for application circuits see Chapter 8.

DuSLIC

Preliminary

5.4 SLICOFI-2S/-2S2 and SLIC-S/-S2 Interface

The SLIC-S/-S2 PEB 4264/-2 operates in the following modes controlled by a ternary logic signal at the C1 and C2 input:

Table 40 SLIC-S/-S2 Interface Code

		C2 (Pin 17)		
		\mathbf{L}	\mathbf{M}	\mathbf{H}
C1 (Pin 18)	$\mathbf{L}^{\mathbf{1}}$	PDH	PDRHL	PDRH
	\mathbf{M}	ACTL	ACTH	ACTR
	\mathbf{H}	unused	HIT	HIR

1) no "Overtemp" signaling possible via pin C 1 if C 1 is low.

Table 41 SLIC-S/-S2 Modes

SLIC Mode	Mode Description	Used SLIC-S/-S2 Battery Voltage
PDH	Power Down High Impedance	V_{BATH}
PDRH	Power Down Resistive High	V_{BATH}
PDRHL	Power Down Resistive High Load	V_{BATH}
ACTL	Active Low	V_{BATL}
ACTH	Active High	V_{BATH}
ACTR	Active Ring	$V_{\mathrm{BATH}}, V_{\mathrm{HR}}$
HIT	High Impedance on TIP	$V_{\mathrm{BATH}}, V_{\mathrm{HR}}$
HIR	High Impedance on RING	$V_{\mathrm{BATH}}, V_{\mathrm{HR}}$

DuSLIC

Preliminary
Active (ACTL, ACTH): These are the regular transmit and receive modes for voice band. The line driving section is operated between $V_{\mathrm{BATL}}, V_{\mathrm{BATH}}$ and V_{BGND}.
Active Ring (ACTR): In order to provide a balanced ring signal of up to 45 Vrms or to drive longer telephone lines, an auxiliary positive battery voltage V_{HR} is used, making possible a higher voltage across the line. Transmission performance remains unchanged compared with Active modes.

The Power Down mode PDRH is intended to reduce the power consumption of the linecard to a minimum: the SLIC-S/-S2 is switched off completely, no operation is available except off-hook detection.
With respect to the output impedance of TIP and RING, two Power Down modes have to be distinguished:
PDRH provides a connection of $5 \mathrm{k} \Omega$ each from TIP to $V_{\text {BGND }}$ and RING to $V_{\text {BATH }}$, respectively, while the outputs of the buffers show high impedance. The current through these resistors is sensed and transferred to the IT pin to allow off-hook supervision.
PDRHL is used as a transition state at a mode change from PDRH or PDH to ACTH mode (automatically initiated by SLICOFI-2S/-2S2 at a mode change).
High Impedance (HIR/HIT): In this mode each of the line outputs can be programmed to show high impedance. HIT switches off the TIP buffer, while the current through the RING output still can be measured by IT or IL. Programming HIR switches off the RING buffer.

DuSLIC

Preliminary

Interfaces

Figure 68 Interface SLICOFI-2S/-2S2 and SLIC-S/-S2
Capacitor and resistor values are specified in Chapter 8.

DuSLIC

Interfaces

Preliminary

5.5 SLICOFI-2 and SLIC-E/-E2 Interface

The SLIC-E/-E2 PEB 4265/-2 operates in the following modes controlled by a ternary logic signal at the C1 and C2 input:

Table 42 SLIC-E/-E2 Interface Code

		C2		
		\mathbf{L}	\mathbf{M}	\mathbf{H}
$\mathbf{C 1}$	$\mathbf{L}^{\mathbf{1}}$	PDH	PDRHL	PDRH
	\mathbf{M}	ACTL	ACTH	ACTR
	\mathbf{H}	HIRT	HIT	HIR

1) no "Overtemp" signaling possible via pin C 1 if C 1 is low.

Table 43 SLIC-E/-E2 Modes

SLIC Mode	Mode Description	Used SLIC-E/-E2 Battery Voltage
PDH	Power Down High Impedance	$V_{\text {BATH }}$
PDRH	Power Down Resistive High	$V_{\text {BATH }}$
PDRHL	Power Down Resistive High Load	$V_{\text {BATH }}$
ACTL	Active Low	$V_{\text {BATL }}$
ACTH	Active High	$V_{\text {BATH }}$
ACTR	Active Ring	$V_{\text {BATH, }}, V_{\text {HR }}$
HIRT	High Impedance on RING and TIP	$V_{\text {BATH, }, ~}$ HR
HIT	High Impedance on TIP	$V_{\text {BATH, }, V_{H R}}$HIR High Impedance on RING

DuSLIC

Preliminary

Interfaces

High Impedance (HIR/HIT/HIRT): In this mode each of the line outputs can be programmed to show high impedance. HIT switches off the TIP buffer, while the current through the RING output still can be measured by IT or IL. Programming HIR switches off the RING buffer. In the mode HIRT both buffers show high impedance.
Active (ACTL, ACTH): These are the regular transmit and receive modes for voice band. The line driving section is operated between $V_{\text {BATL }}, V_{\mathrm{BATH}}$ and V_{BGND}.
Active Ring (ACTR): In order to provide a balanced ring signal of up to 85 Vrms or to drive longer telephone lines, an auxiliary positive battery voltage V_{HR} is used, making possible a higher voltage across the line. Transmission performance remains unchanged compared with Active modes.
The Power Down modes are intended to reduce the power consumption of the linecard to a minimum: the SLIC-E/-E2 is switched off completely, no operation is available.
With respect to the output impedance of TIP and RING, three Power Down modes have to be distinguished:
A resistive one (PDRH) provides a connection of $5 \mathrm{k} \Omega$ each from TIP to $V_{\text {BGND }}$ and RING to $V_{\text {BATH, }}$, respectively, while the outputs of the buffers show high impedance. The current through these resistors is sensed and transferred to the IT pin to allow off-hook supervision.
PDRHL is used as a transition mode at a mode change from PDRH mode to ACTH mode (automatically initiated by SLICOFI-2 at a mode change from PDRH to ACTH).
The other mode (PDH) offers high impedance at TIP and RING.

Preliminary

Figure 69 Interface SLICOFI-2 and SLIC-E/-E2
Capacitor and resistor values are specified in Chapter 8.

DuSLIC

Preliminary

5.6 SLICOFI-2 and SLIC-P Interface

The SLIC-P PEB 4266 operates in the following modes controlled by a ternary logic signal at the $\mathrm{C} 1, \mathrm{C} 2$ inputs and a binary logic signal at C 3 input:

Table 44 SLIC-P Interface Code

		C2		
		L	M	H
C1	L ${ }^{1}$	PDH	PDRR	PDRRL
			PDRHL	PDRH
	M	ACTL	ACTH	ACTR
	H	HIRT	HIT	HIR
			ROT	ROR

$$
\begin{aligned}
& \text { C3 }=\mathrm{H} \text { or } \mathrm{L} \quad \mathrm{C} 3=\mathrm{H}^{2)} \quad \mathrm{C} 3=\mathrm{L}^{2} \text {) } \\
& \text { 1) no "Overtemp" signaling possible via pin } \mathrm{C} 1 \text { if } \mathrm{C} 1 \text { is low. } \\
& \text { 2) } \mathrm{C} 3 \text { pin of SLIC-P is typically connected to } \mathrm{IO} 2 \text { pin of SLICOFI-2. For extremely power-sensitive applications } \\
& \text { using external ringing the C3 pin can be connected to GND. In this case, SEL-SLIC[1:0] in register BCR1 has } \\
& \text { to be set to } 10 \text {. }
\end{aligned}
$$

Operating Modes for SLIC-P with Two Battery Voltages ($V_{\text {BATH }}, V_{\text {BATL }}$) for Voice and an Additional Voltage ($V_{\text {BATR }}$) for Ringing:

Table 45 SLIC-P Modes

SLIC Mode	Mode Description	Used SLIC-P Battery Voltage
PDH	Power Down High Impedance	$V_{\text {BATR }}$
PDRH	Power Down Resistive High	$V_{\text {BATH }}$
PDRHL	Power Down Load Resistive High Load	$V_{\text {BATH }}$
ACTL	Active Low	$V_{\text {BATL }}$
ACTH	Active High	$V_{\text {BATH }}$
ACTR	Active Ring	$V_{\text {BATR }}$
HIRT	High Impedance on RING and TIP	$V_{\text {BATR }}$
ROR	Ring on RING	$V_{\text {BATR }}$
ROT	Ring on TIP	$V_{\text {BATR }}$

Preliminary

Active (ACTL, ACTH): These are the regular transmit and receive modes for voice band. The line driving section is operated between $V_{\text {BATL }}, V_{\mathrm{BATH}}$ and V_{BGND}.

Ringing:

Active Ring (ACTR): In order to provide a balanced ring signal of up to 85 Vrms or to drive longer telephone lines, an additional negative battery voltage $V_{\text {BATR }}$ is used, making possible a higher voltage across the line. Transmission performance remains unchanged compared with ACT mode.
Ring on Tip (ROT): An unbalanced ring signal up to 50 Vrms can be fed to the Tip line. The Ring line is fixed to a potential near $V_{\text {BGND }}$.
Ring on Ring (ROR): An unbalanced ring signal up to 50 Vrms can be fed to the Ring line. The Tip line is fixed to a potential near $V_{\text {BGND. }}$
PDRH is a power down mode providing a connection of $5 \mathrm{k} \Omega$ each from TIP to $V_{\text {BGND }}$ and RING to $V_{\text {BATH }}$, respectively, while the outputs of the buffers show high impedance. The current through these resistors is sensed and transferred to the IT pin to allow offhook supervision.
PDRHL is used as a transition mode at a mode change from PDRH mode to ACTH mode (automatically initiated by SLICOFI-2 at a mode change from PDRH to ACTH).

Operating Modes for SLIC-P with Three Battery Voltages ($V_{\text {BATH }}, V_{\text {BATL }}, V_{\text {BATR }}$) for voice and External Ringing

Table 46 SLIC-P Modes

SLIC Mode	Mode Description	Used SLIC-P Battery Voltage
PDH	Power Down High Impedance	$V_{\text {BATR }}$
PDRR	Power Down Resistive Ring	$V_{\text {BATR }}$
PDRRL	Power Down Load Resistive Ring Load	$V_{\text {BATR }}$
ACTL	Active Low	$V_{\text {BATL }}$
ACTH	Active High	$V_{\text {BATH }}$
ACTR	Active Ring	$V_{\text {BATR }}$
HIRT	High Impedance on RING and TIP	$V_{\text {BATR }}$
HIT	High Impedance on TIP	$V_{\text {BATR }}$
HIR	High Impedance on RING	$V_{\text {BATR }}$

Active (ACTL, ACTH, ACTR): These are the regular transmit and receive modes for voice band. The line driving section is operated between $V_{\mathrm{BATL}}, V_{\mathrm{BATH}}, V_{\mathrm{BATR}}$ and $V_{\text {BGND }}$.
PDRR is a power down mode providing a connection of $5 \mathrm{k} \Omega$ each from TIP to $V_{\text {BGND }}$ and RING to $V_{\text {BATR }}$, respectively, while the outputs of the buffers show high impedance. The current through these resistors is sensed and transferred to the IT pin to allow offhook supervision.
PDRRL is used as a transition mode at a mode change from PDRR mode to ACTR mode (automatically initiated by SLICOFI-2 at a mode change from PDRR to ACTR).
High Impedance (HIR/HIT): In this mode each of the line outputs can be programmed to show high impedance. HIT switches off the TIP buffer, while the current through the RING output still can be measured by IT or IL. Programming HIR switches off the RING buffer.

For Both Operating Modes of SLIC-P (Ringing and Non Ringing):

The Power Down modes are intended to reduce the power consumption of the linecard to a minimum: the PEB 4266 is switched off completely, no operation is available.
With respect to the output impedance of TIP and RING, the following Power Down modes have to be distinguished:
The PDH mode offers high impedance at TIP and RING.
High Impedance (HIRT): The output buffers of the Tip and Ring line show high impedance.

Preliminary

Figure 70 Interface SLICOFI-2 and SLIC-P
Capacitor and resistor values are specified in Chapter 8.

Preliminary

6 SLICOFI-2x Command Structure and Programming

With the commands described in this chapter, the SLICOFI-2x can be programmed, configured and tested very flexibly via the microcontroller interface or via the IOM-2 interface monitor channel.
The command structure uses one and two-byte commands in order to ensure a high flexible and quick programming procedure for the most common commands.

Structure of the First Command Byte

The first command byte includes the R/W bit, the addresses of the different channels and the command type.

Bit

7	6	5	4	3	2	1	0
RD	OP		ADR[2:0]		CMD[2:0]		

RD Read Data
$R D=0$ Write data to chip.
$R D=1$ Read data from chip.

OP Selects the usage of the CMD field
OP $=0$ The CMD field works as a CIOP (Command/Indication Operation) command and acts like the M[2:0] bits located in the CIDD byte of the IOM Interface ($\mu \mathrm{C}$ interface mode only). See Table 47.

Bit

OP $=1$ The CMD field acts as the SOP, COP or POP command described below.

DuSLIC

Preliminary
SLICOFI-2x Command Structure and Programming
Table 47 M2, M1, M0: General Operating Mode

Command/Indication Operation (CIOP)	SLICOFI-2x Operating Mode (for details see "Operating Modes for the DuSLIC Chip Set" on Page 78)		
M2	M1	M0	Sleep, Power Down (PDRx)
1	1	1	Power Down High Impedance (PDH)
0	0	0	Any Active mode
0	1	0	Ringing (ACTR Burst On)
1	0	1	Active with Metering
1	1	0	Ground Start
1	0	0	Ring Pause
0	0	1	

ADR[2:0] Channel address for the subsequent data
ADR[2:0] $=000 \quad$ Channel A
ADR[2:0] = $001 \quad$ Channel B
(other codes reserved for future use)

CMD[2:0] Command for programming the SLICOFI-2x (OP = 1) or command equivalent to the CIDD channel bits M[2:0] in microcontroller interface mode ($\mathrm{OP}=0$)
The first four commands have no second command byte following.
All necessary information is present in the first command byte.
CMD[2:0] $=000$ Soft reset of the chip (Reset routine for all channels will reset all configuration registers, CRAM data is not affected).
CMD[2:0] = 001 Soft reset for the specified channel A or B in ADR field
CMD[2:0] = 010 Resychronization of the PCM interface (only available when pin PCM $/ \overline{I O M-2}=1$)
CMD[2:0] = 011 reserved for future use
The second four commands are followed by a second command byte which defines additional information, e.g., specifying sub-adresses of the CRAM.
CMD[2:0] $=100$ SOP command (status operation, programming and monitoring of all status-relevant data).
CMD[2:0] = 101 COP command (coefficient operation, programming and monitoring of all coefficients in the CRAM).

DuSLIC

Preliminary

SLICOFI-2x Command Structure and Programming

CMD[2:0] = $110 \quad$ POP command (PINE access operation programming the EDSP).

CMD[2:0] = 111 reserved for production tests

Structure of the Second Command Byte

The second command byte specifies a particular SOP, COP or POP command, depending on the CMD[2:0] bits of the first command byte. In the following sections, the content of this register is described for each command group.
The second command byte specifies the initial offset for the subsequent data bytes. After each data byte transferred the internal offset is incremented automatically. Therefore it is possible to send a various number of data bytes with one SOP, COP or POP command. Writing over read-only registers will not destroy their contents.

Register Description Example

At the beginning of each register description a single line gives information about

- Offset: Offset of register address (hex)
- Name: Short name of the register
- Detailed name: Detailed name of the register
- Reset value: Value of the register after reset (hex)
"hw" - value depends on specific hardware fuses
- Test status: "T" - the register has no effect unless the TEST-EN bit in register LMCR1 is set to 1
- Channel selection: " N " - the register effects both SLICOFI-2x channels, " Y " - the register effects a specific SLICOFI-2x channel

The line is organized as follows (with example):

Offset	Name	Detailed Name	Reset Value	Test	Per Channel
$\mathbf{2 7} \mathbf{H}_{\mathrm{H}}$	TSTR1	Test Register $\mathbf{1}$	$\mathbf{0 0}_{\mathrm{H}}$	\mathbf{T}	\mathbf{Y}

DuSLIC

Preliminary

SLICOFI-2x Command Structure and Programming

6.1 Overview of Commands

SOP STATUS OPERATION

Bit	7	6	5	4	3	2	1	0
Byte 1	RD	1		ADR[2:0]		1	0	0
Byte 2	OFFSET[7:0]							

COP COEFFICIENT OPERATION

| Bit | 7 | 6 | 5 | 4 | 3 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Byte 1 | RD | $\mathbf{1}$ | ADR[2:0] | $\mathbf{1}$ | $\mathbf{0}$ | $\mathbf{1}$ | |
| Byte 2 | OFFSET[7:0] | | | | | | |

POP POP OPERATION (only SLICOFI-2 PEB 3265 used for DuSLIC-E/-E2/-P)

Bit	7	6	5	4	3	2	1	0
Byte 1	RD	1		ADR[2:0]		1	1	0
Byte 2	OFFSET[7:0]							

DuSLIC-E/-E2/-P

Preliminary

SLICOFI-2x Command Structure and Programming

6.2 SLICOFI-2 Command Structure and Programming

This chapter comprises only the SLICOFI-2 PEB 3265 and therefore the DuSLIC-E, DuSLIC-E2 and DuSLIC-P chip sets.

6.2.1 SOP Command

The SOP "Status Operation" command provides access to the configuration and status registers of the SLICOFI-2. Common registers change the mode of the entire SLICOFI-2 chip, all other registers are channel-specific. It is possible to access single or multiple registers. Multiple register access is realized by an automatic offset increment. Write access to read-only registers is ignored and does not abort the command sequence. Offsets may change in newer versions of the SLICOFI-2.
(All empty register bits have to be filled with zeros.)

6.2.1.1 SOP Register Overview

${ }^{00}{ }_{\mathrm{H}}$
REVISION Revision Number (read-only)
$\square \operatorname{REV}[7: 0]$
${ }^{01}{ }_{H}$
CHIPID 1
Chip Identification 1 (read-only)
for internal use only
02_{H}
CHIPID 2 Chip Identification 2 (read-only)
for internal use only
03_{H}
CHIPID 3
Chip Identification 3 (read-only)

$0^{04} \mathrm{H}$
FUSE1
Fuse Register 1
for internal use only
0^{05} H
PCMC1
PCM Configuration Register 1

DBL-CLK	X-SLOPE	R-SLOPE	NO-DRIVE-0	SHIFT	PCMO[2:0]

0^{06}
XCR

EDSP-EN	ASYNCH-R	0	0	0	0

DuSLIC-E/-E2/-P

SLICOFI-2x Command Structure and Programming

Preliminary

${ }_{1} \mathrm{C}_{\mathrm{H}}$	LMCR1		Level Metering Configuration Register 1					
	TEST-EN	LM-EN	LM-THM	PCM2DC	$\begin{aligned} & \text { LM2 } 2 \\ & \text { PCM } \end{aligned}$	LM-ONCE	LM-MASK	DC-AD16
$1 \mathrm{D}_{\mathrm{H}}$	LMCR2		Level Metering Configuration Register 2					
	LM-NOTCH	LM-FILT	LM-RECT	RAMP-EN		LM-SEL[3:0]		
$1 \mathrm{E}_{\mathrm{H}}$	LMCR3		Level Metering Configuration Register 3					
	$\underset{\text { EN }}{\substack{\text { AC-SHORT- } \\ \text { EN }}}$	RTR-SEL	LM-ITIME[3:0]				RNG-OFFSET[1:0]	
$1 \mathrm{~F}_{\mathrm{H}}$	OFR1		Offset Register 1 (High Byte)					
	OFFSET-H[7:0]							
$20^{\text {H }}$	OFR2		Offset Register 2 (Low Byte)					
	OFFSET-L[7:0]							
21_{H}	PCMR1		PCM Receive Register 1					
	R1-HW				1-TS[6:			

22_{H}	PCMR2	PCM Receive Register 2	
	R2-HW		R2-TS[6:0]
23_{H}	PCMR3 PCM Receive Register 3		
	R3-HW		R3-TS[6:0]
24_{4}	PCMR4 PCM Receive Register 4		
	R4-HW		R4-TS[6:0]
25_{H}	PCMX1 PCM Transmit Register 1		
	X1-HW		X1-TS[6:0]

DuSLIC-E/-E2/-P

Preliminary

SLICOFI-2x Command Structure and Programming

6.2.1.2 SOP Register Description

$\mathbf{0 0}_{\mathbf{H}}$	REVISION	Revision Number (read-only)	curr. rev.		N

Bit

7	6	5	4	3
				REV[7:0]

\qquad

REV[7:0] Current revision number of the SLICOFI-2.

03_{H}	CHIPID 3	Chip Identification 3 (read-only)	hw		\mathbf{N}

Bit

7	6	5	4	3	2	1	0
for internal use only							

$\mathbf{0 4}_{\mathrm{H}}$	FUSE1	Fuse Register 1	hw		N

Bit | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| for internal use only | | | | | | | |

05 H	PCMC1	PCM Configuration Register 1				00 ${ }_{\text {H }}$		N
Bit	7	6	5	4	3	2	1	0
	DBL-CLK	X-SLOPE	R-SLOPE	NO-DRIVE-0	SHIFT		O[

DBL-CLK Clock mode for the PCM interface (see Figure 59 on Page 141)
DBL-CLK = $0 \quad$ Single-clocking is used.
DBL-CLK = 1 Double-clocking is used.

X-SLOPE Transmit slope (see Figure 59 on Page 141)
X-SLOPE $=0 \quad$ Transmission starts with rising edge of the clock.
X-SLOPE $=1 \quad$ Transmission starts with falling edge of the clock.

R-SLOPE Receive slope (see Figure 59 on Page 141)
R-SLOPE $=0 \quad$ Data is sampled with falling edge of the clock.
R-SLOPE $=1 \quad$ Data is sampled with rising edge of the clock.

NO- Driving mode for bit 0 (only available in single-clocking mode).
DRIVE-0

NO-DRIVE $=0$	Bit 0 is driven the entire clock period.
NO-DRIVE $=1$	Bit 0 is driven during the first half of the clock period
only.	

SHIFT Shifts the access edges by one clock cycle in double-clocking mode.
SHIFT $=0 \quad$ No shift takes place.
SHIFT $=1 \quad$ Shift takes place.

PCMO[2:0] The whole PCM timing is moved by PCMO data periods against the FSC signal.
PCMO[2:0] $=000 \quad$ No offset is added.
PCMO[2:0] = 001 One data period is added.

PCMO[2:0] = 111 Seven data periods are added.

DuSLIC-E/-E2/-P

Preliminary
SLICOFI-2x Command Structure and Programming

$\mathbf{0 6}$	XCR	Extended Configuration Register	$\mathbf{0 0}_{\mathbf{H}}$		\mathbf{N}

Bit

6	5	4	3		2	1	0
EDSP- EN	ASYNC H-R	0	0	0	0		

EDSP-EN Enables the Enhanced Digital Signal Processor EDSP.
EDSP-EN = $0 \quad$ Enhanced Digital Signal Processor is switched off.
EDSP-EN $=1 \quad$ Enhanced Digital Signal Processor is switched on.

ASYNCH-R Enables asynchronous ringing in case of external ringing. ASYNCH-R $=0 \quad$ External ringing with zero crossing selected. ASYNCH-R = $1 \quad$ Asynchronous ringing selected.

07_{H}	INTREG1	Interrupt Register 1 (read-only)					O_{H}	Y
Bit	7	6	5	4	3	2	1	0
	INT-CH	HOOK	GNDK	GNKP	ICON	VRTLIM	OTEMP	SYNCFAIL

INT-CH Interrupt channel bit. This bit indicates that the corresponding channel caused the last interrupt. Will be automatically set to zero after all interrupt registers were read.
INT-CH $=0 \quad$ No interrupt in corresponding channel.
INT-CH = 1 Interrupt caused by corresponding channel.
HOOK On/off-hook information for the loop in all operating modes, filtered by the DUP (Data Upstream Persistence) counter and interrupt generation masked by the HOOK-M bit. A change of this bit generates an interrupt.

$$
\begin{array}{ll}
\text { HOOK }=0 & \text { On-hook. } . \\
\text { HOOK }=1 & \text { Off-hook. } .
\end{array}
$$

GNDK Ground-Key or Ground Start information via the IL pin in all active modes, filtered for AC suppression by the DUP counter and interrupt generation masked by the GNDK-M bit. A change of this bit generates an interrupt.
GNDK $=0 \quad$ No longitudinal current detected.
GNDK $=1 \quad$ Longitudinal current detected (Ground Key or Ground Start).

GNKP Ground Key polarity. Indicating the active Ground Key level (positive/ negative) interrupt generation masked by the GNKP-M bit. A change of this bit generates an interrupt. This bit can be used to get information about interference voltage influence.
GNKP $=0 \quad$ Negative Ground Key threshold level active.
GNKP = $1 \quad$ Positive Ground Key threshold level active.

DuSLIC-E/-E2/-P

SLICOFI-2x Command Structure and Programming

ICON Constant current information. Filtered by DUP-IO counter and interrupt generation masked by the ICON-M bit. A change of this bit generates an interrupt.
ICON = $0 \quad$ Resistive or constant voltage feeding.
$I C O N=1 \quad$ Constant current feeding.

VRTLIM Exceeding of a programmed voltage threshold for the TIP/RING voltage, filtered by the DUP-IO counter and interrupt generation masked by the VRTLIM-M bit. A change of this bit causes an interrupt.
The voltage threshold for the TIP/RING voltage is set in CRAM (calculated with DuSLICOS DC Control Parameter 2/3: Tip-Ring Threshold).
VRTLIM $=0 \quad$ Voltage at Ring/Tip is below the limit.
VRTLIM $=1 \quad$ Voltage at Ring/Tip is above the limit.

OTEMP Thermal overload warning from the SLIC-E/-E2/-P line drivers masked by the OTEMP-M bit. An interrupt is only generated if the OTEMP bit changes from 0 to1.
OTEMP $=0 \quad$ Temperature at SLIC-E/-E2/-P is below the limit.
OTEMP $=1 \quad$ Temperature at SLIC-E/-E2/-P is above the limit. In case of bit PDOT-DIS $=0$ (register BCR2) the DuSLIC is switched automatically into PDH mode and OTEMP is hold at 1 until the SLICOFI-2 is set to PDH by a CIOP/CIDD command.

SYNC-FAIL Failure of the Synchronization of the IOM-2/PCM interface. An interrupt is only generated if the SYNC-FAIL bit changes from 0 to1.
Resynchronization of the PCM interface can be done with the
Resynchronization command (see Chapter 6)
SYNC-FAIL $=0 \quad$ Synchronization OK.
SYNC-FAIL = 1 Synchronization failure.

08_{H}	INTREG2	Interrupt Register 2 (read-only)					20_{H}		Y
Bit	7	6	5	4	3	2		1	0
	$\begin{array}{\|c\|} \hline \text { LM- } \\ \text { THRES } \end{array}$	READY	RSTAT	LM-OK			:1]-D		

After a hardware reset the RSTAT bit is set and generates an interrupt. Therefore the default value of INTREG2 is 20h. After reading all four interrupt registers, the INTREG2 value changes to 4Fh.

LM-THRES Indication whether the level metering result is above or below the threshold set by the CRAM coefficients
LM-THRES $=0$ Level metering result is below threshold.
LM-THRES $=1$ Level metering result is above threshold.

READY Indication whether the ramp generator has finished. An interrupt is only generated if the READY bit changes from 0 to 1 . Upon a new start of the ramp generator, the bit is set to 0 . For further information regarding soft reversal see Chapter 3.7.2.1.
READY = $0 \quad$ Ramp generator active .
READY = $1 \quad$ Ramp generator not active .
RSTAT Reset status since last interrupt.
RSTAT $=0 \quad$ No reset has occurred since the last interrupt.
RSTAT $=1 \quad$ Reset has occurred since the last interrupt.
LM-OK Level metering sequence has finished. An interrupt is only generated if the LM-OK bit changes from 0 to 1 .
LM-OK $=0 \quad$ Level metering result not ready.
LM-OK = $1 \quad$ Level metering result ready.
IO[4:1]-DU Data on IO pins 1 to 4 filtered by DUP-IO counter and interrupt generation masked by the IO[4:1]-DU-M bits. A change of any of this bits generates an interrupt.

DuSLIC-E/-E2/-P

Preliminary

SLICOFI-2x Command Structure and Programming

$09_{\text {H }}$	INTREG3	Interrupt Register 3 (read-only)							Y
Bit	7	6	5	4	3	2		1	0
	DTMFOK		DTMF-KEY[4:0]					$\begin{aligned} & \text { זDR- } \\ & \text { OK } \end{aligned}$	UTDXOK

DTMF-OK Indication of a valid DTMF Key by the DTMF receiver. A change of this bit generates an interrupt.
DTMF-OK $=0 \quad$ No valid DTMF Key was encountered by the DTMF receiver.
DTMF-OK = $1 \quad$ A valid DTMF Key was encountered by the DTMF receiver.

DTMF-KEY[4:0] Valid DTMF keys decoded by the DTMF receiver.

Table 48 Valid DTMF Keys (Bit DTMF-KEY4 = 1)

$\boldsymbol{f}_{\text {Low }}$ [Hz]							
	HIGH [Hz]	DIGIT	DTMF- KEY4	DTMF- KEY3	DTMF- KEY2	DTMF- KEY1	DTMF- KEYO
697	1209	1	1	0	0	0	1
697	1336	2	1	0	0	1	0
697	1477	3	1	0	0	1	1
770	1209	4	1	0	1	0	0
770	1336	5	1	0	1	0	1
770	1477	6	1	0	1	1	0
852	1209	7	1	0	1	1	1
852	1336	8	1	1	0	0	0
852	1477	9	1	1	0	0	1
941	1336	0	1	1	0	1	0
941	1209	$*$	1	1	0	1	1
941	1477	$\#$	1	1	1	0	0
697	1633	A	1	1	1	0	1
770	1633	B	1	1	1	1	0

Preliminary

SLICOFI-2x Command Structure and Programming

Table 48 Valid DTMF Keys (Bit DTMF-KEY4 = 1) (cont'd)

$\boldsymbol{f}_{\text {Low }}[\mathrm{Hz}]$	$\boldsymbol{f}_{\text {HIGH }}$ $[\mathrm{Hz}]$	DIGIT	DTMF- KEY4	DTMF- KEY3	DTMF- KEY2	DTMF- KEY1	DTMF- KEY0
852	1633	C	1	1	1	1	1
941	1633	D	1	0	0	0	0

UTDR-OK Universal Tone Detection Receive (e.g., Fax/Modem tones) UTDR-OK $=0 \quad$ No specific tone signal was detected. UTDR-OK = $1 \quad$ A specific tone signal was detected.

UTDX-OK Universal Tone Detection Transmit (e.g., Fax/Modem tones) UTDX-OK $=0 \quad$ No specific tone signal was detected.
UTDX-OK = $1 \quad$ A specific tone signal was detected.

Preliminary
SLICOFI-2x Command Structure and Programming

$0 \mathrm{~A}_{\mathrm{H}}$	INTREG4	Interrupt Register 4 (read-only)					$0^{0} \mathrm{H}$	Y
Bit	7	6	5	4	3	2	1	0
	EDSP- FAIL	0	0	0	CIS- BOF	CIS- BUF	CIS- REQ	$\begin{aligned} & \text { CIS- } \\ & \text { ACT } \end{aligned}$

EDSP-FAIL Indication of a malfunction of the Enhanced Digital Signal Processor EDSP.

EDSP-FAIL $=0$ Enhanced Digital Signal Processor EDSP normal operation.
EDSP-FAIL $=1$ Enhanced Digital Signal Processor EDSP failure. It is necessary to restart this DSP with bit EDSP-EN in the XCR register set.

CIS-BOF Caller ID buffer overflow. An interrupt is only generated if the CIS-BOF bit changes from 0 to 1 .
CIS-BOF $=0 \quad$ Not data buffer overflow has occurred.
CIS-BOF $=1 \quad$ Too many bytes have been written to the data buffer for Caller ID generation. Caller ID generation is aborted and the buffer is cleared.

CIS-BUF Caller ID buffer underflow. An interrupt is only generated if the CIS-BUF bit changes from 0 to 1 .
CIS-BUF $=0 \quad$ Data buffer for Caller ID generation is filled.
CIS-BUF $=1$ Data buffer for Caller ID generation is empty (underflow).

CIS-REQ Caller ID data request. An interrupt is only generated if the CIS-REQ bit changes from 0 to 1 .
CIS-REQ $=0 \quad$ Caller ID data buffer requests no data.
CIS-REQ $=1 \quad$ Caller ID data buffer requests more data to transmit, when the amount of data stored in the buffer is less than the buffer request size.

CIS-ACT Caller ID generator active.
This is a status bit only. No interrupt will be generated.
CIS-ACT $=0 \quad$ Caller ID generator is not active.
CIS-ACT $=1 \quad$ Caller ID generator is active.

$\mathbf{0 B}_{\mathbf{H}}$	CHKR1	Checksum Register 1 (High Byte) (read-only)	$\mathbf{0 0}_{\mathbf{H}}$		\mathbf{Y}

Bit $\left.\begin{array}{c|cccccc|}\hline 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}\right]$

| SUM- |
| :---: | :---: |
| OK |

SUM-OK Information about the validity of the checksum. The checksum is valid if the internal checksum calculation is finished.
Checksum calculation:
For (cram_adr = 0 to 159) do cram_dat = cram[cram_adr] csum $[14: 0]=\left(\operatorname{csum}[13: 0] \&^{1}\right)$ ' 0 ') xor ('0000000' \& cram_dat[7:0]) xor ('0000000000000' \& csum[14] \& csum[14]) End
SUM-OK $=0 \quad$ CRAM checksum is not valid.
SUM-OK = $1 \quad$ CRAM checksum is valid.

1) " $\&$ " means a concatenation, not the logic operation

CHKSUM-H[6:0] CRAM checksum high byte

$\mathbf{0 C H}_{\text {H }}$	CHKR2	Checksum Register 2 (Low Byte) (read-only)					0^{00}		Y
Bit	7	6	5	4	3	2		1	0
	CHKSUM-L[7:0]								

CHKSUM-L[7:0] CRAM checksum low byte

DuSLIC-E/-E2/-P

Preliminary

OD ${ }_{\text {H }}$	LMRES1	Level Metering Result 1 (High Byte) (read-only)				0^{00}		Y
Bit	$7 \quad 6$	5	4	3	2	1	0	
	LM-VAL-H[7:0]							

LM-VAL-H[7:0] LM result high byte (selected by the LM-SEL bits in the LMCR2 register)

$\mathbf{0 E}_{\mathbf{H}}$	LMRES2	Level Metering Result 2 (Low Byte) (read-only)	$\mathbf{0 0}_{\mathbf{H}}$		\mathbf{Y}

LM-VAL-L[7:0] LM result low byte
(selected by the LM-SEL bits in the LMCR2 register)

OF_{H}	FUSE2	Fuse Register 2					hw		Y
Bit	7	6	5	4	3	2		1	0
	for internal use only								

$\mathbf{1 0}_{\mathrm{H}}$	FUSE3	Fuse Register 3	hw		Y

Bit

7	6	5	4	3	2	1	0
for internal use only							

Preliminary
SLICOFI-2x Command Structure and Programming

11 H	MASK	Mask Register					FF_{H}	Y
Bit	7	6	5	4	3	2	1	0
	$\begin{array}{\|c\|} \hline \text { READY } \\ -M \end{array}$	$\begin{gathered} \mathrm{HOOK} \\ -\mathrm{M} \end{gathered}$	$\begin{gathered} \hline \text { GNDK } \\ -M \end{gathered}$	$\begin{gathered} \text { GNKP } \\ -M \end{gathered}$	$\begin{gathered} \hline \text { ICON } \\ -M \end{gathered}$	$\begin{array}{\|c\|} \hline \text { VRTLIM } \\ -M \end{array}$	$\begin{gathered} \hline \text { OTEMP } \\ -M \end{gathered}$	$\begin{gathered} \hline \text { SYNC } \\ -M \end{gathered}$

The mask bits in the mask register only influence the generation of an interrupt. Even if the mask bit is set to 1 , the corresponding status bit in the INTREGx registers gets updated to show the current status of the corresponding event.

READY-M Mask bit for Ramp Generator READY bit
READY-M $=0 \quad$ An interrupt is generated if the READY bit changes from 0 to 1 .
READY-M $=1 \quad$ Changes of the READY bit don't generate interrupts.

HOOK-M Mask bit for Off-hook Detection HOOK bit HOOK-M = $0 \quad$ Each change of the HOOK bit generates an interrupt. HOOK-M = 1 Changes of the HOOK bit don't generate interrupts.

GNDK-M Mask bit for Ground Key Detection GNDK bit GNDK-M = $0 \quad$ Each change of the GNDK bit generates an interrupt. GNDK-M = $1 \quad$ Changes of the GNDK bit don't generate interrupts.

GNKP-M Mask bit for Ground Key Level GNKP bit
GNKP-M $=0 \quad$ Each change of the GNKP bit generates an interrupt.
GNKP-M = $1 \quad$ Changes of the GNKP bit don't generate interrupts.
ICON-M Mask bit for Constant Current Information ICON bit ICON-M = $0 \quad$ Each change of the ICON bit generates an interrupt. ICON_M = $1 \quad$ Changes of the ICON bit don't generate interrupts.

VRTLIM-M Mask bit for Programmed Voltage Limit VRTLIM bit VRTLIM-M $=0 \quad$ Each change of the VRTLIM bit generates an interrupt.
VRTLIM-M = $1 \quad$ Changes of the VRTLIM bit don't generate interrupts.

OTEMP-M Mask bit for Thermal Overload Warning OTEMP bit OTEMP-M $=0 \quad$ A change of the OTEMP bit from 0 to 1 generates an interrupt.
OTEMP-M = 1 A change of the OTEMP bit from 0 to 1 doesn't generate interrupts.

SYNC-M Mask bit for Synchronization Failure SYNC-FAIL bit SYNC-M $=0 \quad$ A change of the SYNC-FAIL bit from 0 to 1 generates an interrupt.
SYNC-M $=1 \quad$ A change of the SYNC-FAIL bit from 0 to 1 doesn't generate interrupts.

Preliminary
SLICOFI-2x Command Structure and Programming

12H	IOCTL1	IO Control Register 1					OF_{H}		Y
Bit	7	6	5	4	3	2		1	0
		IO[4:1]-INEN				IO[4:1]-M			

The mask bits IO[4:1]-M only influence the generation of an interrupt. Even if the mask bit is set to 1 , the corresponding status bit in the INTREGx registers gets updated to show the current status of the corresponding event.

IO4-INEN Input enable for programmable IO pin IO4
IO4-INEN = 0 Input Schmitt trigger of pin IO4 is disabled.
IO4-INEN = 1 Input Schmitt trigger of pin IO4 is enabled.

IO3-INEN Input enable for programmable IO pin IO3
IO3-INEN = 0 Input Schmitt trigger of pin IO3 is disabled.
IO3-INEN = 1 Input Schmitt trigger of pin IO3 is enabled.

IO2-INEN Input enable for programmable IO pin IO2
IO2-INEN = 0 Input Schmitt trigger of pin IO2 is disabled.
IO2-INEN = 1 Input Schmitt trigger of pin IO2 is enabled.

IO1-INEN Input enable for programmable IO pin IO1
IO1-INEN = 0 Input Schmitt trigger of pin IO1 is disabled.
IO1-INEN = 1 Input Schmitt trigger of pin IO1 is enabled.

IO4-M Mask bit for IO4-DU bit
$\mathrm{IO}-\mathrm{M}=0 \quad$ Each change of the IO4 bit generates an interrupt.
$\mathrm{IO}-\mathrm{M}=1 \quad$ Changes of the IO4 bit don't generate interrupts.
IO3-M Mask bit for IO3-DU bit
IO3-M = $0 \quad$ Each change of the IO3 bit generates an interrupt.
$\mathrm{IO}-\mathrm{M}=1 \quad$ Changes of the IO3 bit don't generate interrupts.

Preliminary

SLICOFI-2x Command Structure and Programming

IO2-M Mask bit for IO2-DU bit
IO2-M = $0 \quad$ Each change of the IO2 bit generates an interrupt.
$\mathrm{IO}-\mathrm{M}=1 \quad$ Changes of the IO2 bit don't generate interrupts.
IO1-M Mask bit for IO1-DU bit
$\mathrm{IO1-M}=0 \quad$ Each change of the IO1 bit generates an interrupt.
$\mathrm{IO1}-\mathrm{M}=1 \quad$ Changes of the IO1 bit don't generate interrupts.

Preliminary

13_{H}	IOCTL2	IO Control Register 2					0^{00}		Y
Bit	7	6	5	4	3	2		1	0
		IO[4:1]-OEN				IO[4:1]-DD			

IO4-OEN Enabling output driver of the IO4 pin
IO4-OEN = 0 The output driver of the IO4 pin is disabled.
$I O 4-O E N=1$ The output driver of the IO4 pin is enabled.
IO3-OEN Enabling output driver of the IO 3 pin
IO3-OEN = 0 The output driver of the IO3 pin is disabled.
IO3-OEN = 1 The output driver of the IO3 pin is enabled.

IO2-OEN Enabling output driver of the IO2 pin.
If SLIC-P is selected (bits SEL-SLIC [1:0] in register BCR1 set to 01), pin IO2 cannot be controlled by the user but is utilized by the SLICOFI-2 to control the C3 input of SLIC-P.
IO2-OEN = 0 The output driver of the IO2 pin is disabled.
IO2-OEN = 1 The output driver of the IO2 pin is enabled.

IO1-OEN Enabling output driver of the IO1 pin.
If external ringing is selected (bit REXT-EN in register BCR2 set to 1), pin IO1 cannot be controlled by the user but is utilized by the SLICOFI-2 to control the ring relay.
IO1-OEN = 0 The output driver of the IO1 pin is disabled.
IO1-OEN = 1 The output driver of the IO1 pin is enabled.

IO4-DD Value for the programmable IO pin IO4 if programmed as an output pin. IO4-DD $=0 \quad$ The corresponding pin is driving a logic 0 .
IO4-DD $=1 \quad$ The corresponding pin is driving a logic 1.

IO3-DD Value for the programmable IO pin IO3 if programmed as an output pin.
IO3-DD $=0 \quad$ The corresponding pin is driving a logic 0 .
$I O 3-D D=1 \quad$ The corresponding pin is driving a logic 1.

IO2-DD Value for the programmable IO pin IO2 if programmed as an output pin. IO2-DD $=0 \quad$ The corresponding pin is driving a logic 0. $I O 2-D D=1 \quad$ The corresponding pin is driving a logic 1.

IO1-DD Value for the programmable IO pin IO1 if programmed as an output pin. IO1-DD $=0 \quad$ The corresponding pin is driving a logic 0. $I O 1-D D=1 \quad$ The corresponding pin as driving a logic 1.

14_{H}	IOCTL3	IO Control Register 3					$\mathbf{9 4}_{\mathrm{H}}$		Y
Bit	7	6	5	4	3	2		1	0
		DUP[3:0]					-IO[3		

DUP[3:0] Data Upstream Persistence Counter end value. Restricts the rate of interrupts generated by the HOOK bit in the interrupt register INTREG1. The interval is programmable from 1 to 16 ms in steps of 1 ms (reset value is 10 ms).
The DUP[3:0] value affects the blocking period for ground key detection (see Chapter 3.6).

DUP[3:0]	HOOK Active, Ringing	HOOK Power Down	GNDK	GNDK $f_{\text {min,ACsup }}{ }^{1)}$
0000	1	2 ms	4 ms	125 Hz
0001	2	4 ms	8 ms	62.5 Hz
\ldots				
1111	16	32 ms	64 ms	7.8125 Hz

${ }^{1)}$ Minimum frequency for $A C$ suppression.
DUP-IO[3:0] Data Upstream Persistence Counter end value for

- the IO pins when used as digital input pins.
- the bits ICON and VRTLIM in register INTREG1.

The interval is programmable from 0.5 to 60.5 ms in steps of 4 ms (reset value is 16.5 ms).

$\mathbf{1 5}_{\mathrm{H}}$	BCR1	Basic Configuration Register 1						$\mathbf{0 0}_{\mathbf{H}}$		\mathbf{Y}

HIR This bit modifies different basic modes. In ringing mode an unbalanced ringing on the RING wire (ROR) is enabled. In active mode, high impedance on the RING wire is activated (HIR). If the HIT bit is set in addition to the HIR bit, the HIRT mode is activated.
HIR = $0 \quad$ Normal operation (ringing mode).
HIR = $1 \quad$ Controls SLIC-E/-E2/-P interface and sets the RING wire to high impedance (active mode).

HIT This bit modifies different basic modes. In ringing mode an unbalanced ringing on the TIP wire (ROT) is enabled. In active mode, high impedance on the TIP wire is performed (HIT).If the HIR bit is set in addition to the HIT bit, the HIRT mode is activated.

HIT $=0 \quad$ Normal operation (ringing mode).
HIT = $1 \quad$ Controls SLIC-E/-E2/-P interface and sets the TIP wire to high impedance (active mode).

SLEEP-EN Enables Sleep mode of the DuSLIC channel. Valid only in the Power Down mode of the SLICOFI-2.
SLEEP-EN $=0 \quad$ Sleep mode is disabled.
SLEEP-EN = 1 Sleep mode is enabled.

REVPOL Reverses the polarity of DC feeding REVPOL $=0 \quad$ Normal polarity.
REVPOL $=1 \quad$ Reverse polarity.

ACTR Selection of extended battery feeding in Active mode. Changes also the voltage in Power Down Resistive mode for SLIC-P. In this case $V_{\text {BATR }}$ for SLIC-P and $V_{\text {HR }}-V_{\text {BATH }}$ for SLIC-E/-E2 is used.
ACTR $=0 \quad$ No extended battery feeding selected.
ACTR $=1 \quad$ Extended battery feeding selected.

ACTL Selection of the low battery supply voltage $V_{\text {BATL }}$ on SLIC-E/-E2/-P if available. Valid only in the Active mode of the SLICOFI-2.
$A C T L=0 \quad$ Low battery supply voltage on SLIC-E/-E2/-P is not selected.
$\mathrm{ACTL}=1 \quad$ Low battery supply voltage on SLIC-E/-E2/-P is selected.
SEL-SLIC[1:0] Selection of the current SLIC type used. For SLIC-E/-E2 and SLIC-P, the appropriate predefined mode table has to be selected.

SEL-SLIC[1:0]=00	SLIC-E/-E2 selected.
SEL-SLIC[1:0]=01	SLIC-P selected.
SEL-SLIC[1:0]=10	SLIC-P selected for extremely power sensitive
	applications using external ringing.
SEL-SLIC[1:0]=111	Reserved for future use.

For SLIC-P two selections are possible.

- The standard SLIC-P selection automatically uses the IO2 pin of the SLICOFI-2 to control the C3 pin of the SLIC-P. By using pin C3 additionaly to the pins C1 and C2 all possible operating modes of the SLIC-P can be selected.
- For extremely power sensitive applications using external ringing with SLIC-P SEL-SLIC[1:0] $=10$ should be chosen. In this case internal unbalanced ringing in not needed and therefore there is no need to switch the C3 pin of the SLIC-P to 'High'. The C3 pin of the SLIC-P has be connected to GND and the IO2 pin of the SLICOFI-2 is free programmable for the user.
There is no need for a high battery voltage for ringing either. This mode uses VBATR for the on-hook voltage (e.g. - 48 V) in Power Down Resistive (PDR) mode and the other battery supply voltages (e.g. VBATH $=-24 \mathrm{~V}$ and VBATL $=-18 \mathrm{~V}$) can be used for the off-hook state. This will help to save power because the lowest possible battery voltage can be selected (see DuSLIC Voltage and Power Application Note).

Preliminary
SLICOFI-2x Command Structure and Programming

16_{H}	BCR2	Basic Configuration Register 2				$0^{0} \mathrm{H}$		Y
Bit	7	6	5	4	3	2	1	0
	$\begin{gathered} \text { REXT- } \\ \text { EN } \end{gathered}$	SOFTDIS	$\begin{gathered} \hline \text { TTX- } \\ \text { DIS } \end{gathered}$	$\begin{gathered} \text { TTX- } \\ 12 \mathrm{~K} \end{gathered}$	HIM-AN	$\begin{gathered} \text { AC- } \\ \text { XGAIN } \end{gathered}$	UTDXSRC	PDOTDIS

REXT-EN Enables the use of an external ring signal generator. The synchronization is done via the RSYNC pin and the Ring Burst Enable signal is transferred via the 101 pin.
REXT-EN $=0$ External ringing is disabled.
REXT-EN $=1 \quad$ External ringing enabled.
SOFT-DIS Polarity soft reversal (to minimize noise on DC feeding)
SOFT-DIS $=0 \quad$ Polarity soft reversal active.
SOFT-DIS $=1 \quad$ Polarity hard reversal.
TTX-DIS Disables the generation of TTX bursts for metering signals. If TTX bursts are disabled, reverse polarity will be used instead.
TTX-DIS $=0 \quad$ TTX bursts are enabled.
TTX-DIS $=1 \quad$ TTX bursts are disabled, reverse polarity used.

TTX-12K Selection of TTX frequencies
TTX-12K = $0 \quad$ Selects 16 kHz TTX signals instead of 12 kHz signals.
TTX-12K = $1 \quad 12 \mathrm{kHz}$ TTX signals.

HIM-AN Higher impedance in analog impedance matching loop.
HIM-AN corresponds to the coefficients calculated with DuSLICOS. If the coefficients are calculated with standard impedance in analog impedance matching loop, HIM-AN must be set to 0 ; if the coefficients are calculated with high impedance in analog impedance matching loop, HIM-AN must be set to 1 .

HIM-AN $=0 \quad$ Standard impedance in analog impedance matching loop (300 Ω).
HIM-AN = $1 \quad$ High impedance in analog impedance matching loop (600 Ω).

AC-XGAIN Analog gain in transmit direction (should be set to zero).
AC-XGAIN $=0 \quad$ No additional analog gain in transmit direction.
AC-XGAIN $=1 \quad$ Additional 6 dB analog amplification in transmit direction.

UTDX-SRC Universal Tone Detector transmit source
UTDX-SRC $=0 \quad$ The Universal Tone Detection unit uses the data from the transmit path directly (UTDX-SUM = 0) or uses the data from the sum signal of receive path and LEC (if LEC is enabled) (UTDX-SUM = 1).
UTDX-SRC $=1 \quad$ The Universal Tone Detection unit uses the data from the LEC output, if the LEC is enabled (LEC-EN $=1$), otherwise the UTD unit uses automatically the transmit signal.
(see Figure 32 on Page 63)
PDOT-DIS Power Down Overtemperature Disable
PDOT-DIS $=0$ When overtemperature is detected, the SLIC is automatically switched into Power Down High Impedance mode (PDH). This is the safe operation mode for the SLIC-E/-E2/-P in case of overtemperature. To leave the automatically activated PDH mode, DuSLIC has to be switched manually to PDH mode and then in the mode as desired.
PDOT-DIS $=1$ When over temperature is detected, the SLIC-E/-E2/ -P doesn't automatically switch into Power Down High Impedance mode. In this case the output current of the SLIC-E/-E2/-P buffers is limited to a value which keeps the SLIC-E/-E2/-P temperature below the upper temperature limit.

Preliminary
SLICOFI-2x Command Structure and Programming

$17_{\text {H }}$	BCR3	Basic Configuration Register 3				00_{H}		Y
Bit	7	6	5	4	3	2	1	0
	$\begin{aligned} & \text { MU- } \\ & \text { LAW } \end{aligned}$	LIN	PCM16K	PCMX- EN	$\begin{gathered} \text { CONFX } \\ \text {-EN } \end{gathered}$	CONFEN	LPRXCR	CRAMEN

MU-LAW Selects the PCM Law
MU-LAW = $0 \quad$ A-Law enabled.
MU-LAW $=1 \quad \mu$-Law enabled.

LIN Voice transmission in a 16-bit linear representation for test purposes.
Note: Voice transmission on the other channel is inhibited if one channel is set to linear mode and IOM-2-interface is used. In the PCM/ μC interface mode both channels can be in linear mode using two consecutive PCM timeslots on the highways. A proper timeslot selection must be specified.
LIN $=0 \quad$ PCM mode enabled (8 bit, A-law or μ-law).
LIN = $1 \quad$ Linear mode enabled (16 bit).

PCM16K Selects $16-\mathrm{kHz}$ sample rate for the PCM interface.
PCM16K $=0 \quad 16-\mathrm{kHz}$ mode disabled (8 kHz sampling rate).
$P C M 16 K=1 \quad 16-\mathrm{kHz}$ mode enabled.

PCMX-EN Enables writing of subscriber voice data to the PCM highway.
PCMX-EN $=0$ Writing of subscriber voice data to PCM highway is disabled.
PCMX-EN $=1$ Writing of subscriber voice data to PCM highway is enabled.

CONFX-EN Enables an external three-party conference.
CONFX-EN = 0 External conference is disabled.
CONFX-EN = 1 External conference is enabled.

SLICOFI-2x Command Structure and Programming

CONF-EN Selection of three-party conferencing for this channel. The voice data of this channel and the voice data from the corresponding conferencing channels (see Chapter 5.1.1) are added and fed to analog output (see Chapter 3.10).
CONF-EN $=0$ Three-party conferencing is not selected.
CONF-EN $=1$ Three-party conferencing is selected.

LPRX-CR Select CRAM coefficients for the filter characteristic of the LPR/LPX filters. These coefficients my be enabled in case of a modem transmission to improve modem performance.
LPRX-CR $=0 \quad$ Coefficients from ROM are used.
LPRX-CR = 1 Coefficients from CRAM are used.

CRAM-EN Coefficients from CRAM are used for programmable filters and DC loop behavior.
CRAM-EN $=0 \quad$ Coefficients from ROM are used.
CRAM-EN =1 Coefficients from CRAM are used.

$18_{\text {H }}$	BCR4	Basic Configuration Register 4						Y
Bit	7	6	5	4	3	2	1	0
	TH-DIS	IM-DIS	AX-DIS	AR-DIS	FRXDIS	FRRDIS	$\begin{gathered} \hline \text { HPX- } \\ \text { DIS } \end{gathered}$	HPRDIS

TH-DIS Disables the TH filter.
TH-DIS $=0 \quad$ TH filter is enabled.
TH-DIS $=1 \quad$ TH filter is disabled $\left(\mathrm{H}_{\mathrm{TH}}=0\right)$.
IM-DIS Disables the IM filter.
IM-DIS = $0 \quad$ IM filter is enabled.
$I M-D I S=1 \quad I M$ filter is disabled $\left(H_{I M}=0\right)$.
AX-DIS Disables the AX filter.
AX-DIS $=0 \quad A X$ filter is enabled.
$A X-D I S=1 \quad A X$ filter is disabled $\left(H_{A X}=1\right)$.
AR-DIS Disables the AR filter.
$A X-D I S=0 \quad A R$ filter is enabled.
$A X-$ DIS $=1 \quad A R$ filter is disabled $\left(H_{A R}=1\right)$.

FRX-DIS Disables the FRX filter.
FRX-DIS $=0 \quad F R X$ filter is enabled.
FRX-DIS $=1 \quad F R X$ filter is disabled $\left(H_{F R X}=1\right)$.

FRR-DIS Disables the FRR filter.
FRR-DIS = $0 \quad$ FRR filter is enabled.
FRR-DIS $=1 \quad$ FRR filter is disabled $\left(H_{\text {FRR }}=1\right)$.

HPX-DIS Disables the high-pass filter in transmit direction.
HPX-DIS $=0$ High-pass filter is enabled.
HPX-DIS $=1 \quad$ High-pass filter is disabled $\left(H_{H P X}=1\right)$.

Preliminary

SLICOFI-2x Command Structure and Programming

HPR-DIS Disables the high-pass filter in receive direction.
HPR-DIS $=0$ High-pass filter is enabled.
HPR-DIS $=1$ High-pass filter is disabled $\left(H_{H P R}=1\right)$.

Preliminary
SLICOFI-2x Command Structure and Programming

19_{H}	BCR5	Basic Configuration Register 5				$0^{\text {H }}$		Y
Bit	7	6	5	4	3	2	1	0
	UTDREN	UTDXEN	CISAUTO	CIS-EN	LECOUT	LEC-EN	DTMFSRC	DTMFEN

UTDR-EN Enables the Universal Tone detection in receive direction.
UTDR-EN $=0$ Universal Tone detection is disabled.
UTDR-EN = 1 Universal Tone detection is enabled.
UTDX-EN Enables the Universal Tone detection in transmit direction.
UTDX-EN $=0$ Universal Tone detection is disabled.
UTDX-EN = 1 Universal Tone detection is enabled.

CIS-AUTO Controls the turn-off behavior of the Caller ID sender.
CIS-AUTO $=0$ The Caller ID sender stops when CIS-EN is switched to 0 .
CIS-AUTO $=1$ The Caller ID sender continues sending data until the data buffer is empty.

CIS-EN Enables the Caller ID sender in the SLICOFI-2.
Note: The Caller ID sender is configured directly by programming the according POP registers. Caller ID data are written to a 48 byte RAM buffer. According to the buffer request size this influences the CIS-REQ and CIS-BUF bits.
CIS-EN = $0 \quad$ Caller ID sender is disabled and Caller ID data buffer is cleared after all data are sent or if CIS-AUTO $=0$.
CIS-EN $=1 \quad$ Caller ID sender is enabled and Caller ID data can be written to the data buffer. After the last data bit is sent, stop bits are sent to the subscriber.
Caller ID data are sent to the subscriber when the number of bytes written to the buffer exceeds CIS-BRS +2 .

LEC-OUT Line Echo Canceller result for transmit path.
LEC-OUT = 0 Line Echo Canceller result used for DTMF only.
LEC-OUT $=1$ Line Echo Canceller result fed to transmit path.

LEC-EN Line Echo Canceller
LEC-EN = 0 Line Echo Canceller for DTMF disabled.
LEC-EN = $1 \quad$ Line Echo Canceller for DTMF enabled.

DTMF-SRC Selects data source for DTMF receiver.
DTMF-SRC $=0$ The Transmit path data (with or without LEC) is used for the DTMF detection.
DTMF-SRC $=1$ The Receive path data is used for the DTMF detection.
DTMF-EN Enables the DTMF receiver of the SLICOFI-2. The DTMF receiver will be configured in a proper way by programming registers in the EDSP.
DTMF-EN $=0$ DTMF receiver is disabled.
DTMF-EN = 1 DTMF receiver is enabled.

Preliminary

SLICOFI-2x Command Structure and Programming

$1 A_{H}$	DSCR	DTMF Sender Configuration Register					0^{0}	Y
Bit	7	6	5	4	3	$\frac{2}{\text { PTG }}$	1	0
		DG-KEY[3:0]			COR8		TG2-EN	TG1-EN

DG-KEY[3:0] Selects one of sixteen DTMF keys generated by the two tone generators. The key will be generated if TG1-EN and TG2-EN are ' 1 '.

Table 49 DTMF Keys

$f_{\text {LOW }}[\mathrm{Hz}]$	$f_{\text {HIGH }}[\mathrm{Hz}]$	DIGIT	DG-KEY3	DG-KEY2	DG-KEY1	DG-KEYO
697	1209	1	0	0	0	1
697	1336	2	0	0	1	0
697	1477	3	0	0	1	1
770	1209	4	0	1	0	0
770	1336	5	0	1	0	1
770	1477	6	0	1	1	0
852	1209	7	0	1	1	1
852	1336	8	1	0	0	0
852	1477	9	1	0	0	1
941	1336	0	1	0	1	0
941	1209	$*$	1	0	1	1
941	1477	$\#$	1	1	0	0
697	1633	A	1	1	0	1
770	1633	B	1	1	1	0
852	1633	C	1	1	1	1
941	1633	D	0	0	0	0

COR8 Cuts off receive path at 8 kHz before the tone generator summation point. Allows sending of tone generator signals with no overlaid voice.
COR8 $=0 \quad$ Cut off receive path disabled.
COR8 $=1 \quad$ Cut off receive path enabled.

PTG Programmable coefficients for tone generators will be used.
PTG $=0 \quad$ Frequencies set by DG-KEY are used for both tone generators.
PTG $=1 \quad$ CRAM coefficients used for both tone generators.
TG2-EN Enables tone generator two
TG2-EN $=0 \quad$ Tone generator is disabled.
TG2-EN $=1 \quad$ Tone generator is enabled.

TG1-EN Enables tone generator one
TG1-EN = $0 \quad$ Tone generator is disabled.
TG1-EN = $1 \quad$ Tone generator is enabled.

DuSLIC-E/-E2/-P

Preliminary
SLICOFI-2x Command Structure and Programming

$1 \mathrm{C}_{\mathrm{H}}$	LMCR1	Level Metering Configuration Register 1						Y
Bit	7	6	5	4	3	2	1	0
	$\begin{array}{\|c} \hline \text { TEST- } \\ \text { EN } \\ \hline \end{array}$	LM-EN	$\begin{aligned} & \text { LM- } \\ & \text { THM } \end{aligned}$	PCM2DC	$\begin{aligned} & \hline \text { LM2 } \\ & \text { PCM } \end{aligned}$	$\begin{aligned} & \text { LM- } \\ & \text { ONCE } \end{aligned}$	$\begin{gathered} \text { LM- } \\ \text { MASK } \end{gathered}$	$\begin{gathered} \hline \text { DC- } \\ \text { AD16 } \end{gathered}$

TEST-EN Activates the SLICOFI-2 test features controlled by test registers TSTR1 to TSTR5.
TEST-EN $=0 \quad$ SLICOFI-2 test features are disabled.
TEST-EN = 1 SLICOFI-2 test features are enabled.
(The Test Register bits can be programmed before the TEST-EN bit is set to 1.)

LM-EN Enables level metering. A positive transition of this bit starts level metering (AC and DC).

LM-EN $=0$	Level metering stops.
LM-EN $=1$	Level metering enabled.

LM-THM Level metering threshold mask bit
LM-THM $=0 \quad$ A change of the LM-THRES bit (register INTREG2) generates an interrupt.
LM-THM $=1 \quad$ No interrupt is generated.

PCM2DC PCM voice channel data added to the DC-output.
PCM2DC $=0 \quad$ Normal operation.
PCM2DC $=1 \quad$ PCM voice channel data is added to DC output.
LM2PCM Level metering source/result (depending on LM-EN bit) feeding to PCM or IOM-2 interface.
LM2PCM $=0 \quad$ Normal operation.
LM2PCM = $1 \quad$ Level metering source/result is fed to the PCM or IOM-2 interface.

SLICOFI-2x Command Structure and Programming

LM-ONCE Level metering execution mode.
LM-ONCE $=0 \quad$ Level metering is executed continuously.
LM-ONCE $=1 \quad$ Level metering is executed only once. To start the levelmeter again, the LM-EN bit must again be set from 0 to 1 .

LM-MASK Interrupt masking for level metering.
LM-MASK $=0 \quad$ An interrupt is generated after level metering.
LM-MASK $=1 \quad$ No interrupt is generated.

DC-AD16 Additional digital amplification in the DC AD path for level metering.
DC-AD16 $=0 \quad$ Additional gain factor 16 disabled.
DC-AD16 = $1 \quad$ Additional gain factor 16 enabled.

Preliminary
SLICOFI-2x Command Structure and Programming

1D ${ }_{\text {H }}$	LMCR2	Level Metering Configuration Register 2					00_{H}		Y
Bit	7	6	5	4	3	2		1	0
	$\begin{array}{\|c} \hline \text { LM- } \\ \text { NOTCH } \end{array}$	$\begin{aligned} & \hline \text { LM- } \\ & \text { FILT } \end{aligned}$	$\begin{aligned} & \text { LM- } \\ & \text { RECT } \end{aligned}$	RAMPEN			SEL[3		

LM-NOTCH Selection of a notch filter instead of the band-pass filter for level metering.
LM-NOTCH $=0 \quad$ Notch filter selected.
LM-NOTCH = $1 \quad$ Band-pass filter selected.

LM-FILT Enabling of a programmable band-pass or notch filter for level metering.
$\begin{array}{ll}\text { LM-FILT }=0 & \text { Normal operation. } \\ \text { LM-FILT }=1 & \text { Band-pass/notch filter enabled } .\end{array}$

LM-RECT Rectifier in DC level meter
LM-RECT $=0 \quad$ Rectifier disabled.
LM-RECT $=1 \quad$ Rectifier enabled.

RAMP-EN The ramp generator works together with the RNG-OFFSET bits in LMCR3 and the LM-EN bit to create different voltage slopes in the DCPath.

$$
\begin{array}{ll}
\text { RAMP-EN }=0 & \text { Ramp generator disabled } . \\
\text { RAMP-EN }=1 & \text { Ramp generator enabled } .
\end{array}
$$

LM-SEL[3:0] Selection of the source for the level metering.
LM-SEL[3:0] $=0000$ AC level metering in transmit
LM-SEL[3:0] $=0001$ Real part of TTX (TTX REAL)
LM-SEL[3:0] = 0010 Imaginary part of TTX (TTX ${ }_{\text {IMG }}$)
LM-SEL[3:0] = 0 011 Not used
LM-SEL[3:0] = 0100 DC out voltage on DCN-DCP
LM-SEL[3:0] = 0101 DC current on IT
LM-SEL[3:0] = 0110 AC level metering in receive

Preliminary

SLICOFI-2x Command Structure and Programming

> LM-SEL[3:0] = 0111 AC level metering in receive and transmit
> LM-SEL[3:0] = 1000 Not used
> LM-SEL[3:0] = 1001 DC current on IL
> LM-SEL[3:0] = 1010 Voltage on IO3
> LM-SEL[3:0] = 1011 Voltage on IO4
> LM-SEL[3:0]=1100 Not used
> LM-SEL[3:0] = $1101 V_{D D}$
> LM-SEL[3:0] = 1110 Offset of DC-Prefi (short circuit on DC-Prefi input)

LM-SEL[3:0] = 1111 Voltage on IO4-IO3

$1 \mathrm{E}_{\mathrm{H}}$	LMCR3	Level Metering Configuration Register 3					$\mathbf{0 0}_{\mathrm{H}}$		Y
Bit	7	6	5	4	3	2		1	0
	$\begin{array}{\|c\|} \hline \text { AC- } \\ \text { SHORT } \\ \text {-EN } \end{array}$	RTRSEL		LM-ITIME[3:0]				$\begin{gathered} \text { RNG- } \\ \text { OFFSET[1:0] } \end{gathered}$	

AC-SHORT-EN The input pin ITAC will be set to a lower input impedance so that the capacitor $C_{\text {ITAC }}$ can be recharged faster during a soft reversal which makes it more silent during conversation.
AC-SHORT-EN $=0$ Input impedance of the ITAC pin is standard.
AC-SHORT-EN = 1 Input impedance of the ITAC pin is lowered.

RTR-SEL Ring Trip method selection.
RTR-SEL $=0 \quad$ Ring Trip with a DC offset is selected.
RTR-SEL $=1 \quad$ AC Ring Trip is selected. Recommended for short lines only.

LM-ITIME[3:0] Integration Time for AC Level Metering.

LM-ITIME[3:0] $=0000$	16 ms
LM-ITIME[3:0] $=0001$	$2 \times 16 \mathrm{~ms}$
LM-ITIME[3:0] $=00110$	$3 \times 16 \mathrm{~ms}$
\ldots	
LM-ITIME[3:0] $=11111$	$16 \times 16 \mathrm{~ms}$

RNG- Selection of the Ring Offset source.
OFFSET[1:0]

Preliminary
SLICOFI-2x Command Structure and Programming

RNG- OFFSET[1:0]			
	Aing Offset Voltage in Given Mode ACTH ACTL	Active Ring ACTR	Ring Pause Ringing
00	Voltage given by DC regulation	Voltage given by DC regulation	Ring Offset RO1 Hook Threshold Ring
01	Ring Offset RO1/2 (no DC regulation)	Ring Offset RO1 (no DC regulation)	Ring Offset RO1 Hook Threshold Ring
10	Ring Offset RO2/2 (no DC regulation)	Ring Offset RO2 (no DC regulation)	Ring Offset RO2 Hook Message Waiting
11	Ring Offset RO3/2 (no DC regulation)	Ring Offset RO3 (no DC regulation)	Ring Offset RO3 Hook Message Waiting

By setting the RAMP_EN bit to 1 , the ramp generator is started by setting LM_EN from 0 to 1 (see Figure 71).
Exception: Transition of RNG-OFFSET from 10 to 11 or 11 to 10 where the ramp generator is started automatically (see Figure 71).
For Ring Offset RO1 the usual "Hook Threshold Ring" is used. Using Ring Offset RO2 or RO3 in any ringing mode (Ringing and Ring Pause) also changes the hook thresholds. In this case the "Hook Message Waiting" threshold is used automatically.
When using the Ring Offsets RO2 and RO3 for Message Waiting an additional lamp current is expected. In this case the Hook Message Waiting threshold should be programmed higher than the Hook Threshold Ring.

DuSLIC-E/-E2/-P

Preliminary SLICOFI-2x Command Structure and Programming

Figure 71 Example for Switching Between Different Ring Offset Voltages
The three programmable Ring Offsets are typically used for the following purposes:
Table 50 Typical Usage for the three Ring Offsets

Ring Offset Voltage	Application
Ring Offset RO1	Ringing
Ring Offset RO2	Low voltage for message waiting lamp
Ring Offset RO3	High voltage for message waiting lamp

Besides the typical usage described in Table 50 the Ring Offsets RO1, RO2 and RO3 can also be used for the generation of different custom waveforms (see Figure 71).

Preliminary

SLICOFI-2x Command Structure and Programming

$1 \mathrm{~F}_{\mathrm{H}}$	OFR1	Offset Register 1 (High Byte)					00_{H}		Y
Bit	7	6	5	4	3	2		1	0
	OFFSET-H[7:0]								

OFFSET-H[7:0] Offset register high byte.

$20^{\text {H }}$	OFR2		Offset Register 2 (Low Byte)				$\mathbf{0 0}_{\mathrm{H}}$		Y
Bit	7	6	5	4	3	2	1	0	
					T-L				

OFFSET-L[7:0] Offset register low byte.
The value of this register together with OFFSET-H is added to the input of the DC loop to compensate a given offset of the current sensors in the SLIC-E/-E2/-P.

This register is not applicable and not used in IOM-2 mode. Only enabled in $\mathrm{PCM} / \mu \mathrm{C}$ mode.

R1-HW Selection of the PCM highway for receiving PCM data or the higher byte of the first data sample if a linear $16-\mathrm{kHz}$ PCM mode is selected.

R1-HW $=0 \quad$ PCM highway A is selected.
$R 1-H W=1 \quad P C M$ highway B is selected.

R1-TS[6:0] Selection of the PCM time slot used for data reception.
Note: The programmed PCM time slot must correspond to the available slots defined by the PCLK frequency. No reception will occur if a slot outside the actual numbers of slots is programmed. In linear mode (bit LIN = 1 in register BCR3) R1-TS defines the first of two consecutive slots used for reception.

DuSLIC-E/-E2/-P

SLICOFI-2x Command Structure and Programming

$\mathbf{2 2}_{\mathbf{H}}$	PCMR2	PCM Receive Register 2	$\mathbf{0 0}_{\mathbf{H}}$		\mathbf{Y}	
Bit	7	6	5	4	3	2

This register is not applicable and not used in IOM-2 mode. Only enabled in PCM $/ \mu \mathrm{C}$ mode.

R2-HW Selection of the PCM highway for receiving conferencing data for conference channel B or the lower byte of the first data sample if a linear $16-\mathrm{kHz}$ PCM mode is selected.

R2-HW $=0 \quad P C M$ highway A is selected.
R2-HW $=1 \quad$ PCM highway B is selected.

R2-TS[6:0] Selection of the PCM time slot used for receiving data (see description of PCMR1 register).

DuSLIC-E/-E2/-P

$\mathbf{2 3}_{\mathbf{H}}$	PCMR3	PCM Receive Register 3	$\mathbf{0 0}_{\mathbf{H}}$		\mathbf{Y}	
Bit	7	6	5	4	3	2

This register is not applicable and not used in IOM-2 mode. Only enabled in $\mathrm{PCM} / \mu \mathrm{C}$ mode.

R3-HW Selection of the PCM highway for receiving conferencing data for conference channel C or the higher byte of the second data sample if a linear $16-\mathrm{kHz}$ PCM mode is selected.

$$
\begin{array}{ll}
\text { R3-HW }=0 & \text { PCM highway } A \text { is selected } . \\
\text { R3-HW }=1 & \text { PCM highway } B \text { is selected } .
\end{array}
$$

R3-TS[6:0] Selection of the PCM time slot used for receiving data (see description of PCMR1 register).

DuSLIC-E/-E2/-P

SLICOFI-2x Command Structure and Programming

$\mathbf{2 4}_{\mathbf{H}}$	PCMR4	PCM Receive Register 4	$\mathbf{0 0}_{\mathbf{H}}$		\mathbf{Y}	
Bit	7	6	5	4	3	2

This register is not applicable and not used in IOM-2 mode. Only enabled in PCM $/ \mu \mathrm{C}$ mode.

R4-HW Selection of the PCM highway for receiving conferencing data for conference channel D or the lower byte of the second data sample if alinear $16-\mathrm{kHz}$ PCM mode is selected.
$\begin{array}{ll}R 4-H W=0 & P C M \text { highway } A \text { is selected } . \\ R 4-H W=1 & P C M \text { highway } B \text { is selected } .\end{array}$

R4-TS[6:0] Selection of the PCM time slot used for receiving data (see description of PCMR1 register).

25 ${ }_{\text {H }}$	PCMX1	PCM Transmit Register 1					00_{H}		Y
Bit	7	6	5	4	3	2		1	0
	$\begin{aligned} & \text { X1- } \\ & \text { HW } \end{aligned}$	X1-TS[6:0]							

This register is not applicable and not used in IOM-2 mode. Only enabled in PCM/ $\mu \mathrm{C}$ mode.

X1-HW Selection of the PCM highway for transmitting PCM data or the higher byte of the first data sample if a linear $16-\mathrm{kHz}$ PCM mode is selected.

$$
\begin{array}{ll}
\mathrm{X} 1-\mathrm{HW}=0 & \mathrm{PCM} \text { highway } A \text { is selected. } \\
\mathrm{X} 1-\mathrm{HW}=1 & \mathrm{PCM} \text { highway } B \text { is selected. }
\end{array}
$$

X1-TS[6:0] Selection of the PCM time slot used for data transmission.
Note: The programmed PCM time slot must correspond to the available slots defined by the PCLK frequency. No transmission will occur if a slot outside the actual numbers of slots is programmed. In linear mode X1-TS defines the first of two consecutive slots used for transmission. PCM data transmission is controlled by the bits 6 through 2 in register BCR3.

DuSLIC-E/-E2/-P

26 ${ }_{\text {H }}$	PCMX2	PCM Transmit Register 2					$0^{\text {H }}$		Y
Bit	7	6	5	4	3	2		1	0
	$\begin{aligned} & \text { X2- } \\ & \text { HW } \end{aligned}$	X2-TS[6:0]							

This register is not applicable and not used in IOM-2 mode. Only enabled in $\mathrm{PCM} / \mu \mathrm{C}$ mode.

X2-HW Selection of the PCM highway for transmitting conferencing data for conference channel C + S or C + D or the lower byte of the first data sample if a linear $16-\mathrm{kHz}$ PCM mode is selected.
$\mathrm{X} 2-\mathrm{HW}=0 \quad \mathrm{PCM}$ highway A is selected.
$X 2-H W=1 \quad P C M$ highway B is selected.

X2-TS[6:0] Selection of the PCM time slot used for transmitting data (see description of PCMX1 register).

DuSLIC-E/-E2/-P

SLICOFI-2x Command Structure and Programming

27_{H}	PCMX3	PCM Transmit Register 3					$\mathbf{0 0}_{\mathrm{H}}$		Y
Bit	7	6	5	4	3	2		1	0
	$\begin{aligned} & \text { X3- } \\ & \text { HW } \end{aligned}$	X3-TS[6:0]							

This register is not applicable and not used in IOM-2 mode. Only enabled in $\mathrm{PCM} / \mu \mathrm{C}$ mode.

X3-HW Selection of the PCM highway for transmitting conferencing data for conference channel $\mathrm{B}+\mathrm{S}$ or $\mathrm{B}+\mathrm{D}$ or the lower byte of the first data sample if a linear $16-\mathrm{kHz}$ PCM mode is selected.
$\mathrm{X} 3-\mathrm{HW}=0 \quad \mathrm{PCM}$ highway A is selected.
$X 3-H W=1 \quad P C M$ highway B is selected.
X3-TS[6:0] Selection of the PCM time slot used for transmitting data (see description of PCMX1 register).

DuSLIC-E/-E2/-P

SLICOFI-2x Command Structure and Programming

28 ${ }^{\text {H }}$	PCMX4	PCM Transmit Register 4					$0^{0} \mathrm{H}$		Y
Bit	7	6	5	4	3	2		1	0
	$\begin{aligned} & \text { X4- } \\ & \text { HW } \end{aligned}$	X4-TS[6:0]							

This register is not applicable and not used in IOM-2 mode. Only enabled in $\mathrm{PCM} / \mu \mathrm{C}$ mode.

X4-HW Selection of the PCM highway for transmitting conferencing data for conference channel $\mathrm{B}+\mathrm{C}$ or the lower byte of the first data sample if a linear $16-\mathrm{kHz} \mathrm{PCM}$ mode is selected.

$$
\begin{array}{ll}
\mathrm{X} 4-\mathrm{HW}=0 & \text { PCM highway } A \text { is selected } . \\
X 4-H W=1 & P C M \text { highway } B \text { is selected. }
\end{array}
$$

X4-TS[6:0] Selection of the PCM time slot used for transmitting data (see description of PCMX1 register).

Preliminary
SLICOFI-2x Command Structure and Programming

29 ${ }_{\text {H }}$	TSTR1	Test Register 1					T	Y
Bit	7	6	5	4	3	2	1	0
	$\begin{array}{\|c} \hline \text { PD-AC- } \\ \text { PR } \end{array}$	$\begin{gathered} \hline \text { PD-AC- } \\ \text { PO } \end{gathered}$	$\begin{array}{\|c} \hline \text { PD-AC- } \\ \text { AD } \end{array}$	$\begin{array}{\|c} \hline \text { PD-AC- } \\ \text { DA } \end{array}$	$\begin{aligned} & \text { PD-AC- } \\ & \text { GN } \end{aligned}$	$\begin{gathered} \text { PD- } \\ \text { GNKC } \end{gathered}$	$\begin{aligned} & \text { PD- } \\ & \text { OFHC } \end{aligned}$	$\begin{gathered} \hline \text { PD- } \\ \text { OVTC } \end{gathered}$

Register setting is only active if bit TEST-EN in register LMCR1 is set to 1 .

PD-AC-PR AC-PREFI power down
PD-AC-PR = 0 Normal operation.
PD-AC-PR = 1 Power Down mode.

PD-AC-PO AC-POFI power down
PD-AC-PO $=0 \quad$ Normal operation.
$P D-A C-P O=1 \quad$ Power Down mode .

PD-AC-AD AC-ADC power down
PD-AC-AD $=0 \quad$ Normal operation.
$P D-A C-A D=1$ Power Down mode, transmit path is inactive.
PD-AC-DA AC-DAC power down
PD-AC-DA $=0 \quad$ Normal operation.
$P D-A C-D A=1$ Power Down mode, receive path is inactive.
PD-AC-GN AC-Gain power down
PD-AC-GN $=0 \quad$ Normal operation.
PD-AC-GN = 1 Power Down mode.
PD-GNKC Groundkey comparator (GNKC) is set to power down
PD-GNKC $=0 \quad$ Normal operation.
PD-GNKC = $1 \quad$ Power Down mode.

Preliminary

SLICOFI-2x Command Structure and Programming

PD-OFHC Off-hook comparator (OFHC) power down
PD-OFHC $=0 \quad$ Normal operation.
PD-OFHC = 1 Power Down mode.

PD-OVTC Overtemperature comparator (OVTC) power down
PD-OVTC $=0 \quad$ Normal operation.
PD-OVTC $=1 \quad$ Power Down mode.

SLICOFI-2x Command Structure and Programming

$2 \mathrm{~A}_{\mathrm{H}}$	TSTR2	Test Register 2					$\mathbf{0 0}_{\mathrm{H}}$	T	Y
Bit	7	6	5	4	3	2		1	0
	$\begin{array}{\|c} \hline \text { PD-DC- } \\ \text { PR } \end{array}$	0	$\begin{gathered} \text { PD-DC- } \\ \text { AD } \end{gathered}$	$\begin{gathered} \hline \text { PD-DC- } \\ \text { DA } \end{gathered}$	$\begin{gathered} \hline \text { PD- } \\ \text { DCBUF } \end{gathered}$	0		$\begin{gathered} \hline \text { PD- } \\ \text { TTX-A } \end{gathered}$	PD-HVI

Register setting is only active if bit TEST-EN in register LMCR1 is set to 1 .

PD-DC-PR DC-PREFI power down
PD-DC-PR =0 Normal operation.
$P D-D C-P R=1 \quad$ Power Down mode .

PD-DC-AD DC-ADC power down
PD-DC-AD = 0 Normal operation.
$P D-D C-A D=1$ Power Down mode, transmit path is inactive.

PD-DC-DA DC-DAC power down
PD-DC-DA = 0 Normal operation.
PD-DC-DA $=1$ Power Down mode, receive path is inactive.

PD-DCBUF DC-BUFFER power down
PD-DCBUF $=0$ Normal operation.
PD-DCBUF = 1 Power Down mode.

PD-TTX-A TTX Adaptation DAC and POFI power down
PD-TTX-A = $0 \quad$ Normal operation.
PD-TTX-A = $1 \quad$ Power Down mode.

PD-HVI HV interface (to SLIC-E/-E2/-P) power down
PD-HVI $=0 \quad$ Normal operation.
PD-HVI = $1 \quad$ Power Down mode.

$2 \mathrm{~B}_{\mathrm{H}}$	TSTR3	Test Register 3					$0^{00}{ }_{H}$	T	Y
Bit	7	6	5	4	3	2			0
	0	0	$\begin{gathered} \hline \text { AC- } \\ \text { DLB- } \\ 4 M \end{gathered}$	AC-DLB128K	AC-DLB32K	AC-DLB8K			0

Register setting is only active if bit TEST-EN in register LMCR1 is set to 1 .
AC-DLB-4M AC digital loop via a $4-\mathrm{MHz}$ bitstream. (Loop encloses all digital hardware in the AC path. Together with DLB-DC, a pure digital test is possible because there is no influence from the analog hardware.)
AC-DLB-4M = $0 \quad$ Normal operation.
AC-DLB-4M $=1 \quad$ Digital loop closed.
AC-DLB-128K AC digital loop via 128 kHz
AC-DLB-128K = 0 Normal operation.
AC-DLB-128K $=1$ Digital loop closed.
AC-DLB-32K AC digital loop via 32 kHz
AC-DLB-32K = 0 Normal operation.
AC-DLB-32K = 1 Digital loop closed.
AC-DLB-8K AC digital loop via 8 kHz
AC-DLB-8K $=0 \quad$ Normal operation.
AC-DLB-8K $=1 \quad$ Digital loop closed.

SLICOFI-2x Command Structure and Programming

$2 \mathrm{C}_{\mathrm{H}}$	TSTR4	Test Register 4					$0^{0} \mathrm{H}$		Y
Bit	7	6	5	4	3	2		1	0
	OPIMAN	OPIM4M	COR-64	COX-16	0	0		0	0

Register setting is only active if bit TEST-EN in register LMCR1 is set to 1 .

OPIM-AN Open Impedance Matching Loop in the analog part.

$$
\begin{array}{ll}
\text { OPIM-AN }=0 & \text { Normal operation. } \\
\text { OPIM-AN }=1 & \text { Loop opened } .
\end{array}
$$

OPIM-4M Open fast digital Impedance Matching Loop in the hardware filters.
OPIM-4M $=0 \quad$ Normal operation.
OPIM-4M = $1 \quad$ Loop opened.

COR-64 Cut off the AC receive path at 64 kHz (just before the IM filter).
COR-64 = $0 \quad$ Normal operation.
COR-64 = $1 \quad$ Receive path is cut off.
COX-16 Cut off the AC transmit path at 16 kHz . (The TH filter can be tested without influencing the analog part.)
COX-16 $=0 \quad$ Normal operation.
COX-16 = $1 \quad$ Transmit path is cut off.

DuSLIC-E/-E2/-P

Preliminary

SLICOFI-2x Command Structure and Programming

2D ${ }_{\text {H }}$	TSTR5	Test Register 5					$0^{00}{ }_{H}$		Y
Bit	7	6	5	4	3	2			0
	0	0	0	$\begin{gathered} \hline \text { DC- } \\ \text { POFI- } \\ \text { HI } \end{gathered}$	$\begin{gathered} \hline \text { DC- } \\ \text { HOLD } \end{gathered}$	0			0

Register setting is only active if bit TEST-EN in register LMCR1 is set to 1 .
DC-POFI-HI Higher value for DC post filter limit DC-POFI-HI = 0 Limit frequency is set to 100 Hz (normal operation). DC-POFI-HI = 1 Limit frequency is set to 300 Hz .

DC-HOLD Actual DC output value hold (value of the last DSP filter stage will be kept)
DC-HOLD = $0 \quad$ Normal operation.
DC-HOLD $=1 \quad$ DC output value hold.

DuSLIC-E/-E2/-P

Preliminary

SLICOFI-2x Command Structure and Programming

6.2.2 COP Command

The COP command gives access to the CRAM data of the DSPs. It is organized in the same way as the SOP command. The offset value allows a direct as well as a block access to the CRAM. Writing beyond the allowed offset will be ignored, reading beyond it will give unpredictable results.
The value of a specific CRAM coefficient is calculated by the DuSLICOS software.

Bit	7	6	5	4	3	2	1	0				
Byte 1	RD	$\mathbf{1}$	ADR[2:0]							$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
Byte 2												

RD Read Data
$R D=0$ Write data to chip.
$R D=1$ Read data from chip.

ADR[2:0] Channel address for the subsequent data
ADR[2:0] = $000 \quad$ Channel A
ADR[2:0] = $001 \quad$ Channel B
(other codes reserved for future use)

DuSLIC-E/-E2/-P

Preliminary
SLICOFI-2x Command Structure and Programming

Offset $[7: 0]$	Short Name	Long Name
00_{H}	TH1	Transhybrid Filter Coefficients Part 1
08_{H}	TH2	Transhybrid Filter Coefficients Part 2
10_{H}	TH3	Transhybrid Filter Coefficients Part 3
18_{H}	FRR	Frequency-response Filter Coefficients Receive Direction
20_{H}	FRX	Frequency-response Filter Coefficients Transmit Direction
28_{H}	AR	Amplification/Attenuation Stage Coefficients Receive
30_{H}	AX	Amplification/Attenuation Stage Coefficients Transmit
$\frac{38_{\mathrm{H}}}{}$	PTG1	Tone Generator 1 Coefficients
40_{H}	PTG2	Tone Generator 2 Coefficients
48_{H}	LPR	Low Pass Filter Coefficients Receive
50_{H}	LPX	Low Pass Filter Coefficients Transmit
58_{H}	TTX	Teletax Coefficients
60_{H}	IM1	Impedance Matching Filter Coefficients Part 1
68_{H}	IM2	Impedance Matching Filter Coefficients Part 2
70_{H}	RINGF	Ringer Frequency and Amplitude Coefficients (DC loop)
78_{H}	RAMPF	Ramp Generator Coefficients (DC loop)
80_{H}	DCF	DC Characteristics Coefficients (DC loop)
$\frac{88_{\mathrm{H}}}{}$	HF	Hook Threshold Coefficients (DC loop)
90_{H}	TPF	Low-pass Filter Coefficients (DC loop)
98_{H}		Reserved

Table 51 CRAM Coefficients

Note: CRAM coefficients are enabled by setting bit CRAM-EN in register BCR3 to 1, except coefficients marked ${ }^{1)}$ and ${ }^{2}$):
Coefficients market ${ }^{1)}$ are enabled by setting bit PTG in register DSCR to 1.
Coefficients market ${ }^{2)}$ are enabled by setting bit LPRX-CR in register BCR3 to 1.

6.2.2.1 CRAM Programming Ranges

Table 52 CRAM Programming Ranges

Parameter	Programming Range
Constant Current $I_{\mathrm{K} 1}$	$0 \ldots .50 \mathrm{~mA}, \Delta<0.5 \mathrm{~mA}$
Hook Message Waiting,	$0 . .25 \mathrm{~mA}, \Delta<0.7 \mathrm{~mA}$
Hook Thresholds	$25 . .50 \mathrm{~mA}, \Delta<1.3 \mathrm{~mA}$
Ring Generator Frequency $\mathrm{f}_{\mathrm{RING}}$	$3 . .40 \mathrm{~Hz}, \Delta<1 \mathrm{~Hz}$
	$40 . .80 \mathrm{~Hz}, \Delta<2 \mathrm{~Hz}$
	$>80 \mathrm{~Hz}, \Delta<4 \mathrm{~Hz}$
Ring Generator Amplitude	$0 . .20 \mathrm{~V}, \Delta<1.7 \mathrm{~V}$
	$20 . .85 \mathrm{~V}, \Delta<0.9 \mathrm{~V}$
Ring Offset RO1, RO2, RO3	$0 . .25 \mathrm{~V}, \Delta<0.6 \mathrm{~V}$
	$25 . .50 \mathrm{~V}, \Delta<1.2 \mathrm{~V}$
	$50 . .100 \mathrm{~V}, \Delta<2.4 \mathrm{~V}, \mathrm{max} .150 \mathrm{~V}$
Knee Voltage $V_{\mathrm{K} 1}$,	$0 . .25 \mathrm{~V}, \Delta<0.6 \mathrm{~V}$
Open Circuit Voltge V_{LIM}	$25 . .50 \mathrm{~V}, \Delta<1.2 \mathrm{~V}$
	$>50 \mathrm{~V}, \Delta<2.4 \mathrm{~V}$
Resistance in Resistive Zone $R_{\mathrm{K} 12}$	$0 . .1000 \Omega, \Delta<30 \Omega$
Resistance in Constant Current Zone R_{I}	$1.8 \mathrm{k} \Omega . .4 .8 \mathrm{k} \Omega, \Delta<120 \Omega$
	$4.8 \mathrm{k} \Omega . .9 .6 \mathrm{k} \Omega, \Delta<240 \Omega$
	$9.6 \mathrm{k} \Omega . .19 \mathrm{k} \Omega, \Delta<480 \Omega$
	$19 \mathrm{k} \Omega . .38 \mathrm{k} \Omega, \Delta<960 \Omega$, max. $40 \mathrm{k} \Omega$

DuSLIC-E/-E2/-P

Preliminary

SLICOFI-2x Command Structure and Programming

6.2.3 POP Command

The POP command provides access to the EDSP registers of the SLICOFI-2.
Before using an EDSP function the according POP registers have to be programmed.
Any change in any of the POP registers (except registers CIS-DAT and CIS/LEC-MODE) is only updated with enabling the corresponding device. For example a change of the center frequency f_{C} of the UTD is handled by changing the registers UTD-CF-H and UTD-CF-L, switching off the UTD and switching it on again.

The POP registers do no have default values after any kind of reset.

6.2.3.1 POP Register Overview

Preliminary

37_{H}	DTMF-RES1	DTMF Receiver Reserved Byte 1
$38_{\text {H }}$	DTMF-RES2	DTMF Receiver Reserved Byte 2
$39_{\text {H }}$	DTMF-RES3	DTMF Receiver Reserved Byte 3
$3 A_{H}$	LEC-LEN	Line Echo Canceller Length
		LEN
$3 B_{H}$	LEC-POWR	Line Echo Canceller Power Detection Level
		POWR
$3 \mathrm{C}_{\mathrm{H}}$	LEC-DELP	Line Echo Canceller Delta Power
		DELP
$3 D_{H}$	LEC-DELQ	Line Echo Canceller Delta Quality
		DELQ
$3 E_{H}$	LEC-GAIN-XI	Line Echo Canceller Input Gain Transmit
	e	m
$3 F_{H}$	LEC-GAIN-RI	Line Echo Canceller Input Gain Receive
	e	m
40_{H}	LEC-GAIN-XO	Line Echo Canceller Output Gain Transmit
	e	m
41_{H}	LEC-RES1	Line Echo Canceller Reserved Byte 1

$4^{42}{ }_{H}$	LEC-RES2	Line Echo Canceller Reserved Byte 2					
43_{H}	CIS-LEV-H	Caller ID Sender Level High Byte					
	LEV-H						
44_{H}	CIS-LEV-L	Caller ID Sender Level Low Byte					
	LEV-L						
45_{H}	CIS-BRS	Caller ID Sender Buffer Request Size					
	BRS						
46_{H}	CIS-SEIZ-H	Caller ID Sender Number of Seizure Bits High Byte					
		SEIZ-H					
47_{H}	CIS-SEIZ-L	Caller ID Sender Number of Seizure Bits Low Byte					
		SEIZ-L					
48_{H}	CIS-MARK-H	Caller ID Sender Number of Mark Bits High Byte					
		MARK-H					
49_{H}	CIS-MARK-L	Caller ID Sender Number of Mark Bits Low Byte					
	MARK-L						
$4 A_{H}$	CIS/LEC-MODE	CIS/LEC Mode Setting					
	LEC-ADAPT LEC-FREZE	UTDX-SUM	UTDR-SUM	0	0	CIS-FRM	CIS-V23
$4 \mathrm{~B}_{\mathrm{H}}$	UTD-CF-H	Universal Tone Detection Center Frequency High Byte					
	CF-H						
$4 \mathrm{C}_{\mathrm{H}}$	UTD-CF-L	Universal Tone Detection Center Frequency Low Byte					
		CF-L					

Preliminary

$4 \mathrm{D}_{\mathrm{H}}$	UTD-BW-H	Universal Tone Detection Bandwidth High Byte
		BW-H
$4 \mathrm{E}_{\mathrm{H}}$	UTD-BW-L	Universal Tone Detection Bandwidth Low Byte
		BW-L
$4 \mathrm{~F}_{\mathrm{H}}$	UTD-NLEV	Universal Tone Detection Noise Level
		NLEV
50_{H}	UTD-SLEV-H	Universal Tone Detection Signal Level High Byte
		SLEV-H
51_{H}	UTD-SLEV-L	Universal Tone Detection Signal Level Low Byte
		SLEV-L
52_{H}	UTD-DELT	Universal Tone Detection Delta
		DELT-H
53_{H}	UTD-RBRK	Universal Tone Detection Recognition Break Time
		RBRK
54_{H}	UTD-RTIME	Universal Tone Detection Recognition Time
		RTIME
$55_{\text {H }}$	UTD-EBRK	UTD Allowed Tone End Detection Break Time
		EBRK
56_{H}	UTD-ETIME	UTD Tone End Detection Time
		ETIME

Preliminary

6.2.4 POP Register Description

$\mathbf{0 0}_{\mathbf{H}}$	CIS-DAT	Caller ID Sender Data Buffer (write-only)			\mathbf{Y}	
Bit	7	6	5	4	3	2

Byte 1
Byte 2

Byte 47

Preliminary
SLICOFI-2x Command Structure and Programming

$\mathbf{3 0}_{\mathbf{H}}$	DTMF-LEV	DTMF Receiver Level Byte									\mathbf{Y}
Bit	7	6	5	4	3	2					

Minimum DTMF Signal Detection Level Level ${ }_{\text {DTMFdet }}$

- for DTMF detection in transmit:

Level $_{\text {DTMFdet }}[\mathrm{dB}]=$ Level $_{\text {DTMFdet }}[\mathrm{dBm} 0]-3.14+\mathrm{G}_{\text {DTMF }}[\mathrm{dB}]$
Level DTMFdet $[\mathrm{dB}]=$ Level $_{\text {DTMFdet }}[\mathrm{dBm}]-\mathrm{L}_{\mathrm{x}}[\mathrm{dBr}]-3.14+\mathrm{G}_{\text {DTMF }}[\mathrm{dB}]$

- for DTMF detection in receive:

Level $_{\text {DTMFdet }}[\mathrm{dB}]=$ Level $_{\text {DTMFdet }}[\mathrm{dBm} 0]-3.14+$ AR1[dB] $+\mathrm{G}_{\text {DTMF }}[\mathrm{dB}]$
Level ${ }_{\text {DTMFdet }}[\mathrm{dB}]=$ Level $_{\text {DTMFdet }}[\mathrm{dBm}]-\mathrm{L}_{\mathrm{R}}[\mathrm{dBr}]-3.14+\mathrm{AR} 1[\mathrm{~dB}]+\mathrm{G}_{\text {DTMF }}[\mathrm{dB}]$
AR1[dB]: The exact value for AR1 is shown in the DuSLICOS result file; approximate value $A R 1 \approx L_{R}$ for $L_{R} \leq-2 \mathrm{dBr}, A R 1 \approx-2 \mathrm{~dB}$ for $\mathrm{L}_{\mathrm{R}}>-2 \mathrm{dBr}$.

Level $_{\text {DTMFdet }}[\mathrm{dB}]=-30-\mathrm{b}-3 \times \mathrm{e}[\mathrm{dB}]$
$-54 \mathrm{~dB} \leq$ Level $_{\text {DTMFdet }} \leq-30 \mathrm{~dB}$
with
$0 \leq e \leq 7$
$0 \leq b \leq 3$

Alternative representation
$\mathrm{b}=$ MOD[(- Level $\left.\left.{ }_{\text {DTMFdet }}[\mathrm{dB}]-30\right), 3\right]$
$\mathrm{e}=\operatorname{INT}\left[\left(-\right.\right.$ Level $\left.\left._{\text {DTMFdet }}[\mathrm{dB}]-30\right) / 3\right]$

Note: $M O D=$ Modulo function, $I N T=$ Integer function

31_{H}	DTMF-TWI		DTMF Receiver Twist Byte					Y
Bit	7	6	5	4	3	2	1	0
	TWI							

DTMF Receiver Twist is the maximum allowed difference between the signal levels of the two tones for DTMF detection:

TWI[dB] $=2 \times$ Twist $_{\text {acc }}[\mathrm{dB}]$
$0 \mathrm{~dB} \leq$ wwist $_{\text {acc }} \leq 12 \mathrm{~dB}$

$3^{32} \mathrm{H}$	DTMF-NCF-H	DTMF Receiver Notch Filter Center Frequency High Byte						Y
Bit	76	5	4	3	2			0
	NCF-H							

33 $_{\mathrm{H}}$	DTMF-NCF-L	DTMF Receiver Notch Filter Center Frequency Low Byte			Y
Bit	7	6	5	4	3

DTMF Receiver Notch Filter Center Frequency:

NCF $=32768 \times \cos \left(2 \pi \frac{f_{\text {NCF }}[\mathrm{Hz}]}{8000}\right)=$ NCF-L $+256 \times$ NCF-H
$0 \mathrm{~Hz} \leq f_{\text {NCF }} \leq 2000 \mathrm{~Hz}$

The bytes are calculated as follows:

NCF-L $=$ MOD $($ NCF,256 $)=$ NCF \& 0x00FF
NCF-H $=$ INT (NCF/256) $=$ NCF >> 8

The echo of the dial tone can activate the double talk detection which means that the DTMF tone will not be detected. Therefore a notchfilter can be programmed to filter out the echo of the dialtone, because the frequency of the dialtone is known. The center frequency and the bandwith of the notch filter can be programmed.

DuSLIC-E/-E2/-P

Preliminary

SLICOFI-2x Command Structure and Programming

| $\mathbf{3 4}_{\mathbf{H}}$ | DTMF-NBW-H | DTMF Receiver Notch Filter Bandwidth
 High Byte | \mathbf{Y} |
| :--- | :--- | :--- | :--- | :--- |

Bit

7	6	5	4	3	2	1	0
NBW-H							

| $\mathbf{3 5}_{\mathbf{H}}$ | DTMF-NBW-L | DTMF Receiver Notch Filter
 Bandwidth Low Byte | Y |
| :--- | :--- | :--- | :--- | :--- | :--- |

Bit

7	6	5	4	3	2	1	0
NBW-L							

DTMF Receiver Notch Filter Bandwidth:

NBW $=65536 \times \frac{\mathrm{a}}{1+\mathrm{a}}=\mathrm{NBW}-\mathrm{L}+256 \times$ NBW -H
with
$\mathrm{a}=\tan \left(\pi \cdot \frac{\mathrm{F}_{\mathrm{NBW}}[\mathrm{Hz}]}{8000}\right.$
$0 \mathrm{~Hz} \leq \mathrm{F}_{\mathrm{NBW}} \leq 2000 \mathrm{~Hz}$
$\mathrm{NBW}_{\mathrm{L}}=\mathrm{MOD}(\mathrm{NBW}, 256)$
$\mathrm{NBW}_{\mathrm{H}}=\mathrm{INT}(\mathrm{NBW} / 256)$

DuSLIC-E/-E2/-P

Preliminary

SLICOFI-2x Command Structure and Programming

3^{36}	DTMF-GAIN	Gain Stage Control for DTMF Input Signal					Y
Bit	7	6	4	3	2	1	0
		e	m				

DTMF Input Signal Gain:
$G_{\text {DTMF }}[\mathrm{dB}]=20 \times \log _{10} 16+20 \times \log _{10}[\mathrm{~g} / 32768] \approx 24.08+20 \times \log _{10}[g / 32768]$
$-24.08 \mathrm{~dB} \leq G_{\text {DTMF }} \leq 23.95 \mathrm{~dB}$
with
$g=2^{(9-e)}(32+m)$ and
$0 \leq m \leq 31,0 \leq e \leq 7$
Table 53 Ranges of $G_{\text {DTMF }}[\mathrm{dB}]$ dependent on "e"

\mathbf{e}	DTMF Input Signal Gain $G_{\text {DTMF }}$ [dB] Range
0	$23.95 \mathrm{~dB} \geq G_{\text {DTMF }} \geq 18.06 \mathrm{~dB}$
1	$17.93 \mathrm{~dB} \geq G_{\text {DTMF }} \geq 12.04 \mathrm{~dB}$
7	$-18.20 \mathrm{~dB} \geq G_{\text {DTMF }} \geq-24.08 \mathrm{~dB}$

Alternative representation:
Choose "e" as the next integer number which is bigger than or equal to:
$e \geq 3-\log _{2} G_{\text {DTMF }}=3-\frac{\log _{10} G_{\text {DTMF }}}{\log _{10} 2} \approx 3-\frac{G_{\text {DTMF }}[\mathrm{dB}]}{6.02}$
$m=G_{\text {DTMF }} \times 2^{2+e}-32=10^{\frac{G_{\text {DTMF }}[\mathrm{dB}]}{20}} \times 2^{2+e}-32$
Table 54 Example for DTMF-GAIN Calculation

$G_{\text {DTMF }}[\mathrm{dB}]$	$\mathbf{G}_{\text {DTMF }}$	\mathbf{e}	\mathbf{m}	DTMF-GAIN
0	1	3	0	0×60
-6.02	0.5	4	0	0×80
6.02	2	2	0	0×40

$\mathbf{3 7}_{\mathbf{H}}$	DTMF-RES1	DTMF Receiver Reserved Byte 1			\mathbf{Y}		
Bit	7	6	5	4	3	2	1

38_{H}	DTMF-RES2	DTMF Receiver Reserved Byte 2						Y
Bit	7	6	5	4	3	2	1	0

39	DTMF-RES3	DTMF Receiver Reserved Byte 3			\mathbf{Y}

Bit

$3 \mathbf{A}_{H}$	LEC-LEN	Line Echo Canceller Length						Y
Bit	7	6	5	4	3	2	1	0
	LEN							

Line Echo Canceller Length:
LEN = LEC Length[ms] / 0.125
LEC Length has to be entered in multiples of 0.125 ms .
The selected LEC Length has to be higher than the maximum line echo length but not higher than 8 ms .

Table 6-1 LEC Length

LEN	LEC Length
1	0.125 ms
\ldots	
64	8 ms

DuSLIC-E/-E2/-P

Preliminary
SLICOFI-2x Command Structure and Programming

$\mathbf{3 B}_{\mathbf{H}}$	LEC-POWR	Line Echo Canceller Power Detection Level			\mathbf{Y}
Bit					
	7	6	5	4	3

Minimum Power Detection Level for Line Echo Canceller:
Pow $_{\text {LECR }}[\mathrm{dB}]=\mathrm{S}_{\text {R,LEC-PowR }}[\mathrm{dBm} 0]-3.14+\mathrm{AR} 1[\mathrm{~dB}]+\mathrm{G}_{\text {LEC-RII }}[\mathrm{dB}]-20^{*} \log _{10}(\pi / 2)$
$\mathrm{S}_{\mathrm{R}, \mathrm{LEC} \text {-Powr }}[\mathrm{dBm0]}$: Minimum Power Detection Level for Line Echo Canceller at digital input
AR1[dB]: The exact value for AR1 is shown in the DuSLICOS result file; approximate value $A R 1 \approx L_{R}$ for $L_{R} \leq-2 d B r, A R 1 \approx-2 d B$ for $L_{R}>-2 d B r$.

$$
\begin{aligned}
\text { POWR } & =\left(6.02 \times 16+\text { Pow }_{\text {LECR }}[\mathrm{dB}]\right) \times 2 /\left(5 \times \log _{10} 2\right) \\
& =\left(96.32+\text { Pow }_{\text {LECR }}[\mathrm{dB}]\right) \times 1.329
\end{aligned}
$$

$-96 \mathrm{~dB} \leq$ Pow $_{\text {LECR }} \leq 0 \mathrm{~dB}$

Table 55	Characteristic Values
POWR	Pow $_{\text {LECR }}[\mathrm{dB}]$
0×00	-96
\ldots	
$0 \times 7 \mathrm{~F}$	0

Example:
AR1 $=-3 \mathrm{~dB}$
$S_{\text {R,LEC-POWR }}=-40 \mathrm{dBm} 0$
Pow $_{\text {LECR }}=-46.14 \mathrm{~dB}$
POWR $=66.69 \approx 67=0 \times 43$

DuSLIC-E/-E2/-P

Preliminary

SLICOFI-2x Command Structure and Programming

$3 \mathrm{C}_{\mathrm{H}}$	LEC-DELP	Line Echo Canceller Delta Power						Y
Bit	7	6	5	4	3	2	1	0
	DELP							

Line Echo Canceller Delta Power for Double Talk Detection (DTD):
DeltaP ${ }_{\text {LEC }}[\mathrm{dB}]=\left(\mathrm{S}_{\mathrm{R}}-\mathrm{S}_{\mathrm{X}}\right)_{\text {DTDThr }}[\mathrm{dB}]+\mathrm{AR1}[\mathrm{~dB}]+\mathrm{G}_{\text {LEC-RI }}[\mathrm{dB}]-\mathrm{G}_{\text {LEC-xI }}[\mathrm{dB}]$
$\left(\mathrm{S}_{\mathrm{R}}-\mathrm{S}_{\mathrm{X}}\right)_{\text {DTDThr }}[\mathrm{dB}]$: Double Talk Detection threshold
AR1[dB]: The exact value for AR1 is shown in the DuSLICOS result file;
approximate value $A R 1 \approx L_{R}$ for $L_{R} \leq-2 \mathrm{dBr}, A R 1 \approx-2 \mathrm{~dB}$ for $\mathrm{L}_{\mathrm{R}}>-2 \mathrm{dBr}$.

DELP $=$ DeltaP $_{\text {LEC }}[\mathrm{dB}] \times 2 / 5 \times \log _{10} 2=$ DeltaP $_{\text {LEC }}[\mathrm{dB}] \times 1.329$
$-96 \mathrm{~dB} \leq$ DeltaP $_{\text {LEC }} \leq 96 \mathrm{~dB}$

Table 56 Characteristic Values	
DELP	DeltaP $_{\text {LEC }}[\mathrm{dB}]$
0×81	-96
\ldots	
$0 \times 7 \mathrm{~F}$	96

Example:
AR1 $=-3 \mathrm{~dB}$
expected echo signal $<-15 \mathrm{~dB} \rightarrow\left(\mathrm{~S}_{\mathrm{R}}-\mathrm{S}_{\mathrm{X}}\right)_{\text {DTDThr }}=-15 \mathrm{~dB}$
DeltaP ${ }_{\text {LEC }}=12 \mathrm{~dB}$
DELP = $16=0 \times 10$

DuSLIC-E/-E2/-P

Preliminary

SLICOFI-2x Command Structure and Programming

$3 \mathrm{D}_{\mathrm{H}}$	LEC-DELQ	Line Echo Canceller Delta Quality						Y
Bit	7	6	5	4	3	2	1	0

Line Echo Canceller Delta Quality Between Shadow Filter and Main Filter:
The higher DeltaQ is, the less copying between shadow filter and main filter takes place and the higher is the quality.

DELQ[dB] $=$ DeltaQ[dB] $\times 2 / 5 \times \log _{10} 2=$ DeltaQ[dB] $\times 1.329$
$0 \mathrm{~dB} \leq$ DeltaQ $\leq 10 \mathrm{~dB}$

Table 57 Characteristic Values	
DELQ	DeltaQ[dB]
8	6.02 dB
4	3.01 dB (typical)
3	2.26 dB
2	1.505 dB

DuSLIC-E/-E2/-P

Preliminary

SLICOFI-2x Command Structure and Programming

$3 \mathrm{E}_{\mathrm{H}}$	LEC-GAIN-XI	Line Echo Canceller Input Gain Transmit					Y
Bit	$7 \quad 6$	5	4	3	2	1	0
	e				m		

Line Echo Canceller Input Gain Transmit:
It is important, that $G_{\text {LEC-xI }}[\mathrm{dB}]$ will not be changed, so $G_{\text {LEC-XI }}[\mathrm{dB}]=-\mathrm{G}_{\text {LEC-X0 }}[\mathrm{dB}]$
$\mathrm{G}_{\text {LEC-XI }}[\mathrm{dB}]=20 \times \log _{10} 16+20 \times \log _{10}[\mathrm{~g} / 32768] \approx 24.08+20 \times \log _{10}[\mathrm{~g} / 32768]$
$-24.08 \mathrm{~dB} \leq \mathrm{G}_{\text {LEC }-\mathrm{XI}} \leq 23.95 \mathrm{~dB}$
with
$\mathrm{g}=2^{9-\mathrm{e}}(32+\mathrm{m})$ and
$0 \leq m \leq 31,0 \leq e \leq 7$
Table 58 Ranges of $\mathrm{G}_{\text {LEC-xI }}[\mathrm{dB}]$ Dependent on "e"

\mathbf{e}	Input Gain $G_{\text {LEC }-X I[\mathrm{~dB}] \text { Range }}$
0	$23.95 \mathrm{~dB} \geq G_{\text {LEC-XI }} \geq 18.06 \mathrm{~dB}$
1	$17.93 \mathrm{~dB} \geq G_{\text {LEC-XI }} \geq 12.04 \mathrm{~dB}$
7	$-18.20 \mathrm{~dB} \geq \mathrm{G}_{\text {LEC }-X I} \geq-24.08 \mathrm{~dB}$

Alternative representation:
Choose "e" as the next integer number which is bigger than or equal to:

$$
\begin{aligned}
& \mathrm{e} \geq 3-\log _{2} G_{\text {LEC }-\mathrm{XI}}=3-\frac{\log _{10} G_{\text {LEC }-X I}}{\log _{10} 2} \approx 3-\frac{\mathrm{G}_{\text {LEC }-\mathrm{XI}}[\mathrm{~dB}]}{6.02} \\
& \mathrm{~m}=\mathrm{G}_{\mathrm{LEC}-\mathrm{xI}} \times 2^{2+e}-32=10 \frac{\mathrm{G}_{\text {LEC-xI }[\mathrm{dB}]}}{20} \times 2^{2+e}-32
\end{aligned}
$$

Table 59 Example for LEC-GAIN-XI Calculation

$G_{\text {LEC-XI }}[\mathrm{dB}]$	$\mathbf{G}_{\text {LEC-XI }}$	e	\mathbf{m}	LEC-GAIN-XI
0	1	3	0	0×60
-6.02	0.5	4	0	0×80
6.02	2	2	0	0×40

DuSLIC-E/-E2/-P

Preliminary

SLICOFI-2x Command Structure and Programming

$3 \mathrm{~F}_{\mathrm{H}}$	LEC-GAIN-RI	Line Echo Canceller Input Gain Receive					Y
Bit	7	65	4	3	2	1	0
	e		m				

Line Echo Canceller Input Gain Receive:
$G_{\text {LEC-RII }}[d B]=20 \times \log _{10} 16+20 \times \log _{10}[g / 32768] \approx 24.08+20 \times \log _{10}[g / 32768]$
$-24.08 \mathrm{~dB} \leq \mathrm{G}_{\mathrm{LEC}-\mathrm{RI}} \leq 23.95 \mathrm{~dB}$
with
$\mathrm{g}=2^{9-\mathrm{e}}(32+\mathrm{m})$ and
$0 \leq m \leq 31,0 \leq e \leq 7$
Table 60 Ranges of $G_{\text {LEC-RI }}[\mathrm{dB}]$ Dependent on " e "

\mathbf{e}	Input Gain $G_{\text {LEC-RII }}[\mathrm{dB}]$ Range
0	$23.95 \mathrm{~dB} \geq \mathrm{G}_{\text {LEC-RI }} \geq 18.06 \mathrm{~dB}$
1	$17.93 \mathrm{~dB} \geq \mathrm{G}_{\text {LEC-RI }} \geq 12.04 \mathrm{~dB}$
7	$-18.20 \mathrm{~dB} \geq \mathrm{G}_{\text {LEC-RI }} \geq-24.08 \mathrm{~dB}$

Alternative representation:
Choose "e" as the next integer number which is bigger than or equal to:
$\mathrm{e} \geq 3-\log _{2} \mathrm{G}_{\mathrm{LEC}-\mathrm{RI}}=3-\frac{\log _{10} \mathrm{G}_{\mathrm{LEC}-\mathrm{RI}}}{\log _{10} 2} \approx 3-\frac{\mathrm{G}_{\mathrm{LEC}-\mathrm{RI}}[\mathrm{dB}]}{6.02}$

$$
\mathrm{m}=\mathrm{G}_{\mathrm{LEC}-\mathrm{RI}} \times 2^{2+\mathrm{e}}-32=10^{\frac{\mathrm{G}_{\mathrm{LEC}-\mathrm{RI}}[\mathrm{~dB}]}{20}} \times 2^{2+\mathrm{e}}-32
$$

Table 61 Example for LEC-GAIN-RI Calculation

$G_{\text {LEC-RI }}[\mathrm{dB}]$	$\mathrm{G}_{\text {LEC-RI }}$	\mathbf{e}	\mathbf{m}	LEC-GAIN-RI
0	1	3	0	0×60
-6.02	0.5	4	0	0×80
6.02	2	2	0	0×40

DuSLIC-E/-E2/-P

Preliminary

SLICOFI-2x Command Structure and Programming

40_{H}	LEC-GAIN-XO	Line Echo Canceller Output Gain Transmit					Y
Bit	$7 \quad 6$	5	4	3	2	1	0
	e		m				

Line Echo Canceller Output Gain Transmit:
It is important, that $G_{\text {LEC-x0 }}[\mathrm{dB}]$ will not be changed, so $G_{\text {LEC-x0 }}[\mathrm{dB}]=-G_{\text {LEC-xI }}[\mathrm{dB}]$
$\mathrm{G}_{\text {LEC }-\times 0}[\mathrm{~dB}]=20 \times \log _{10} 16+20 \times \log _{10}[\mathrm{~g} / 32768] \approx 24.08+20 \times \log _{10}[\mathrm{~g} / 32768]$
$-24.08 \mathrm{~dB} \leq \mathrm{G}_{\text {LEC }-\mathrm{XO}} \leq 23.95 \mathrm{~dB}$
with
$\mathrm{g}=2^{9-\mathrm{e}}(32+\mathrm{m})$ and
$0 \leq m \leq 31,0 \leq e \leq 7$
Table 62 Ranges of $G_{\text {LEC-xo }}[\mathrm{dB}]$ Dependent on " e "

\mathbf{e}	Output Gain $G_{\text {LEC- }-\mathrm{X} 0}[\mathrm{~dB}]$ Range
0	$23.95 \mathrm{~dB} \geq G_{\text {LEC }-\mathrm{XO}_{0}} \geq 18.06 \mathrm{~dB}$
1	$17.93 \mathrm{~dB} \geq G_{\text {LEC }-\mathrm{XO}_{0}} \geq 12.04 \mathrm{~dB}$
7	$-18.20 \mathrm{~dB} \geq \mathrm{G}_{\text {LEC }-\mathrm{XO}_{0} \geq-24.08 \mathrm{~dB}}$

Alternative representation:
Choose "e" as the next integer number which is bigger than or equal to:
$e \geq 3-\log _{2} G_{\text {LEC }-X 0}=3-\frac{\log _{10} G_{\text {LEC }-X 0}}{\log _{10} 2} \approx 3-\frac{G_{\text {LEC }-X 0}[\mathrm{~dB}]}{6.02}$
$m=G_{\text {LEC }-x 0} \times 2^{2+e}-32=10^{\frac{G_{\text {LEC }-x_{0}}[d B]}{20}} \times 2^{2+e}-32$
Table 63 Example for LEC-GAIN-X0 Calculation

$G_{\text {LEC-x0 }}[\mathrm{dB}]$	$\mathbf{G}_{\text {LEC-X0 }}$	e	\mathbf{m}	LEC-GAIN-X0
0	1	3	0	0×60
-6.02	0.5	4	0	0×80
6.02	2	2	0	0×40

41 $_{\mathrm{H}}$	LEC-RES1	Line Echo Canceller Reserved Byte 1			\mathbf{Y}		
Bit	7	6	5	4	3	2	1

DuSLIC-E/-E2/-P

43_{H}	CIS-LEV-H	Caller ID Sender Level High Byte						Y
Bit	7	6	5	4	3	2	1	0
	LEV-H							

44 ${ }_{\text {H }}$	CIS-LEV-L	Caller ID Sender Level Low Byte						Y
Bit	7	6	5	4	3	2	1	0
	LEV-L							

Caller ID Sender Level:
$\operatorname{Lev}_{\mathrm{CIS}}[\mathrm{dB}]=\operatorname{Lev}_{\mathrm{CIS}}[\mathrm{dBm0}]-3.14-3.37$
$\operatorname{Lev}_{\mathrm{CIS}}[\mathrm{dB}]=\operatorname{Lev}_{\mathrm{CIS}}[\mathrm{dBm}]-\mathrm{L}_{\mathrm{R}}[\mathrm{dBr}]-3.14-3.37$
LEV $=32767 \times 10($ LevcisIdB] 20$)$
$-90.31 \mathrm{~dB} \leq \operatorname{Lev}_{\mathrm{CIS}} \leq 0 \mathrm{~dB}$

LEV-L = MOD (LEV,256)
LEV-H = INT (LEV/256)

Table 64 Examples	
LEV	Level [dB]
0	$-\infty($ signal off $)$
1	-90.31
32767	0

DuSLIC-E/-E2/-P

Caller ID Sender Buffer Request Size:
$0 \leq$ BRS ≤ 46

CIS-BRS is a threshold to be set within the Caller ID sender buffer (CIS-DAT, 48 bytes). If the number of bytes in the CID sender buffer falls below the buffer request size an interrupt is generated. This is the indication to fill up the buffer again.
The first bit will be sent if the number of bytes in the CID sender buffer exceeds the buffer request size (start sending with BRS + 1 number of bytes).
The buffer request size BRS must always be smaller than the number of bytes to be sent:

BRS < Number of bytes to be sent
Typical values: 10-30.

DuSLIC-E/-E2/-P

Preliminary
SLICOFI-2x Command Structure and Programming

46 ${ }_{\text {H }}$	CIS-SEIZ-H	Caller ID Sender Number of Seizure Bits High Byte					Y
Bit	7	65	4	3	2	1	0
	SEIZ-H						

Caller ID Sender Number of Seizure Bits:
(only if High Level Framing is selected in the CIS/LEC-MODE register (see Page 251))
$0 \leq$ SEIZ ≤ 32767

SEIZ-L = MOD (SEIZ,256)
SEIZ-H = INT (SEIZ/256)

DuSLIC-E/-E2/-P

48 $_{\mathbf{H}}$	CIS-MARK-H	Caller ID Sender Number of Mark Bits High Byte		\mathbf{Y}	
Bit	7	6	5	4	3

| $\mathbf{4 9}_{\mathbf{H}}$ | CIS-MARK-L | Caller ID Sender Number of Mark Bits
 Low Byte | | Y |
| :--- | :--- | :--- | :--- | :--- | :---: |

Bit

7	6	5	4	3	2	1	0
MARK-L							

Caller ID Sender Number of Mark Bits:
(only if High Level Framing is selected in the CIS/LEC-MODE register)
$0 \leq$ MARK ≤ 32767

MARK-L = MOD (MARK,256)
MARK-H = INT (MARK/256)

Preliminary
SLICOFI-2x Command Structure and Programming

$4 A_{H}$	CIS/LECMODE	CIS/LEC Mode Setting						Y
Bit	7	6	5	4	3	2	1	0
	LECADAPT	$\begin{gathered} \hline \text { LEC- } \\ \text { FREEZE } \end{gathered}$	UTDXSUM	UTDRSUM	0	0	CIS- FRM	$\begin{aligned} & \text { CIS- } \\ & \text { V23 } \end{aligned}$

LEC-ADAPT Line Echo Canceller Adaptation Start. The LEC-ADAPT bit is only evaluated if the LEC-EN is changed from 0 to 1 .
To initialize the LEC coefficients to 0 requires the LEC-ADAPT bit set to 0 followed by the LEC-EN bit changed from 0 to 1 .
It is not possible to reset the LEC coefficients to 0 while the LEC is running. The LEC has to be disabled first by setting bit LEC-EN to 0 and then it is necessary to enable the LEC again (LEC-EN = 1, LEC-ADAPT $=0$). If valid coefficients from a former LEC adaptation are present in the RAM, it is possible to activate the LEC with this coefficents by setting bit LEC-ADAPT to 1 .
It is also possible to read out adapted coefficients from the LEC for external storage and to reuse these coefficients as a start up value for the next connection (see the available Apllication Notes).
LEC-ADAPT $=0 \quad$ Line Echo Canceller coefficients initialized with zero
LEC-ADAPT = $1 \quad$ Line Echo Canceller coefficients initialized with old coefficients

LEC-FREEZE Line Echo Canceller Adaptation Freeze
LEC-FREEZE $=0$ No freezing of coefficients
LEC-FREEZE $=1$ Freezing of coefficients

UTDX-SUM Sum signal for Universal Tone Detection unit in transmit direction
UTDX-SUM $=0 \quad$ The transmit signal is fed through
UTDX-SUM $=1 \quad$ The sum signal $\mathrm{S}_{\text {SUM }}$ (receive signal + LEC signal, if LEC is enabled) is fed through (see bit UTDX-SRC in BCR2 and Figure 32)

SLICOFI-2x Command Structure and Programming

UTDR-SUM Sum signal for Universal Tone Detection unit in receive direction UTDR-SUM $=0 \quad$ The receive signal is fed to the UDT unit
UTDR-SUM $=1$ The sum signal S $_{\text {SUM }}$ (receive signal + LEC signal, if LEC is enabled) is fed to the UTD unit

CIS-FRM Caller ID Sender Framing

CIS-FRM $=0$ Low-level framing: all data for CID transmissions have to be written to the CID Buffer including channel seizure and mark sequence, start and stop bits.
CIS-FRM $=1 \quad$ High-level framing: channel seizure and mark sequence as well as start and stop bits are automatically inserted by the SLICOFI-2x. Only transmission bytes from the Data Packet (see Figure 33) have to be written to the CIS buffer.

CIS-V23 Caller ID Sender Mode
CIS-V23 $=0 \quad$ Bell 202 selected
CIS-V23 $=1 \quad$ V. 23 selected

DuSLIC-E/-E2/-P

Preliminary

SLICOFI-2x Command Structure and Programming

4B $_{\mathbf{H}}$	UTD-CF-H	Universal Tone Detection Center Frequency High Byte		\mathbf{Y}	
Bit	7	6	5	4	3

4C $_{\text {H }}$	UTD-CF-L	Universal Tone Detection Center Frequency Low Byte		Y	
Bit	7	6	5	4	3

Universal Tone Detection Center Frequency:
$\mathrm{CF}=32768 \times \cos \left(\frac{2 \pi f_{\mathrm{c}}[\mathrm{Hz}]}{8000}\right)$
$0<f_{\mathrm{C}}<4000 \mathrm{~Hz}$

CF-L = MOD (CF,256)
CF-H = INT (CF/256)

DuSLIC-E/-E2/-P

Preliminary

SLICOFI-2x Command Structure and Programming

4D ${ }_{\text {H }}$	UTD-BW-H	Universal Tone Detection Bandwidth High Byte					Y
Bit	7	65	4	3	2	1	0

Universal Tone Detection Bandwidth:
$B W=65536 \times \frac{a}{1+a}$
with
$\mathrm{a}=\tan \left(\frac{f_{\mathrm{BW}}[\mathrm{Hz}] \times \pi}{8000}\right)$
$0<f_{\mathrm{BW}}<2000 \mathrm{~Hz}$

BW-L = MOD (BW,256)
BW-H = INT (BW/256)

Preliminary

SLICOFI-2x Command Structure and Programming

$4 \mathrm{~F}_{\mathrm{H}}$	UTD-NLEV	Universal Tone Detection Noise Level							Y
Bit	7	6	5	4	3	2		1	0

Universal Tone Detection Noise Level:
NLEV $=32768 \times 10^{\left(\operatorname{Lev} v_{N}[\mathrm{CB}] / 20\right.}$
$-96 \mathrm{~dB} \leq \operatorname{Lev}_{\mathrm{N}} \leq-42.18 \mathrm{~dB}$

Preliminary
SLICOFI-2x Command Structure and Programming

50_{H}	UTD-SLEV-H	Universal Tone Detection Signal Level High Byte					Y
Bit	6	5	4	3	2	1	0
	SLEV-H						

$\mathbf{5 1}_{\mathbf{H}}$	UTD-SLEV-L	Universal Tone Detection Signal Level Low Byte			\mathbf{Y}

Bit

7	6	5	4	3	2	1	0
SLEV-L							

Universal Tone Detection Signal Level:

Calculation for Transmit:
$\operatorname{Lev}_{\mathrm{S}}[\mathrm{dB}]=\operatorname{Lev}_{\mathrm{S}}[\mathrm{dBm0}]-3.14-20^{*} \log _{10}(\pi / 2)$
$\operatorname{Lev}_{S}[\mathrm{~dB}]=\operatorname{Lev}_{\mathrm{S}}[\mathrm{dBm}]-\mathrm{L}_{\mathrm{x}}[\mathrm{dBr}]-3.14-20^{*} \log _{10}(\pi / 2)$
Calculation for Receive:
$\operatorname{Lev}_{s}[\mathrm{~dB}]=\operatorname{Lev}_{\mathrm{s}}[\mathrm{dBm} 0]-3.14+\mathrm{AR1}[\mathrm{~dB}]-20^{*} \log _{10}(\pi / 2)$
$\operatorname{Lev}_{\mathrm{S}}[\mathrm{dB}]=\operatorname{Lev}_{\mathrm{S}}[\mathrm{dBm}]-\mathrm{L}_{\mathrm{R}}[\mathrm{dBr}]-3.14+\mathrm{AR1}[\mathrm{~dB}]-20^{*} \log _{10}(\pi / 2)$
AR1[dB]: The exact value for AR1 is shown in the DuSLICOS result file;
approximate value $A R 1 \approx L_{R}$ for $L_{R} \leq-2 d B r, A R 1 \approx-2 d B$ for $L_{R}>-2 d B r$.
SLEV $=32768 \times 10^{(L \operatorname{Lev} \text { [dB])/20 }}-$ NLEV
$-96 \mathrm{~dB} \leq \operatorname{Lev}_{\mathrm{S}} \leq 0 \mathrm{~dB}$

Signal Level:
SLEV-L = MOD (SLEV,256)
SLEV-H = INT (SLEV/256)
UTD for Receive and Transmit:
By enabling the UTD the coefficients in the UTD registers are copied to the main memory. Therefore different coefficients can be set for receive and transmit direction.

DuSLIC-E/-E2/-P

Preliminary

52_{H}	UTD-DELT	Universal Tone Detection Delta						Y
Bit	7	6	5	4	3	2	1	0
	DELT							

Universal Tone Detection Delta Inband/Outband:

DELT $=\operatorname{Sign}\left(\right.$ Delta $\left._{\text {UTD }}\right) \times 128 \times 10^{-\mid \text {Deltauto }[d B] / 20}$
$-42 \mathrm{~dB} \leq$ Delta $_{\text {UTD }} \leq 42 \mathrm{~dB}$

Example:

Detection of a tone that is between 1975 Hz and $2025 \mathrm{~Hz} \rightarrow f_{\mathrm{C}}=2000 \mathrm{~Hz}$

- $f_{\mathrm{BW}}=50 \mathrm{~Hz}$

Tone at 2025 Hz : Outband $=-3 \mathrm{~dB}$, Inband $=-3 \mathrm{~dB}$ (see Table 65)
Delta $_{\text {UTD }}=0 \mathrm{~dB} \rightarrow$ DELT $=128=0 \times 80$

- $f_{\mathrm{BW}}=500 \mathrm{~Hz}$

Tone at 2025 Hz : Outband $=-20 \mathrm{~dB}$, Inband $=-0.04 \mathrm{~dB}$ (see Table 65)
Delta $_{\text {UTD }} \approx 20 \mathrm{~dB} \rightarrow$ DELT $=13=0 \times 0 \mathrm{D}$

Table 65 UTD Inband/Outband Attenuation

\mathbf{f}	Outband	Inband
$f_{\mathrm{C}} \pm f_{\mathrm{BW}} / 0.2$	-0.04 dB	-20 dB
$f_{\mathrm{C}} \pm f_{\mathrm{B}} / 2$	-3 dB	-3 dB
$f_{\mathrm{C}} \pm f_{\mathrm{BW}} / 20$	-20 dB	-0.04 dB
$f_{\mathrm{C}} \pm f_{\mathrm{BW}} / 200$	-40 dB	-0 dB

SLICOFI-2x Command Structure and Programming

$\mathbf{5 3}_{\mathrm{H}}$	UTD-RBRK	Universal Tone Detection Recognition Break Time			\mathbf{Y}
Bit	7	6	5	4	3

Allowed Recognition Break Time for Universal Tone Detection:

RBRK = RBRKTime[ms]/4
RBRKTime has to be entered in multiples of 4 ms .
$0 \mathrm{~ms} \leq$ RBRKTime $\leq 1000 \mathrm{~ms}$

For an example see Figure 72.

DuSLIC-E/-E2/-P

SLICOFI-2x Command Structure and Programming

54_{4}	UTD-RTIME	Universal Tone Detection Recognition Time					Y
Bit	7	5	4	3	2	1	0
	RTIME						

Universal Tone Detection Recognition Time:

RTIME = RTime[ms]/16
RTime has to be entered in multiples of 16 ms .
$0 \mathrm{~ms} \leq$ RTime $\leq 4000 \mathrm{~ms}$

Figure 72 Example for UTD Recognition Timing

SLICOFI-2x Command Structure and Programming

55 ${ }_{\text {H }}$	UTD-EBRK	UTD Allowed Tone End Detection Break Time					Y
Bit	7	5	4	3	2	1	0
	EBRK						

Allowed tone end detection break time for Universal Tone Detection:

EBRK = EBRKTime [ms]
$0 \mathrm{~ms} \leq$ EBRKTime $\leq 255 \mathrm{~ms}$

For an example see Figure 73.

DuSLIC-E/-E2/-P

SLICOFI-2x Command Structure and Programming
Preliminary

56_{H}	UTD-ETIME	UTD Tone End Detection Time					Y
Bit	7	5	4	3	2	1	0
	ETIME						

Tone End Detection Time for Universal Tone Detection:

ETIME = ETime[ms]/4
ETime has to be entered in multiples of 4 ms .
$0 \mathrm{~ms} \leq$ ETime $\leq 1000 \mathrm{~ms}$

Figure 73 Example for UTD Tone End Detection Timing

DuSLIC-E/-E2/-P

Preliminary

6.2.5 IOM-2 Interface Command/Indication Byte

The Command/Indication (C/I) channel is used to communicate real-time status information and for fast controlling of the DuSLIC. Data on the C/I channel are continuously transmitted in each frame until new data are sent.

Data Downstream C/I - Channel Byte (Receive) - IOM-CIDD

The first six CIDD data bits control the general operating modes for both DuSLIC channels. According to the IOM-2 specifications, new data have to be present for at least two frames to be accepted.

Table 66 M2, M1, M0: General Operating Mode

CIDD		SLICOFI-2 Operating Mode (for details see "Operating Modes for the DuSLIC Chip Set" on Page 78)	
1	M1	M0	Sleep, Power Down (PDRx) 0
0	0	0	Power Down High Impedance (PDH)
1	0	0	Any Active mode
1	1	1	Ringing (ACTR Burst On)
1	0	0	Active with Metering
0	0	1	Ground Start

	CIDD	Data Downstream C/I - Channel Byte						N
Bit	7	6	5	4	3	2	1	0
	M2A	M1A	M0A	M2B	M1B	M0B	MR	MX

M2A, M1A, M0A Select operating mode for DuSLIC channel A
M2B, M1B, M0B Select operating mode for DuSLIC channel B
MR, MX Handshake bits Monitor Receive and Transmit (see "IOM-2 Interface Monitor Transfer Protocol" on Page 148)

Preliminary

SLICOFI-2x Command Structure and Programming

Data Upstream C/I - Channel Byte (Transmit) - IOM-CIDU

This byte is used to quickly transfer the most important and time-critical information from the DuSLIC. Each transfer from the DuSLIC lasts for at least 2 consecutive frames.

	CIDU	Data Upstream C/I - Channel Byte				0^{00}		N
Bit	7	6	5	4	3	2	1	0
	INT-CHA	HOOKA	GNDKA	INT-CHB	HOOKB	GNDKB	MR	MX

INT-CHA Interrupt information channel A
INT-CHA $=0 \quad$ No interrupt in channel A
INT-CHA = 1 Interrupt in channel A
HOOKA Hook information channel A
HOOKA = $0 \quad$ On-hook channel A
HOOKA $=1 \quad$ Off-hook channel A
GNDKA Ground key information channel A GNDKA $=0 \quad$ No longitudinal current detected
GNDKA $=1 \quad$ Longitudinal current detected in channel A
INT-CHB Interrupt information channel B
INT-CHB $=0 \quad$ No interrupt in channel B
INT-CHB = 1 Interrupt in channel B
HOOKB Hook information channel B
HOOKB = $0 \quad$ On-hook Channel B
HOOKB = $1 \quad$ Off-hook Channel B
GNDKB Ground key information channel B
GNDKB $=0 \quad$ No longitudinal current detected
GNDKB $=1 \quad$ Longitudinal current detected in channel B
MR, MX Handshake bits Monitor Receive and Transmit
(see "IOM-2 Interface Monitor Transfer Protocol" on Page 148)

DuSLIC-E/-E2/-P

Preliminary

6.2.6 Programming Examples of the SLICOFI-2

6.2.6.1 Microcontroller Interface

SOP Write to Channel 0 Starting After the Channel Specific Read-only Registers

01000100 First command byte (SOP write for channel 0)

00010101 Second command byte (Offset to BCR1 register)
00000000 Contents of BCR1 register
00000000 Contents of BCR2 register
00010001 Contents of BCR3 register
00000000 Contents of BCR4 register
00000000 Contents of BCR5 register

Figure 74 Waveform of Programming Example SOP-Write to Channel 0

SOP Read from Channel 1 Reading Out the Interrupt Registers

11001100 First command byte (SOP read for channel 1).
00000111 Second command byte (Offset to Interrupt register 1).
The SLICOFI-2 will send data when it has completely received the second command byte.
11111111 Dump byte (This byte is always FF_{H}).
11000000 Interrupt register INTREG1 (An interrupt has occurred, Off-hook was detected).
00000010 Interrupt register INTREG2 (IO pin 2 is ' 1 ').
00000000 Interrupt register INTREG3
00000000 Interrupt register INTREG4

Figure 75 Waveform of Programming Example SOP Read from Channel 0

DuSLIC-E/-E2/-P

Preliminary
SLICOFI-2x Command Structure and Programming

6.2.6.2 IOM-2 Interface

An example with the same programming sequence as before, using the IOM-2 interface is presented here to show the differences between the microcontroller interface and the IOM-2 interface.

SOP Write to Channel 0 Starting After the Channel-Specific Read-only Registers

Monitor data down	$\mathrm{MR} / \mathrm{MX}$	Monitor data up	MR/MX Comment	
10000001	10	1111111	11	IOM-2 address first byte
10000001	10	11111111	01	IOM-2 address second byte
01000100	11	11111111	01	First command byte (SOP write for channel 0)
01000100	10	1111111	11	First command byte second time
00010101	11	11111111	01	Second command byte (Offset to BCR1 register)
00010101	10	11111111	11	Second command byte second time
00000000	11	11111111	01	Contents of BCR1 register
00000000	10	11111111	11	Contents of BCR1 register second time
00000000	11	11111111	01	Contents of BCR2 register
00000000	10	1111111	11	Contents of BCR2 register second time
00010001	11	11111111	01	Contents of BCR3 register
00010001	10	11111111	11	Contents of BCR3 register second time
00000000	11	11111111	01	Contents of BCR4 register
00000000	10	11111111	11	Contents of BCR4 register second time
11111111	11	11111111	01	No more information (dummy byte)
11111111	11	1111111	11	Signaling EOM (end of message) by holding MX bit at ' 1 '.

Since the SLICOFI-2 has an open command structure there is no fixed command length. The IOM-2 handshake protocol allows for an infinite length of a data stream, therefore the host has to terminate the data transfer by sending an end-of-message signal (EOM) to the SLICOFI-2. The SLICOFI-2 will abort the transfer only if the host tries to write or read beyond the allowed maximum offset given by the different types of commands. Each transfer has to start with the SLICOFI-2-specific IOM-2 address (81 ${ }_{\mathrm{H}}$) and must end with an EOM of the handshake bits. Appending a command immediately to its predecessor without an EOM in between is not allowed.
When reading interrupt registers, SLICOFI-2 stops the transfer after the fourth register in IOM-2 mode. This is to prevent some host chips reading 16 bytes because they can't terminate the transfer after n bytes.

DuSLIC-E/-E2/-P

Preliminary

SLICOFI-2x Command Structure and Programming

SOP-Read from Channel 1 Reading Out the Interrupt Registers

Monitor data down	MR/MX	Monitor data up	MR/MX Comment	
10000001	10	11111111	11	IOM-2 address first byte
10000001	10	11111111	01	IOM-2 address second byte
11001100	11	11111111	01	First command byte (SOP read for channel 1)
11001100	10	11111111	11	First command byte second time
00001000	11	11111111	01	Second command byte (offset to interrupt register 1)
00001000	10	11111111	11	Second command byte second time
11111111	11	11111111	01	Acknowledgement for the second command byte
11111111	11	10000001	10	IOM-2 Address first byte (answer)
11111111	01	10000001	10	IOM-2 Address second byte
11111111	01	11000000	11	Interrupt register INTREG1
11111111	11	11000000	10	Interrupt register INTREG1 second time
11111111	01	00000010	11	Interrupt register INTREG2
11111111	11	00000010	10	Interrupt register INTREG2 second time
11111111	01	00000000	11	Interrupt register INTREG3
11111111	11	00000000	10	Interrupt register INTREG3 second time
11111111	01	00000000	11	Interrupt register INTREG4
11111111	11	00000000	10	Interrupt register INTREG4 second time
11111111	11	01001101	11	SLICOFI-2 sends the next register
11111111	11	11111111	11	SLICOFI-2 aborts transmission

DuSLIC-S/-S2

6.3 SLICOFI-2S/-2S2 Command Structure and Programming

This chapter comprises only the SLICOFI-2S/-2S2 PEB 3264/-2 and therefore the DuSLIC-S and DuSLIC-S2 chip sets.

6.3.1 SOP Command

The SOP "Status Operation" command provides access to the configuration and status registers of the SLICOFI-2S/-2S2. Common registers change the mode of the entire SLICOFI-2S/-2S2 chip, all other registers are channel-specific. It is possible to access single or multiple registers. Multiple register access is realized by an automatic offset increment. Write access to read-only registers is ignored and does not abort the command sequence. Offsets may change in newer versions of the SLICOFI-2S/-2S2.
(All empty register bits have to be filled with zeros.)

6.3.1.1 SOP Register Overview

$0^{0} \mathrm{H}$
REVISION Revision Number (read-only)
REV[7:0]
${ }^{01}{ }_{H}$
CHIPID 1
Chip Identification 1 (read-only)
for internal use only
02_{H}
CHIPID 2
Chip Identification 2 (read-only)
for internal use only
03_{H}
CHIPID 3
Chip Identification 3 (read-only)

0^{04}
FUSE1
Fuse Register 1
for internal use only
$0^{5} \mathrm{H}$
PCMC1
PCM Configuration Register 1

DBL-CLK	X-SLOPE	R-SLOPE	NO-DRIVE-0	SHIFT	PCMO[2:0]

06 ${ }_{\mathrm{H}}$ XCR

0	ASYNCH-R	0	0	0	0	0	0

$0 \mathrm{D}_{\mathrm{H}}$ reserved

0	0	0	0	0	0	0	0

$0 E_{H}$
reserved

0	0	0	0	0	0	0	0

$0 F_{H}$
FUSE2
Fuse Register 2
for internal use only
10_{H}
FUSE3 Fuse Register 3

	for internal use only							
11_{H}	MASK Mask Register							
	READY-M	HOOK-M	GNDK-M	GNKP-M	ICON-M	VRTLIM-M	OTEMP-M	SYNC-M

Preliminary

1D D_{H} LMCR2 Level Metering Configuration Register 2

0	0	0	0	0	0	0

22_{H}

23^{H}

24 ${ }_{H} \quad$ reserved

| | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{25} \mathrm{H}$

PCMX1
PCM Transmit Register 1

${ }^{26}{ }_{H}$

Preliminary

SLICOFI-2x Command Structure and Programming
2^{27}
reserved
\square
28_{H}

29_{H}
TSTR1

PD-AC-PR	PD-AC-PO	PD-AC-AD	PD-AC-DA	PD-AC-GN	PD-GNKC	PD-OFHC	PD-OVTC

$2 A_{H}$ Test Register 2

| PSTR2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

$2 \mathrm{~B}_{\mathrm{H}} \quad$ TSTR3 \quad Test Register 3

0	0	AC-DLB-4M	AC-DLB- $128 K$	AC-DLB- $32 K$	AC-DLB- $8 K$	0	0

$2 \mathrm{C}_{\mathrm{H}}$
Test Register 4

OPIM-AN	OPIM-4M	COR-64	COX-16	0	0	0	0

$2 D_{H}$
TSTR5 Test Register 5

0	0	0	DC-POFI- HI	DC-HOLD	0	0	0

${ }^{1)}$ Only for DuSLIC-S, is set to 1 for DuSLIC-S2
${ }^{2}$) Only for DuSLIC-S, is set to 0 for DuSLIC-S2

DuSLIC-S/-S2

Preliminary

SLICOFI-2x Command Structure and Programming

6.3.1.2 SOP Register Description

$\mathbf{0 0}_{\mathbf{H}}$	REVISION	Revision Number (read-only)	curr. rev.		\mathbf{N}

Bit

7	6	5	4	3	2	1	0
REV[7:0]							

REV[7:0] Current revision number of the SLICOFI-2S/-2S2.

$01_{\text {H }}$	CHIPID 1	Chip Identification 1 (read-only)			hw		N
Bit	7	65	43	2		1	0
	for internal use only						
02 ${ }^{\text {H }}$	CHIPID 2	Chip Identific	2 (read-only)		hw		N
Bit	7	65	43	2		1	0
	for internal use only						

$\mathbf{0 3}_{\mathrm{H}}$	CHIPID 3	Chip Identification 3 (read-only)	hw		N

7	6	5	4	3	2	1	0
for internal use only							

04H	FUSE1	Fuse Register 1					hw		N
Bit	7	6	5	4	3	2		1	0
	for internal use only								

05 H	PCMC1	PCM Configuration Register 1				00 ${ }_{\text {H }}$		N
Bit	7	6	5	4	3	2	1	0
	DBL-CLK	X-SLOPE	R-SLOPE	NO-DRIVE-0	SHIFT		O	

DBL-CLK Clock mode for the PCM interface (see Figure 59 on Page 141).
DBL-CLK $=0 \quad$ Single clocking is used.
DBL-CLK = $1 \quad$ Double clocking is used.

X-SLOPE Transmit Slope (see Figure 59 on Page 141).
X-SLOPE $=0 \quad$ Transmission starts with rising edge of the clock.
X -SLOPE $=1 \quad$ Transmission starts with falling edge of the clock.

R-SLOPE Receive Slope (see Figure 59 on Page 141).
R-SLOPE $=0 \quad$ Data is sampled with falling edge of the clock.
R-SLOPE $=1 \quad$ Data is sampled with rising edge of the clock.

NO- Driving Mode for Bit 0 (only available in single-clocking mode).
DRIVE-0

NO-DRIVE $=0$	Bit 0 is driven the entire clock period.
NO-DRIVE $=1$	Bit 0 is driven during the first half of the clock period
only.	

SHIFT Shifts the access edges by one clock cycle in double clocking mode.
SHIFT $=0 \quad$ No shift takes place.
SHIFT $=1 \quad$ Shift takes place.

PCMO[2:0] The whole PCM timing is moved by PCMO data periods against the FSC signal.
PCMO[2:0] = $000 \quad$ No offset is added.
PCMO[2:0] = 001 One data period is added.

PCMO[2:0] = 111 Seven data periods are added.

Preliminary

SLICOFI-2x Command Structure and Programming

ASYNCH-R Enables asynchronous ringing in case of external ringing. ASYNCH-R $=0 \quad$ External ringing with zero crossing selected ASYNCH-R = 1 Asynchronous ringing selected.

DuSLIC-S/-S2

SLICOFI-2x Command Structure and Programming
Preliminary

07_{H}	INTREG1	Interrupt Register 1 (read-only)					O_{H}	Y
Bit	7	6	5	4	3	2	1	0
	INT-CH	HOOK	GNDK	GNKP	ICON	VRTLIM	OTEMP	SYNCFAIL

INT-CH Interrupt channel bit. This bit indicates that the corresponding channel caused the last interrupt. Will be set automatically to zero after all interrupt registers were read.
INT-CH $=0 \quad$ No interrupt in corresponding channel.
INT-CH = $1 \quad$ Interrupt caused by corresponding channel.
HOOK On/Off-hook information for the loop in all operating modes, filtered by DUP (Data Upstream Persistence) counter and interrupt generation masked by the HOOK-M bit. A change of this bit generates an interrupt.

$$
\begin{array}{ll}
\text { HOOK }=0 & \text { On-hook. } \\
\text { HOOK }=1 & \text { Off-hook. }
\end{array}
$$

GNDK Ground Key or Ground Start information via the IL pin in all active modes, filtered for AC suppression by the DUP counter and interrupt generation masked by the GNDK-M bit. A change of this bit generates an interrupt.
GNDK $=0 \quad$ No longitudinal current detected.
GNDK = 1 Longitudinal current detected (Ground Key or Ground Start).

GNKP Ground key polarity. Indicating the active ground key level (positive/ negative) interrupt generation masked by the GNKP-M bit. A change of this bit generates an interrupt. This bit can be used to get information about interference voltage influence.
GNKP $=0 \quad$ Negative ground key threshold level active.
GNKP = $1 \quad$ Positive ground key threshold level active.

ICON Constant current information. Filtered by DUP-IO counter and interrupt generation masked by the ICON-M bit. A change of this bit generates an interrupt.
ICON $=0 \quad$ Resistive or constant voltage feeding.
ICON =1 Constant current feeding.

VRTLIM Exceeding of a programmed voltage threshold for the TIP/RING voltage, filtered by the DUP-IO counter and interrupt generation masked by the VRTLIM-M bit. A change of this bit causes an interrupt.
The voltage threshold for the TIP/RING voltage is set in CRAM (calculated with DuSLICOS DC Control Parameter 2/3: Tip-Ring Threshold).
VRTLIM $=0 \quad$ Voltage at Ring/Tip is below the limit.
VRTLIM $=1 \quad$ Voltage at Ring/Tip is above the limit.
OTEMP Thermal overload warning from the SLIC-S/-S2 line drivers masked by the OTEMP-M bit. An interrupt is only generated if the OTEMP bit changes from 0 to1.
OTEMP $=0 \quad$ Temperature at SLIC-S/-S2 is below the limit.
OTEMP $=1 \quad$ Temperature at SLIC-S/-S2 is above the limit. In case of bit PDOT-DIS $=0$ (register BCR2) the DuSLIC is switched automatically into PDH mode and OTEMP is hold at 1 until the SLICOFI-2S/-2S2 is set to PDH by a CIOP/CIDD command.

SYNC-FAIL Failure of the synchronization of the IOM-2/PCM Interface. An interrupt is only generated if the SYNC-FAIL bit changes from 0 to 1 .
Resynchronization of the PCM interface can be done with the Resynchronization command (see Chapter 6)
SYNC-FAIL $=0$ Synchronization OK.
SYNC-FAIL $=1$ Synchronization failure.

DuSLIC-S/-S2

Preliminary
SLICOFI-2x Command Structure and Programming

08_{H}	INTREG2	Interrupt Register 2 (read-only)					20_{H}		Y
Bit	7	6	5	4	3	2		1	0
	0	READY	RSTAT	0			:1]-D		

After a hardware reset the RSTAT bit is set and generates an interrupt. Therefore the default value of INTREG2 is 20h. After reading all four interrupt registers, the INTREG2 value changes to 4Fh.

READY Indication whether ramp generator has finished. An interrupt is only generated if the READY bit changes from 0 to 1 . At a new start of the ramp generator, the bit is set to 0 . For further information regarding soft reversal see Chapter 3.7.2.1.
READY $=0 \quad$ Ramp generator active.
READY = $1 \quad$ Ramp generator not active.
RSTAT Reset status since last interrupt.
RSTAT $=0 \quad$ No reset has occurred since the last interrupt.
RSTAT $=1 \quad$ Reset has occurred since the last interrupt.

IO[4:1]-DU Data on IO pins 1 to 4 filtered by the DUP-IO counter and interrupt generation masked by the IO[4:1]-DU-M bits. A change of any of these bits generates an interrupt.

09_{H}	INTREG3	Interrupt Register 3 (read-only)					$0^{00}{ }_{H}$		Y
Bit	7	6	5	4	3	2		1	0
	0	0	0	0	0	0		0	0

$0 \mathrm{~A}_{\mathrm{H}}$	INTREG4	Interrupt Register 4 (read-only)					$0^{\text {H }}$		Y
Bit	7	6	5	4	3	2		1	0
	0	0	0	0	0	0		0	0

SLICOFI-2x Command Structure and Programming

$\mathbf{0 B}_{\mathbf{H}}$	CHKR1	Checksum Register 1 (High Byte) (read-only)	$\mathbf{0 0}_{\mathbf{H}}$		\mathbf{Y}

SUM-OK Information about the validity of the checksum. The checksum is valid if the internal checksum calculation is finished.
Checksum calculation:
For (cram_adr = 0 to 159) do cram_dat = cram[cram_adr]
csum $[14: 0]=\left(\operatorname{csum}[13: 0] \&^{1}\right)$ ' 0 ') xor
('0000000' \& cram_dat[7:0]) xor
('0000000000000' \& csum[14] \& csum[14])
End
SUM-OK $=0 \quad$ CRAM checksum is not valid.
SUM-OK = $1 \quad$ CRAM checksum is valid.

1) " $\&$ " means a concatenation, not the logic operation

CHKSUM-H[6:0] CRAM checksum high byte

Preliminary

SLICOFI-2x Command Structure and Programming

$\mathbf{0 C}_{\mathbf{H}}$	CHKR2	Checksum Register 2 (Low Byte) (read-only)	$\mathbf{0 0}_{\mathbf{H}}$		\mathbf{Y}

Bit

7	6	5	4	3	2	1	0
CHKSUM-L[7:0]							

CHKSUM-L[7:0] CRAM-checksum low byte

$0 \mathrm{E}_{\mathrm{H}}$	reserved	$\mathbf{0 0}_{\mathrm{H}}$		\mathbf{Y}

Bit

7	6	5	4	3	2	1	0
$\mathbf{0}$							

$\mathbf{0 F}_{\mathbf{H}}$	FUSE2	Fuse Register 2	hw		\mathbf{Y}

Bit

7	6	5	4	3	2	1	0
for internal use only							

$\mathbf{1 0}_{\mathbf{H}}$	FUSE3	Fuse Register 3	hw		\mathbf{Y}

Bit

7	6	5	4	3	2	1	0
for internal use only							

DuSLIC-S/-S2

Preliminary
SLICOFI-2x Command Structure and Programming

11 H	MASK	Mask Register					FF_{H}	Y
Bit	7	6	5	4	3	2	1	0
	$\begin{array}{\|c\|} \hline \text { READY } \\ -M \end{array}$	$\begin{gathered} \mathrm{HOOK} \\ -\mathrm{M} \end{gathered}$	$\begin{gathered} \hline \text { GNDK } \\ -M \end{gathered}$	$\begin{gathered} \text { GNKP } \\ -M \end{gathered}$	$\begin{gathered} \hline \text { ICON } \\ -M \end{gathered}$	$\begin{array}{\|c\|} \hline \text { VRTLIM } \\ -M \end{array}$	$\begin{gathered} \hline \text { OTEMP } \\ -M \end{gathered}$	$\begin{gathered} \hline \text { SYNC } \\ -M \end{gathered}$

The mask bits in the mask register only influence the generation of an interrupt. Even if the mask bit is set to 1 , the corresponding status bit in the INTREGx registers gets updated to show the current status of the corresponding event.

READY-M Mask bit for Ramp Generator READY bit
READY-M $=0 \quad$ An interrupt is generated if the READY bit changes from 0 to 1 .
READY-M $=1 \quad$ Changes of the READY bit don't generate interrupts.

HOOK-M Mask bit for Off-Hook Detection HOOK bit HOOK-M = $0 \quad$ Each change of the HOOK bit generates an interrupt. HOOK-M = $1 \quad$ Changes of the HOOK bit don't generate interrupts.

GNDK-M Mask bit for Ground Key Detection GNDK bit

 GNDK-M $=0 \quad$ Each change of the GNDK bit generates an interrupt. GNDK-M = $1 \quad$ Changes of the GNDK bit don't generate interrupts.GNKP-M Mask bit for Ground Key Level GNKP bit
GNKP-M $=0 \quad$ Each change of the GNKP bit generates an interrupt.
GNKP-M = $1 \quad$ Changes of the GNKP bit don't generate interrupts.
ICON-M Mask bit for Constant Current Information ICON bit ICON-M = $0 \quad$ Each change of the ICON bit generates an interrupt. ICON_M = $1 \quad$ Changes of the ICON bit don't generate interrupts.

VRTLIM-M Mask bit for Programmed Voltage Limit VRTLIM bit VRTLIM-M $=0 \quad$ Each change of the VRTLIM bit generates an interrupt.
VRTLIM-M = $1 \quad$ Changes of the VRTLIM bit don't generate interrupts.

Preliminary

SLICOFI-2x Command Structure and Programming

OTEMP-M Mask bit for Thermal Overload Warning OTEMP bit OTEMP-M $=0 \quad$ A change of the OTEMP bit from 0 to 1 generates an interrupt.
OTEMP-M = 1 A change of the OTEMP bit from 0 to 1 doesn't generate interrupts.

SYNC-M Mask bit for Synchronization Failure SYNC-FAIL bit SYNC-M $=0 \quad$ A change of the SYNC-FAlL bit from 0 to 1 generates an interrupt.
SYNC-M $=1 \quad$ A change of the SYNC-FAIL bit from 0 to 1 doesn't generate interrupts.

DuSLIC-S/-S2

Preliminary
SLICOFI-2x Command Structure and Programming

12H	IOCTL1	IO Control Register 1					OF_{H}		Y
Bit	7	6	5	4	3	2		1	0
		IO[4:1]-INEN				IO[4:1]-M			

The mask bits IO[4:1]-M only influence the generation of an interrupt. Even if the mask bit is set to 1 , the corresponding status bit in the INTREGx registers gets updated to show the current status of the corresponding event.

IO4-INEN Input enable for programmable IO pin IO4
IO4-INEN = 0 Input Schmitt trigger of pin IO4 is disabled.
IO4-INEN = 1 Input Schmitt trigger of pin IO4 is enabled.

IO3-INEN Input enable for programmable IO pin IO3
IO3-INEN = 0 Input Schmitt trigger of pin IO3 is disabled.
IO3-INEN = 1 Input Schmitt trigger of pin IO3 is enabled.

IO2-INEN Input enable for programmable IO pin IO2
IO2-INEN = 0 Input Schmitt trigger of pin IO2 is disabled.
IO2-INEN = 1 Input Schmitt trigger of pin IO2 is enabled.

IO1-INEN Input enable for programmable IO pin IO1
IO1-INEN = 0 Input Schmitt trigger of pin IO1 is disabled.
IO1-INEN = 1 Input Schmitt trigger of pin IO1 is enabled.

IO4-M Mask bit for IO4-DU bit
$\mathrm{IO4}-\mathrm{M}=0 \quad$ Each change of the IO4 bit generates an interrupt.
$\mathrm{IO} 4-\mathrm{M}=1 \quad$ Changes of the IO4 bit don't generate interrupts.
IO3-M Mask bit for IO3-DU bit
IO3-M = $0 \quad$ Each change of the IO3 bit generates an interrupt.
IO3-M = $1 \quad$ Changes of the IO3 bit don't generate interrupts.

Preliminary

SLICOFI-2x Command Structure and Programming

IO2-M Mask bit for IO2-DU bit
IO2-M = $0 \quad$ Each change of the IO2 bit generates an interrupt.
$\mathrm{IO}-\mathrm{M}=1 \quad$ Changes of the IO2 bit don't generate interrupts.
IO1-M Mask bit for IO1-DU bit
$\mathrm{IO1-M}=0 \quad$ Each change of the IO1 bit generates an interrupt.
$\mathrm{IO1}-\mathrm{M}=1 \quad$ Changes of the IO1 bit don't generate interrupts.

Preliminary

13_{H}	IOCTL2	IO Control Register 2					$0^{0} \mathrm{H}$		Y
Bit	7	6	5	4	3	2		1	0
		IO[4:1]-OEN				IO[4:1]-DD			

IO4-OEN Enabling the output driver of pin IO4
IO4-OEN = 0 The output driver of pin IO4 is disabled.
IO4-OEN = 1 The output driver of pin IO4 is enabled.
IO3-OEN Enabling the output driver of pin IO3
IO3-OEN = 0 The output driver of pin IO3 is disabled.
IO3-OEN = 1 The output driver of pin IO3 is enabled.

IO2-OEN Enabling the output driver of pin IO2
IO2-OEN = 0 The output driver of pin IO2 is disabled.
IO2-OEN = 1 The output driver of pin IO2 is enabled.

IO1-OEN Enabling the output driver of pin IO1
If external ringing is selected (bit REXT-EN in register BCR2 set to 1), pin IO1 cannot be controlled by the user but is utilized by the SLICOFI-2S/-2S2 to control the ring relay.
IO1-OEN = 0 The output driver of pin IO1 is disabled.
IO1-OEN = 1 The output driver of pin IO1 is enabled.

IO4-DD Value for the programmable IO pin IO4 if programmed as an output pin.
IO4-DD = $0 \quad$ The corresponding pin is driving a logical 0.
IO4-DD $=1 \quad$ The corresponding pin is driving a logical 1.

IO3-DD Value for the programmable IO pin IO3 if programmed as an output pin.
IO3-DD $=0 \quad$ The corresponding pin is driving a logical 0 .
IO3-DD = $1 \quad$ The corresponding pin is driving a logical 1.

Preliminary

SLICOFI-2x Command Structure and Programming

IO2-DD Value for the programmable IO pin IO2 if programmed as an output pin.
IO2-DD $=0 \quad$ The corresponding pin is driving a logical 0 .
IO2-DD = $1 \quad$ The corresponding pin is driving a logical 1.

IO1-DD Value for the programmable IO pin IO1 if programmed as an output pin. IO1-DD = $0 \quad$ The corresponding pin is driving a logical 0 .
IO1-DD $=1 \quad$ The corresponding pin as driving a logical 1.

DuSLIC-S/-S2

14 ${ }_{\text {H }}$	IOCTL3	10 Control Register 3					94 ${ }_{\text {H }}$		Y
Bit	7	6	5	4	3	2		1	0
	DUP[3:0]					DUP-IO[3:0]			

DUP[3:0] Data Upstream Persistence Counter end value. Restricts the rate of interrupts generated by the HOOK bit in the interrupt register INTREG1. The interval is programmable from 1 to 16 ms in steps of 1 ms (reset value is 10 ms).
The DUP[3:0] value affects the blocking period for ground key detection (see Chapter 3.6).

DUP[3:0]	HOOK Active, Ringing	HOOK Power Down	GNDK	GNDK $\mathrm{f}_{\text {min,ACsup }}{ }^{1)}$
0000	1	2 ms	4 ms	125 Hz
0001	2	4 ms	8 ms	62.5 Hz
\ldots				
1111	16	32 ms	64 ms	7.8125 Hz

1) Minimum frequency for $A C$ suppression.

DUP-IO[3:0] Data Upstream Persistence Counter end value for

- the IO pins when used as digital input pins.
- the bits ICON and VRTLIM in register INTREG1.

The interval is programmable from 0.5 to 60.5 ms in steps of 4 ms (reset value is 16.5 ms).

15 ${ }_{\text {H }}$	BCR1	Basic Configuration Register 1				0^{00}		Y
Bit	7	6	5	4	3	2	1	0
	HIR	HIT	0	REVPOL	ACTR	ACTL	0	0

HIR This bit modifies different basic modes. In ringing mode an unbalanced ringing on the RING-wire (ROR) is enabled. In active mode, high impedance on the RING-wire is performed (HIR). It enables the HIRT-mode together with the HIT bit.

HIR = 0	Normal operation (ringing mode).
HIR = 1	Controls SLIC-S/-S2-interface and sets the RING wire to
	high impedance (active mode).

HIT This bit modifies different basic modes. In ringing mode an unbalanced ringing on the TIP-wire (ROT) is enabled. In active mode, high impedance on the TIP-wire is performed (HIT). It enables the HIRT-mode together with the HIR bit.
HIT = $0 \quad$ Normal operation (ringing mode).
HIT $=1 \quad$ Controls SLIC-S/-S2-interface and sets the TIP-wire to high impedance (active mode).

REVPOL Reverse polarity of DC feeding
REVPOL $=0 \quad$ Normal polarity.
REVPOL $=1 \quad$ Reverse polarity.

ACTR Selection of extended battery feeding in Active mode. In this case $V_{\mathrm{HR}}-V_{\mathrm{BATH}}$ for SLIC-S/-S2 is used.
$A C T R=0 \quad$ No extended battery feeding selected.
ACTR $=1 \quad$ Extended battery feeding selected.

Preliminary

SLICOFI-2x Command Structure and Programming

ACTL Selection of the low battery supply voltage $V_{\text {BATL }}$ on SLIC-S/-S2 if available. Valid only in Active mode of the SLICOFI-2S/-2S2.
ACTL $=0 \quad$ Low battery supply voltage on SLIC-S/-S2 is not selected.
ACTL $=1 \quad$ Low battery supply voltage on SLIC-S/-S2 is selected.

SLICOFI-2x Command Structure and Programming

16_{H}	BCR2	Basic Configuration Register 2					00_{H}		Y
Bit	7	6	5	4	3	2		1	0
	REXTEN	$\begin{aligned} & \hline \text { SOFT- } \\ & \text { DIS } \end{aligned}$	$\begin{aligned} & \hline \text { TTX- } \\ & \text { DIS }^{1)} \end{aligned}$	$\begin{aligned} & \hline \text { TTX- } \\ & 12 K^{2} \end{aligned}$	HIM-AN	$\begin{gathered} \text { AC- } \\ \text { XGAIN } \end{gathered}$		0	PDOTDIS

1) Only for DuSLIC-S, is set to 1 for DuSLIC-S2
2) Only for DuSLIC-S, is set to 0 for DuSLIC-S2

REXT-EN Enables the use of an external ring-signal generator. The synchronization is done via the RSYNC pin and the ring-burst-enable signal is transferred via the lO1 pin.
REXT-EN $=0$ External ringing is disabled.
REXT-EN $=1$ External ringing enabled.

SOFT-DIS Polarity soft reversal (to minimize noise on DC feeding) SOFT-DIS $=0 \quad$ Polarity soft reversal active. SOFT-DIS = $1 \quad$ Polarity hard reversal.

TTX-DIS Disables the generation of TTX bursts for metering signals. If they are disabled, revese polarity is used instead.
TTX-DIS $=0 \quad$ TTX bursts are enabled.
TTX-DIS $=1 \quad$ TTX bursts are disabled, reverse polarity used.

TTX-12K Selection of TTX frequencies
TTX-12K = $0 \quad$ Selects 16 kHz TTX signals instead of 12 kHz signals.
TTX-12K = $1 \quad 12 \mathrm{kHz}$ TTX signals.

Preliminary
SLICOFI-2x Command Structure and Programming

HIM-AN Higher impedance in analog impedance matching loop.
HIM-AN corresponds to the coefficients calculated with DuSLICOS. If the coefficients are calculated with standard impedance in analog impedance matching loop, HIM-AN must be set to 0 ; if the coefficients are calculated with high impedance in analog impedance matching loop, HIM-AN must be set to 1 .

HIM-AN = $0 \quad$ Standard impedance in analog impedance matching loop (300Ω).
HIM-AN =1 High impedance in analog impedance matching loop (600Ω).

AC-XGAIN Analog gain in transmit direction (should be set to zero).
$A C-X G A I N=0 \quad$ No additional analog gain in transmit direction.
AC-XGAIN $=1 \quad$ Additional 6 dB analog amplification in transmit direction.

PDOT-DIS Power Down Overtemperature Disable

PDOT-DIS $=0$ When over temperature is detected, the SLIC-S/-S2 is automatically switched into Power Down High Impedance mode (PDH). This is the safe operation mode for the SLIC-S/-S2 in case of overtemperature. To leave the automatically activated PDH mode, DuSLIC has to be switched manually to PDH mode and then in the mode as desired.
PDOT-DIS $=1$ When over temperature is detected, the SLIC-S/-S2 doesn't automatically switch into Power Down High Impedance mode. In this case the output current of the SLIC-S/-S2 buffers is limited to a value which keeps the SLIC-S/-S2 temperature below the upper temperature limit.

Preliminary

MU-LAW Selects the PCM Law
MU-LAW = $0 \quad$ A-Law enabled.
MU-LAW $=1 \quad \mu$-Law enabled.

LIN Voice transmission in a 16 bit linear representation for test purposes.
Note: Voice transmission on the other channel is inhibited if one channel is set to linear mode and the IOM-2 interface is used. In PCM/ μC interface mode both channels can be in linear mode using two consecutive PCM timeslots on the highways. A proper timeslot selection must be specified.
LIN $=0 \quad$ PCM mode enabled (8 bit, A-law or μ-law).
LIN = $1 \quad$ Linear mode enabled (16 bit).

PCMX-EN Enables writing of subscriber voice data to the PCM highway.
PCMX-EN $=0 \quad$ Writing of subscriber voice data to PCM highway is disabled.
PCMX-EN $=1$ Writing of subscriber voice data to PCM highway is enabled.

CRAM-EN Coefficients from CRAM are used for programmable filters and DC loop behavior.
CRAM-EN = 0 Coefficients from ROM are used.
CRAM-EN = 1 Coefficients from CRAM are used.

$18_{\text {H }}$	BCR4	Basic Configuration Register 4						Y
Bit	7	6	5	4	3	2	1	0
	TH-DIS	IM-DIS	AX-DIS	AR-DIS	FRXDIS	FRRDIS	$\begin{gathered} \hline \text { HPX- } \\ \text { DIS } \end{gathered}$	HPRDIS

TH-DIS Disables the TH filter.
TH-DIS $=0 \quad$ TH filter is enabled.
TH-DIS $=1 \quad$ TH filter is disabled $\left(\mathrm{H}_{\mathrm{TH}}=0\right)$.
IM-DIS Disables the IM filter.
IM-DIS = $0 \quad$ IM filter is enabled.
$I M-D I S=1 \quad I M$ filter is disabled $\left(H_{I M}=0\right)$.
AX-DIS Disables the AX filter.
AX-DIS $=0 \quad A X$ filter is enabled.
$A X-D I S=1 \quad A X$ filter is disabled $\left(H_{A X}=1\right)$.
AR-DIS Disables the AR filter.
$A X-D I S=0 \quad A R$ filter is enabled.
$A X-$ DIS $=1 \quad A R$ filter is disabled $\left(H_{A R}=1\right)$.

FRX-DIS Disables the FRX filter.
FRX-DIS $=0 \quad F R X$ filter is enabled.
FRX-DIS $=1 \quad F R X$ filter is disabled $\left(H_{F R X}=1\right)$.

FRR-DIS Disables the FRR filter.
FRR-DIS = $0 \quad$ FRR filter is enabled.
FRR-DIS $=1 \quad$ FRR filter is disabled $\left(H_{\text {FRR }}=1\right)$.

HPX-DIS Disables the high-pass filter in transmit direction.
HPX-DIS $=0$ High-pass filter is enabled.
HPX-DIS $=1 \quad$ High-pass filter is disabled $\left(H_{H P X}=1\right)$.

Preliminary

SLICOFI-2x Command Structure and Programming

HPR-DIS Disables the high-pass filter in receive direction.
HPR-DIS $=0 \quad$ High-pass filter is enabled.
HPR-DIS $=1$ High-pass filter is disabled $\left(H_{H P R}=1\right)$.

DuSLIC-S/-S2

Preliminary

SLICOFI-2x Command Structure and Programming

$1 \mathrm{~A}_{\mathrm{H}}$	DSCR	DTMF Sender Configuration Register					$0^{0} \mathrm{H}$		Y
Bit	7	6	5	4	3	2		1	0
		DG-KEY[3:0]			COR8	PTG		G2-EN	TG1-EN

DG-KEY[3:0] Selects one of sixteen DTMF keys generated by the two tone generators. The key will be generated if both TG1-EN and TG2-EN are '1'.

Table 67 DTMF Keys

$f_{\text {LOW }}[\mathrm{Hz}]$	$f_{\text {HIGH }}[\mathrm{Hz}]$	DIGIT	DG-KEY3	DG-KEY2	DG-KEY1	DG-KEYO
697	1209	1	0	0	0	1
697	1336	2	0	0	1	0
697	1477	3	0	0	1	1
770	1209	4	0	1	0	0
770	1336	5	0	1	0	1
770	1477	6	0	1	1	0
852	1209	7	0	1	1	1
852	1336	8	1	0	0	0
852	1477	9	1	0	0	1
941	1336	0	1	0	1	0
941	1209	$*$	1	0	1	1
941	1477	$\#$	1	1	0	0
697	1633	A	1	1	0	1
770	1633	B	1	1	1	0
852	1633	C	1	1	1	1
941	1633	D	0	0	0	0

COR8 Cuts off the receive path at 8 kHz before the tone generator summation point. Allows sending of tone generator signals without overlaid voice.
COR8 $=0 \quad$ Cut off receive path disabled.
COR8 $=1 \quad$ Cut off receive path enabled.

SLICOFI-2x Command Structure and Programming

PTG Programmable coefficients for tone generators will be used.
PTG $=0 \quad$ Frequencies set by DG-KEY are used for both tone generators.
PTG $=1 \quad$ CRAM coefficients used for both tone generators.

TG2-EN Enables tone generator two
TG2-EN $=0 \quad$ Tone generator is disabled.
TG2-EN =1 Tone generator is enabled.

TG1-EN Enables tone generator one
TG1-EN = $0 \quad$ Tone generator is disabled.
TG1-EN = $1 \quad$ Tone generator is enabled.

DuSLIC-S/-S2

Preliminary
SLICOFI-2x Command Structure and Programming

$1 \mathrm{~B}_{\mathrm{H}}$		reserved					$0^{00}{ }_{H}$		Y
Bit	7	6	5	4	3	2		1	0
	0	0	0	0	0	0		0	0

$1 \mathrm{C}_{\mathrm{H}}$	LMCR1	Level Metering Configuration Register 1					22H		Y
Bit	7	6	5	4	3	2		1	0
	$\begin{gathered} \hline \text { TEST- } \\ \text { EN } \end{gathered}$	0	1	PCM2DC	0	0		1	0

TEST-EN Activates the SLICOFI-2S/-2S2 test features controlled by test registers TSTR1 to TSTR5.
TEST-EN = 0
SLICOFI-2S/-2S2 test features are disabled.
TEST-EN = 1
SLICOFI-2S/-2S2 test features are enabled.
(The Test Register bits can be programmed before the TEST-EN bit is set to 1.)

PCM2DC PCM voice channel data added to the DC-output.
PCM2DC $=0 \quad$ Normal operation.
PCM2DC $=1 \quad$ PCM voice channel data is added to DC-output.

$\mathbf{1 D}_{\mathbf{H}}$	LMCR2	Level Metering Configuration Register 2								$\mathbf{0 0}_{\mathbf{H}}$		\mathbf{Y}
Bit	7	7	6	5	4	3	2					

DuSLIC-S/-S2

$1 E_{H}$	LMCR3	Level Metering Configuration Register 3					00 ${ }_{\text {H }}$		Y
Bit	7	6	5	4	3	2		1	0
	ACSHORT -EN	RTRSEL	0	0	0	0		0	0

AC- \quad The input pin ITAC will be set to a lower input impedance so that the
SHORT-EN capacitor $C_{\text {ITAC }}$ can be recharged faster during soft reversal which makes it more silent during conversation.

AC-SHORT-EN = 0 Input impedance of the ITAC pin is standard.
AC-SHORT-EN = 1 Input impedance of the ITAC pin is lowered.

RTR-SEL Ring Trip method selection.
RTR-SEL $=0 \quad$ Ring Trip with a DC offset is selected.
RTR-SEL = $1 \quad$ AC Ring Trip is selected. Recommended for short lines only.

$1 F_{H}$	OFR1	Offset Register 1 (High Byte)					$0^{0} \mathrm{H}$		Y
Bit	7	6	5	4	3	2		1	0
	OFFSET-H[7:0]								

OFFSET-H[7:0] Offset register high byte.

DuSLIC-S/-S2

Preliminary

20_{H}	OFR2		Offset Register 2 (Low Byte)				00_{H}		Y
Bit	7	6	5	4	3	2	1	0	
					T-L[

OFFSET-L[7:0] Offset register low byte.
The value of this register together with OFFSET-H is added to the input of the DC loop to compensate a given offset of the current sensors in the SLIC-S/-S2.

21 ${ }_{\text {H }}$	PCMR1	PCM Receive Register 1					00_{H}		Y
Bit	7	6	5	4	3	2		1	0
	$\begin{aligned} & \text { R1- } \\ & \text { HW } \end{aligned}$	R1-TS[6:0]							

R1-HW Selection of the PCM highway for receiving PCM data or the higher byte of the first data sample if linear 16 kHz PCM mode is selected.
R1-HW $=0 \quad$ PCM highway A is selected.
R1-HW $=1 \quad \mathrm{PCM}$ highway B is selected.

R1-TS[6:0] Selection of the PCM time slot used for data reception.
Note: The programmed PCM time slot must correspond to the available slots defined by the PCLK frequency. No reception will occur if a slot outside the actual numbers of slots is programmed. In linear mode (bit LIN = 1 in register BCR3) R1-TS defines the first of two consecutive slots used for reception.

Preliminary

23_{H}		reserved					$0^{0} \mathrm{H}$		Y
Bit	7	6	5	4	3	2		1	0

$\mathbf{2 4}_{\mathbf{H}}$	reserved	$\mathbf{0 0}_{\mathbf{H}}$		\mathbf{Y}

Bit

$\mathbf{2 5}_{\mathrm{H}}$	PCMX1	PCM Transmit Register 1	$\mathbf{0 0}_{\mathbf{H}}$		\mathbf{Y}	
Bit	7	7	6	5	4	3

X1-HW Selection of the PCM highway for transmitting PCM data or the higher byte of the first data sample if linear 16 kHz PCM mode is selected.
$\mathrm{X} 1-\mathrm{HW}=0 \quad \mathrm{PCM}$ highway A is selected.
$X 1-H W=1 \quad P C M$ highway B is selected.

X1-TS[6:0] Selection of the PCM time slot used for data transmission.
Note: The programmed PCM time slot must correspond to the available slots defined by the PCLK frequency. No transmission will occur if a slot outside the actual numbers of slots is programmed. In linear mode X1-TS defines the first of two consecutive slots used for transmission. PCM data transmission is controlled by bits 6 to 2 in register BCR3.

Preliminary

Preliminary
SLICOFI-2x Command Structure and Programming

29 ${ }_{\text {H }}$	TSTR1	Test Register 1					T	Y
Bit	7	6	5	4	3	2	1	0
	$\begin{array}{\|c} \hline \text { PD-AC- } \\ \text { PR } \end{array}$	$\begin{gathered} \hline \text { PD-AC- } \\ \text { PO } \end{gathered}$	$\begin{array}{\|c} \hline \text { PD-AC- } \\ \text { AD } \end{array}$	$\begin{array}{\|c} \hline \text { PD-AC- } \\ \text { DA } \end{array}$	$\begin{aligned} & \text { PD-AC- } \\ & \text { GN } \end{aligned}$	$\begin{gathered} \text { PD- } \\ \text { GNKC } \end{gathered}$	$\begin{aligned} & \text { PD- } \\ & \text { OFHC } \end{aligned}$	$\begin{gathered} \hline \text { PD- } \\ \text { OVTC } \end{gathered}$

Register setting is only active if bit TEST-EN in register LMCR1 is set to 1 .

PD-AC-PR AC-PREFI power down
PD-AC-PR = 0 Normal operation.
$P D-A C-P R=1 \quad$ Power down mode.

PD-AC-PO AC-POFI power down
PD-AC-PO $=0 \quad$ Normal operation.
$P D-A C-P O=1 \quad$ Power down mode.

PD-AC-AD AC-ADC power down
PD-AC-AD $=0 \quad$ Normal operation.
PD-AC-AD = 1 Power down mode, transmit path is inactive.
PD-AC-DA AC-DAC power down
PD-AC-DA $=0 \quad$ Normal operation.
$P D-A C-D A=1 \quad$ Power down mode, receive path is inactive.
PD-AC-GN AC-Gain power down
PD-AC-GN $=0 \quad$ Normal operation.
$P D-A C-G N=1 \quad$ Power down mode.
PD-GNKC Ground Key comparator (GNKC) is set to power down
PD-GNKC $=0 \quad$ Normal operation.
PD-GNKC = 1 Power down mode.

Preliminary

SLICOFI-2x Command Structure and Programming

PD-OFHC Off-hook comparator (OFHC) power down
PD-OFHC $=0 \quad$ Normal operation.
PD-OFHC = 1 Power down mode.

PD-OVTC Overtemperature comparator (OVTC) power down
PD-OVTC $=0 \quad$ Normal operation.
PD-OVTC $=1 \quad$ Power down mode.

SLICOFI-2x Command Structure and Programming

$2 \mathrm{~A}_{\mathrm{H}}$	TSTR2	Test Register 2					$0^{0} \mathrm{H}$	T	Y
Bit	7	6	5	4	3	2		1	0
	$\begin{array}{\|c} \hline \text { PD-DC- } \\ \text { PR } \end{array}$	0	$\begin{gathered} \hline \text { PD-DC- } \\ \text { AD } \end{gathered}$	$\begin{gathered} \hline \text { PD-DC- } \\ \text { DA } \end{gathered}$	$\begin{gathered} \hline \text { PD- } \\ \text { DCBUF } \end{gathered}$	0			PD-HVI

${ }^{1)}$ Only for DuSLIC-S, is set to 0 for DuSLIC-S2

Register setting is only active if bit TEST-EN in register LMCR1 is set to 1 .
PD-DC-PR DC-PREFI power down
PD-DC-PR = 0 Normal operation.
$P D-D C-P R=1 \quad$ Power down mode.

PD-DC-AD DC-ADC power down
PD-DC-AD = 0 Normal operation.
$P D-D C-A D=1 \quad$ Power down mode, transmit path is inactive.

PD-DC-DA DC-DAC power down
PD-DC-DA = 0 Normal operation.
$P D-D C-D A=1 \quad$ Power down mode, receive path is inactive.
PD-DCBUF DC-BUFFER power down
PD-DCBUF $=0$ Normal operation.
PD-DCBUF = 1 Power down mode.

PD-TTX-A TTX adaptation DAC and POFI power down
PD-TTX-A $=0 \quad$ Normal operation.
PD-TTX-A = $1 \quad$ Power down mode.

PD-HVI HV interface (to SLIC-S/-S2) power down
PD-HVI = $0 \quad$ Normal operation.
PD-HVI = $1 \quad$ Power down mode.

DuSLIC-S/-S2

SLICOFI-2x Command Structure and Programming

$2 \mathrm{~B}_{\mathrm{H}}$	TSTR3	Test Register 3					00_{H}		Y
Bit	7	6	5	4	3	2			0
	0	0	AC-DLB4M	AC-DLB128K	AC-DLB32K	AC-DLB8K			0

Register setting is only active if bit TEST-EN in register LMCR1 is set to 1 .

AC-DLB-4M AC digital loop via 4 MHz bitstream. (The loop encloses all digital hardware in the AC path. Together with DLB-DC a pure digital test is possible because there is no influence the analog hardware.)
AC-DLB-4M $=0 \quad$ Normal operation.
AC-DLB-4M = 1 Digital loop closed.

AC-DLB-128K AC digital loop via 128 kHz
AC-DLB-128K $=0$ Normal operation.
AC-DLB-128K = 1 Digital loop closed.

AC-DLB-32K AC digital loop via 32 kHz
AC-DLB-32K $=0$ Normal operation.
AC-DLB-32K = 1 Digital loop closed.

AC-DLB-8K \quad AC digital loop via 8 kHz
AC-DLB-8K $=0 \quad$ Normal operation.
AC-DLB-8K = $1 \quad$ Digital loop closed.

DuSLIC-S/-S2

SLICOFI-2x Command Structure and Programming

$2 \mathrm{C}_{\mathrm{H}}$	TSTR4	Test Register 4					00_{H}	T	Y
Bit	7	6	5	4	3	2		1	0
	OPIMAN	OPIM4M	COR-64	COX-16	0	0			0

Register setting is only active if bit TEST-EN in register LMCR1 is set to 1 .

OPIM-AN Open Impedance Matching Loop in the analog part.

$$
\begin{array}{ll}
\text { OPIM-AN }=0 & \text { Normal operation. } \\
\text { OPIM-AN }=1 & \text { Loop opened } .
\end{array}
$$

OPIM-4M Open fast digital Impedance Matching Loop in the hardware filters.
OPIM-4M $=0 \quad$ Normal operation.
OPIM-4M = $1 \quad$ Loop opened.

COR-64 Cut off the AC receive path at 64 kHz (just before the IM filter).
COR-64 = $0 \quad$ Normal operation.
COR-64 $=1 \quad$ Receive path is cut off.

COX-16 Cut off the AC transmit path at 16 kHz . (The TH filter can be tested without influencing the analog part.)
COX-16 $=0 \quad$ Normal operation.
COX-16 = $1 \quad$ Transmit path is cut off.

DuSLIC-S/-S2

Preliminary

SLICOFI-2x Command Structure and Programming

2D ${ }_{\text {H }}$	TSTR5	Test Register 5					$0^{00}{ }_{H}$		Y
Bit	7	6	5	4	3	2			0
	0	0	0	$\begin{gathered} \hline \text { DC- } \\ \text { POFI- } \\ \text { HI } \end{gathered}$	$\begin{gathered} \hline \text { DC- } \\ \text { HOLD } \end{gathered}$	0			0

Register setting is only active if bit TEST-EN in register LMCR1 is set to 1 .

DC-POFI-HI DC post filter limit frequency higher value DC-POFI-HI $=0$ Limit frequency is set to 100 Hz (normal operation). DC-POFI-HI = 1 Limit frequency is set to 300 Hz .

DC-HOLD Actual DC output value hold (value of the last DSP filter stage will be kept)
DC-HOLD = $0 \quad$ Normal operation.
DC-HOLD $=1 \quad$ DC output value hold.

Preliminary

SLICOFI-2x Command Structure and Programming

6.3.2 COP Command

The COP command gives access to the CRAM data of the DSPs. It is organized in the same way as the SOP command. The offset value allows a direct as well as a block access to the CRAM. Writing beyond the allowed offset will be ignored, reading beyond it will give unpredictable results.
The value of a specific CRAM coefficient is calculated by the DuSLICOS software.

Bit	7	6	5	4	3	2	1	0
Byte 1	RD	$\mathbf{1}$	ADR[2:0]					
OFFSET[7:0]								
Byte 2	$\mathbf{1}$							$\mathbf{0}$

RD Read Data
$R D=0 \quad$ Write data to chip.
$R D=1$ Read data from chip.

ADR[2:0] Channel address for the subsequent data ADR[2:0] $=000 \quad$ Channel A
ADR[2:0] = $001 \quad$ Channel B
(other codes reserved for future use)

Preliminary

Offset $[7: 0]$	Short Name	Long Name
00_{H}	TH1	Transhybrid Filter Coefficients Part 1
08_{H}	TH2	Transhybrid Filter Coefficients Part 2
10_{H}	TH3	Transhybrid Filter Coefficients Part 3
18_{H}	FRR	Frequency-response Filter Coefficients Receive Direction
20_{H}	FRX	Frequency-response Filter Coefficients Transmit Direction
28_{H}	AR	Amplification/Attenuation Stage Coefficients Receive
$\frac{30_{\mathrm{H}}}{}$	AX	Amplification/Attenuation Stage Coefficients Transmit
38_{H}	PTG1	Tone Generator 1 Coefficients
40_{H}	PTG2	Tone Generator 2 Coefficients
48_{H}	LPR	Low Pass Filter Coefficients Receive
$\frac{50_{\mathrm{H}}}{}$	LPX	Low Pass Filter Coefficients Transmit
58_{H}	TTX	Teletax Coefficients
60_{H}	IM1	Impedance Matching Filter Coefficients Part 1
68_{H}	IM2	Impedance Matching Filter Coefficients Part 2
70_{H}	RINGF	Ringer Frequency and Amplitude Coefficients (DC loop)
78_{H}	RAMPF	Ramp Generator Coefficients (DC loop)
80_{H}	DCF	DC-Characteristics Coefficients (DC loop)
$\frac{88_{\mathrm{H}}}{}$	HF	Hook Threshold Coefficients (DC loop)
90_{H}	TPF	Low Pass Filter Coefficients (DC loop)
98_{H}		Reserved

Table 68 CRAM Coefficients

Note: CRAM coefficients are enabled by setting bit CRAM-EN in register BCR3 to 1, except coefficients PTG1 and PTG2 ${ }^{1)}$ which are enabled by setting bit PTG in register DSCR to 1.

6.3.2.1 CRAM Programming Ranges

Table 69 CRAM Programming Ranges

Parameter	Programming Range
Constant Current $I_{\mathrm{K} 1}$	$0 \ldots .50 \mathrm{~mA}, \Delta<0.5 \mathrm{~mA}$
Hook Message Waiting,	$0 . .25 \mathrm{~mA}, \Delta<0.7 \mathrm{~mA}$
Hook Thresholds	$25 . .50 \mathrm{~mA}, \Delta<1.3 \mathrm{~mA}$
Ring Generator Frequency $\mathrm{f}_{\mathrm{RING}}$	$3 . .40 \mathrm{~Hz}, \Delta<1 \mathrm{~Hz}$
	$40 . .80 \mathrm{~Hz}, \Delta<2 \mathrm{~Hz}$
	$>80 \mathrm{~Hz}, \Delta<4 \mathrm{~Hz}$
Ring Generator Amplitude	$0 . .20 \mathrm{~V}, \Delta<1.7 \mathrm{~V}$
	$20 . .85 \mathrm{~V}, \Delta<0.9 \mathrm{~V}$
Ring Offset RO1	$0 . .25 \mathrm{~V}, \Delta<0.6 \mathrm{~V}$
	$25 . .50 \mathrm{~V}, \Delta<1.2 \mathrm{~V}$
	$50 . .100 \mathrm{~V}, \Delta<2.4 \mathrm{~V}, \mathrm{max} .150 \mathrm{~V}$
Knee Voltage $V_{\mathrm{K} 1}$,	$0 . .25 \mathrm{~V}, \Delta<0.6 \mathrm{~V}$
Open Circuit Voltge V_{LIM}	$25 . .50 \mathrm{~V}, \Delta<1.2 \mathrm{~V}$
	$>50 \mathrm{~V}, \Delta<2.4 \mathrm{~V}$
Resistance in Resistive Zone $R_{\mathrm{K} 12}$	$0 . .1000 \Omega, \Delta<30 \Omega$
Resistance in Constant Current Zone R_{I}	$1.8 \mathrm{k} \Omega . .4 .8 \mathrm{k} \Omega, \Delta<120 \Omega$
	$4.8 \mathrm{k} \Omega . .9 .6 \mathrm{k} \Omega, \Delta<240 \Omega$
	$9.6 \mathrm{k} \Omega . .19 \mathrm{k} \Omega, \Delta<480 \Omega$
	$19 \mathrm{k} \Omega . .38 \mathrm{k} \Omega, \Delta<960 \Omega$, max. $40 \mathrm{k} \Omega$

Preliminary

6.3.3 IOM-2 Interface Command/Indication Byte

The Command/Indication (C/I) channel is used to communicate real time status information and for fast controlling of the DuSLIC. Data on the C/I channel are continuously transmitted in each frame until new data are sent.

Data Downstream C/I - Channel Byte (Receive) - IOM-CIDD

The first six CIDD data bits control the general operating modes for both DuSLIC channels. According to the IOM-2 specification, new data have to be present for at least two frames to be accepted.

Table 70 M2, M1, M0: General Operating Mode

CIDD		SLICOFI-2S/-2S2 Operating Mode (for details see "Operating Modes for the DuSLIC Chip Set" on Page 78)	
1	M1	M0	Sleep, Power Down (PDRx) 0
0	0	0	Power Down High Impedance (PDH)
1	0	0	Any Active mode
1	1	1	Ringing (ACTR Burst On)
1	0	0	Active with Metering
0	0	1	Ground Start

	CIDD	Data Downstream C/I - Channel Byte						
			N					
Bit	7	6	5	4	3	2	1	0
	M2A	M1A	M0A	M2B	M1B	M0B	MR	MX

M2A, M1A, M0A Select operating mode for DuSLIC channel A
M2B, M1B, M0B Select operating mode for DuSLIC channel B
MR, MX Handshake bits Monitor Receive and Transmit (see "IOM-2 Interface Monitor Transfer Protocol" on Page 148)

SLICOFI-2x Command Structure and Programming

Preliminary

Data Upstream C/I - Channel Byte (Transmit) - IOM-CIDU

This byte is used to quickly transfer the most important and time-critical information from the DuSLIC. Each transfer from the DuSLIC lasts for at least two consecutive frames.

	CIDU	Data Upstream C/I - Channel Byte				0^{00}		N
Bit	7	6	5	4	3	2	1	0
	INT-CHA	HOOKA	GNDKA	INT-CHB	HOOKB	GNDKB	MR	MX

INT-CHA Interrupt information channel A
INT-CHA $=0 \quad$ No interrupt in channel A
INT-CHA = 1 Interrupt in channel A
HOOKA Hook information channel A
HOOKA = $0 \quad$ On-hook channel A
HOOKA $=1 \quad$ Off-hook channel A
GNDKA Ground key information channel A
GNDKA $=0 \quad$ No longitudinal current detected
GNDKA $=1 \quad$ Longitudinal current detected in channel A
INT-CHB Interrupt information channel B
INT-CHB $=0 \quad$ No interrupt in channel B
INT-CHB = 1 Interrupt in channel B
HOOKB Hook information channel B
HOOKB = $0 \quad$ On-hook Channel B
HOOKB = $1 \quad$ Off-hook Channel B
GNDKB Ground key information channel B
GNDKB $=0 \quad$ No longitudinal current detected
GNDKB $=1 \quad$ Longitudinal current detected in channel B
MR, MX Handshake bits Monitor Receive and Transmit
(see "IOM-2 Interface Monitor Transfer Protocol" on Page 148)

DuSLIC-S/-S2

Preliminary

6.3.4 Programming Examples of the SLICOFI-2S/-2S2

6.3.4.1 Microcontroller Interface

SOP Write to Channel 0 Starting After the Channel-Specific Read-Only Registers

01000100 First command byte (SOP write for channel 0)

00010101 Second command byte (offset to BCR1 register)
00000000 Contents of BCR1 register
00000000 Contents of BCR2 register
00010001 Contents of BCR3 register
00000000 Contents of BCR4 register
00000000 Contents of BCR5 register

Figure 76 Waveform of Programming Example SOP Write to Channel 0

SOP Read from Channel 1 Reading Out the Interrupt Registers

11001100 First command byte (SOP read for channel 1).
00000111 Second command byte (offset to Interrupt register 1).
The SLICOFI-2S/-2S2 will send data when it has completely received the second command byte.
11111111 Dump byte (this byte is always FF_{H}).
11000000 Interrupt register INTREG1 (an interrupt has occurred, Off-hook was detected).
00000010 Interrupt register INTREG2 (IO pin 2 is ' 1 ').
00000000 Interrupt register INTREG3
00000000 Interrupt register INTREG4

Figure 77 Waveform of Programming Example SOP Read from Channel 0

6.3.4.2 IOM-2 Interface

An example with the same programming sequence as before, using the IOM-2 interface is presented here to show the differences between the microcontroller interface and the IOM-2 interface.

SOP Write to Channel 0 Starting After the Channel-Specific Read-Only Registers

Monitor data down	MR/MX	Monitor data up	MR/MX Comment	
10000001	10	11111111	11	IOM-2 address first byte
10000001	10	11111111	01	IOM-2 address second byte
01000100	11	1111111	01	First command byte (SOP write for channel 0)
01000100	10	1111111	11	First command byte second time
00010101	11	11111111	01	Second command byte (offset to BCR1 register)
00010101	10	11111111	11	Second command byte second time
00000000	11	11111111	01	Contents of BCR1 register
00000000	10	11111111	11	Contents of BCR1 register second time
00000000	11	11111111	01	Contents of BCR2 register
00000000	10	11111111	11	Contents of BCR2 register second time
00010001	11	1111111	01	Contents of BCR3 register
00010001	10	1111111	11	Contents of BCR3 register second time
00000000	11	1111111	01	Contents of BCR4 register
00000000	10	11111111	11	Contents of BCR4 register second time
1111111	11	11111111	01	No more information (dummy byte)
11111111	11	11111111	11	Signaling EOM (end of message) by holding MX bit at ' 11 '.

Since the SLICOFI-2S/-2S2 has an open command structure, no fixed command length is given. The IOM-2 handshake protocol allows for an infinite length of a data stream, therefore the host has to terminate the data transfer by sending an end-of-message signal (EOM) to the SLICOFI-2S/-2S2. The SLICOFI-2S/-2S2 will abort the transfer only if the host tries to write or read beyond the allowed maximum offsets given by the different types of commands. Each transfer has to start with the SLICOFI-2S/-2S2specific IOM-2 Address $\left(81_{\mathrm{H}}\right)$ and must end with an EOM of the handshake bits. Appending a command immediately to its predecessor without an EOM in between is not allowed.
When reading interrupt registers, SLICOFI-2S/-2S2 stops the transfer after the fourth register in IOM-2 mode. This is to prevent some host chips reading 16 bytes because they can't terminate the transfer after n bytes.

DuSLIC-S/-S2

Preliminary

SLICOFI-2x Command Structure and Programming

SOP-Read from Channel 1 Reading Out the Interrupt Registers

Monitor data down	MR/MX	Monitor data up	MR/MX Comment	
10000001	10	11111111 11 IOM-2 address first byte 10000001 10 11111111	01	IOM-2 address second byte
11001100	11	11111111	01	First command byte (SOP read for channel 1)
11001100	10	11111111	11	First command byte second time
00001000	11	11111111	01	Second command byte (offset to interrupt register 1)
00001000	10	11111111	11	Second command byte second time
11111111	11	11111111	01	Acknowledgement for the second command byte
11111111	11	10000001	10	IOM-2 Address first byte (answer)
11111111	01	10000001	10	IOM-2 Address second byte
11111111	01	11000000	11	Interrupt register INTREG1
11111111	11	11000000	10	Interrupt register INTREG1 second time
11111111	01	00000010	11	Interrupt register INTREG2
11111111	11	00000010	10	Interrupt register INTREG2 second time
11111111	01	00000000	11	Interrupt register INTREG3
11111111	11	00000000	10	Interrupt register INTREG3 second time
11111111	01	00000000	11	Interrupt register INTREG4
11111111	11	00000000	10	Interrupt register INTREG4 second time
11111111	11	01001101	11	SLICOFI-2S/-2S2 sends the next register
11111111	11	11111111	11	SLICOFI-2S/-2S2 aborts transmission

DuSLIC

7 Electrical Characteristics

7.1 Electrical Characteristics PEB 4264/-2 (SLIC-S/-S2)

7.1.1 Absolute Maximum Ratings PEB 4264/-2 (SLIC-S/-S2)

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	max.		
Battery voltage L	$V_{\text {BATL }}$ $V_{\text {BATL }}-V_{\text {BATH }}$	$\begin{array}{\|l\|} \hline-65 \\ -0.4 \end{array}$	0.4	V	referred to $V_{\text {BGND }}$
Battery voltage	$V_{\text {BATH }}$	- 70	0.4	v	referred to $V_{\text {BGND }}$
Auxiliary supply voltage	$V_{\text {HR }}$	-0.4	50	V	referred to $V_{\text {BGND }}$
Total battery supply voltage, continuous	$V_{\mathrm{HR}}-V_{\text {BATH }}$	-0.4	95	V	-
$V_{\text {DD }}$ supply voltage	$V_{\text {DD }}$	-0.4	7	V	referred to $V_{\text {AGND }}$
Ground voltage difference	$\begin{aligned} & V_{\mathrm{BGND}}- \\ & V_{\mathrm{AGND}} \\ & \hline \end{aligned}$	-0.4	0.4	V	-
Input voltages	$V_{\mathrm{DCP}}, V_{\mathrm{DCN}}$, $V_{\mathrm{ACP}}, V_{\mathrm{ACN}}$, $V_{\mathrm{C} 1}, V_{\mathrm{C} 2}, V_{\mathrm{CMS}}$	-0.4	$V_{\mathrm{DD}}+0.4$	V	referred to $V_{\text {AGND }}$
Voltages on current outputs	$V_{\text {IT }}, V_{\text {IL }}$	-0.4	$V_{\mathrm{DD}}+0.4$	V	referred to $V_{\text {AGND }}$
RING, TIP voltages, continuous	$V_{\mathrm{R}}, V_{\mathrm{T}}$	$\begin{aligned} & V_{\mathrm{BATL}}-0.4 \\ & V_{\mathrm{BATH}}-0.4 \\ & V_{\mathrm{BATH}}-0.4 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & V_{\mathrm{HR}}+0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	ACTL ACTH, PDRH, PDRHL ACTR, PDH, HIT, HIR
RING,TIP voltages, pulse < 10 ms	$V_{\mathrm{R}}, V_{\mathrm{T}}$	t.b.d	t.b.d	V	all modes
RING,TIP voltages, pulse $<1 \mathrm{~ms}$	$V_{\mathrm{R}}, V_{\mathrm{T}}$	$V_{\text {BATH }}-10$	$V_{\mathrm{HR}}+10$	V	all modes
RING, TIP voltages, pulse $<1 \mu \mathrm{~s}$	$V_{\mathrm{R}}, V_{\mathrm{T}}$	$V_{\text {BATH }}-10$	$V_{\mathrm{HR}}+30$	V	all modes

DuSLIC

Preliminary

Electrical Characteristics

7.1.1 Absolute Maximum Ratings PEB 4264/-2 (SLIC-S/-S2) (cont'd)

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	max.		
ESD voltage, all pins	-	-	1	kV	SDM (Socketed Device Model)
Junction temperature	T_{j}	-	$150^{2)}$	${ }^{\circ} \mathrm{C}$	

1) EOS/ESD Assn. Standard DS5.3-1993.
2) Even higher value is possible when internal junction temperature protection is operative.

Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Maximum ratings are absolute ratings; even if only one of these values is exceeded, the integrated circuit may be irreversibly damaged.

DuSLIC

Preliminary
Electrical Characteristics

7.1.2 Operating Range PEB 4264/-2 (SLIC-S/-S2)

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	max.		
Battery voltage L ${ }^{1)}$	V_{BATL}	-60	-15	V	referred to V_{BGND}
Battery voltage H ${ }^{1)}$	V_{BATH}	-65	-20	V	referred to V_{BGND}
Auxiliary supply voltage	V_{HR}	5	45	V	referred to V_{BGND}
Total battery supply voltage	$V_{\mathrm{HR}}-V_{\mathrm{BATH}}$	-	90	V	-
V_{DD} supply voltage	V_{DD}	4.75	5.25	V	referred to V_{AGND}
Ground voltage difference	$V_{\mathrm{BGND}}-V_{\mathrm{AGND}}$	-0.4	0.4	V	-
Junction temperature	T_{j}	-	125	${ }^{\circ} \mathrm{C}$	simulated for a lifetime of 15 years
Voltage at pins IT, IL	$V_{\mathrm{IT}}, V_{\mathrm{IL}}$	-0.4	3.5	V	referred to V_{AGND}
Input range V_{DCP}, $V_{\mathrm{DCN}}, V_{\mathrm{ACP}}, V_{\mathrm{ACN}}$	V_{ACDC}	0	3.3	V	referred to V_{AGND}

1) If the battery switch is not used both pins VBATL and VBATH should be connected together externally. In this case the full voltage range of -15 V to -65 V can be used.

7.1.3 Thermal Resistances PEB 4264/-2 (SLIC-S/-S2)

Parameter	Symbol	Limit Values	Unit	Test Condition
Junction to case	$R_{\mathrm{th}, \mathrm{jC}}$	<2	K/W	-
Junction to ambient	$R_{\mathrm{th}, \mathrm{jA}}$	<50	K/W	without heatsink

DuSLIC

Preliminary

7.1.4 Electrical Parameters PEB 4264/-2 (SLIC-S/-S2)

Minimum and maximum values are valid within the full operating range.
Functionality and performance is guaranteed for $T_{A}=0$ to $70^{\circ} \mathrm{C}$ by production testing. Extented temperature range operation at $-40^{\circ} \mathrm{C}<T_{A}<85^{\circ} \mathrm{C}$ is guaranteed by design, characterization and periodically sampling and testing production devices at the temperature extremes.
Testing is performed according to the specific test figures. Unless otherwise stated, load impedance $R_{\mathrm{L}}=600 \Omega, V_{\mathrm{BATH}}=-48 \mathrm{~V}, V_{\mathrm{BATL}}=-24 \mathrm{~V}, V_{\mathrm{HR}}=+32 \mathrm{~V}$ and $V_{\mathrm{DD}}=+5 \mathrm{~V}$, $R_{\mathrm{IT}}=1 \mathrm{k} \Omega, R_{\mathrm{IL}}=2 \mathrm{k} \Omega, C_{\mathrm{EXT}}=470 \mathrm{nF}$. Typical values are tested at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Supply Currents and Power Dissipation

$\left(I_{\mathrm{R}}=I_{\mathrm{T}}=0 \mathrm{~A} ; V_{\mathrm{CMS}}=V_{\mathrm{ACP}}=V_{\mathrm{ACN}}=V_{\mathrm{DCP}}=V_{\mathrm{DCN}}=1.5 \mathrm{~V}\right)$

| No. | Parameter | Symbol | Mode | Limit Values | | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | min. | typ. | max. | |

Power Down High Impedance, Power Down Resistive High

$\begin{aligned} & 1 . \\ & 2 . \end{aligned}$	$V_{\text {DD }}$ current	$I_{\text {DD }}$	PDH PDRH	-	$\begin{aligned} & 120 \\ & 120 \end{aligned}$	-	$\mu \mathrm{A}$
$\begin{aligned} & 3 . \\ & 4 . \end{aligned}$	$V_{\text {BATH }}$ current	$I_{\text {BATH }}$	PDH PDRH	$-$	$\begin{aligned} & 65 \\ & 80 \end{aligned}$	-	$\mu \mathrm{A}$
$\begin{aligned} & 5 . \\ & 6 . \end{aligned}$	$V_{\text {BATL }}$ current	$I_{\text {BATL }}$	PDH PDRH	-	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\mu \mathrm{A}$
$\begin{aligned} & 7 . \\ & 8 . \end{aligned}$	V_{HR} current	$I_{\text {HR }}$	PDH PDRH	-	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\mu \mathrm{A}$
$\begin{aligned} & 9 . \\ & 10 . \end{aligned}$	Quiescent power dissipation	P_{Q}	PDH PDRH	-	$\begin{aligned} & 3.7 \\ & 4.4 \end{aligned}$	-	mW

Active Low

11.	V_{DD} current	I_{DD}	ACTL	-	1000	1200	$\mu \mathrm{~A}$
12.	V_{BATH} current	I_{BATH}	ACTL	-	25	45	$\mu \mathrm{~A}$
13.	V_{BATL} current	I_{BATL}	ACTL	-	2800	3400	$\mu \mathrm{~A}$
14.	V_{HR} current	I_{HR}	ACTL	-	0	10	$\mu \mathrm{~A}$
15.	Quiescent power dissipation	P_{Q}	ACTL	-	73.4	89.8	mW

Supply Currents and Power Dissipation

$\left(I_{\mathrm{R}}=I_{\mathrm{T}}=0 \mathrm{~A} ; V_{\mathrm{CMS}}=V_{\mathrm{ACP}}=V_{\mathrm{ACN}}=V_{\mathrm{DCP}}=V_{\mathrm{DCN}}=1.5 \mathrm{~V}\right)($ cont'd $)$

No.	Parameter	Symbol	Mode	Limit Values		Unit
			min. typ. max.			

Active High

16.	V_{DD} current	I_{DD}	ACTH	-	1000	1300	$\mu \mathrm{~A}$
17.	V_{BATH} current	I_{BATH}	ACTH	-	3500	4300	$\mu \mathrm{~A}$
18.	V_{BATL} current	I_{BATL}	ACTH	-	0	10	$\mu \mathrm{~A}$
19.	V_{HR} current	I_{HR}	ACTH	-	0	10	$\mu \mathrm{~A}$
20.	Quiescent power dissipation	P_{Q}	ACTH	-	173	213.5	mW

Active Ring

21.	V_{DD} current	I_{DD}	ACTR	-	500	700	$\mu \mathrm{~A}$
22.	V_{BATH} current	I_{BATH}	ACTR	-	3100	3700	$\mu \mathrm{~A}$
23.	V_{BATL} current	I_{BATL}	ACTR	-	0	10	$\mu \mathrm{~A}$
24.	V_{HR} current	I_{HR}	ACTR	-	2300	2800	$\mu \mathrm{~A}$
25.	Quiescent power dissipation	P_{Q}	ACTR	-	225	271	mW

High Impedance on RING, High Impedance on TIP

26.	V_{DD} current	I_{DD}	HIR, HIT	-	500	700	$\mu \mathrm{~A}$
27.	$V_{\text {BATH }}$ current	$I_{\text {BATH }}$	HIR, HIT	-	2100	2600	$\mu \mathrm{~A}$
28.	$V_{\text {BATL }}$ current	$I_{\text {BATL }}$	HIR, HIT	-	0	10	$\mu \mathrm{~A}$
29.	$V_{\text {HR }}$ current	$I_{\text {HR }}$	HIR, HIT	-	1500	2200	$\mu \mathrm{~A}$
30.	Quiescent power dissipation	P_{Q}	HIR, HIT	-	151	199	mW

Preliminary

7.1.5 Power Calculation PEB 4264/-2 (SLIC-S/-S2)

The total power dissipation consists of the quiescent power dissipation P_{Q} given above, the current sensor power dissipation P_{I} (see Table 71), the gain stage power dissipation correction $P_{G}{ }^{1)}$ (see Table 72) and the output stage power dissipation P_{O} (see Table 73):

```
\(P_{\text {tot }}=P_{\mathrm{Q}}+P_{\mathrm{I}}+P_{\mathrm{G}}+P_{\mathrm{O}}\)
with \(P_{\mathrm{Q}}=V_{\mathrm{DD}} \times I_{\mathrm{DD}}+\left|V_{\mathrm{BATH}} I \times I_{\mathrm{BATH}}+\right| V_{\mathrm{BATL}} I \times I_{\mathrm{BATL}}+V_{\mathrm{HR}} \times I_{\mathrm{HR}}\)
```

For the calculation of $P_{\mathrm{l}}, P_{\mathrm{G}}$ and P_{O} see the following tables:
Table $71 \quad P_{1}$ Calculation PEB 4264/-2 (SLIC-S/-S2)

Operating Mode	Equation for $\boldsymbol{P}_{\mathbf{I}}$ Calculation
PDH	$P_{\mathrm{I}}=0($ no DC loop current $)$
PDRH, PDRHL	$P_{\mathrm{I}}=I_{\text {Trans }} \times I_{\text {Trans }} \times(10000+500+16)+I_{\text {Trans }} \times\left(0.6+0.425 \times\left\|V_{\mathrm{BATH}}\right\|\right)$
ACTL	$P_{\mathrm{I}}=0.055 \times I_{\text {Trans }} \times\left\|V_{\mathrm{BATL}}\right\|+0.04 \times I_{\text {Trans }} \times V_{\mathrm{DD}}$
ACTH	$P_{\mathrm{I}}=0.055 \times I_{\text {Trans }} \times\left\|V_{\mathrm{BATH}}\right\|+0.04 \times I_{\text {Trans }} \times V_{\mathrm{DD}}$
ACTR	$P_{\mathrm{I}}=0.015 \times I_{\text {Trans }} \times V_{\mathrm{HR}}+0.055 \times I_{\text {Trans }} \times\left\|V_{\mathrm{BATH}}\right\|+0.04 \times I_{\text {Trans }} \times V_{\mathrm{DD}}$
HIR, HIT	$\left.P_{\mathrm{I}}=0.015 \times I_{\text {TorR }} 1\right) \times V_{\mathrm{HR}}+0.04 \times I_{\text {TorR }} \times\left\|V_{\mathrm{BATH}}\right\|+0.02 \times I_{\text {TorR }} \times V_{\mathrm{DD}}$
HIRT	$P_{\mathrm{I}}=0($ no DC loop current $)$
${ }^{\text {1) }} I_{\text {TorR }}=I_{\text {TIP }}$ or $I_{\text {RING }}$	

[^11]DuSLIC

Preliminary

P_{G} Calculation PEB 4264/-2 (SLIC-S/-S2)	
Operating Mode	Equation for P_{G} Calculation
PDH, PDRH	$P_{\mathrm{G}}=0$ (gain stage not working)
ACTL	$P_{\mathrm{G}}=\left(V_{\mathrm{BATL}}{ }^{2}-24^{2}\right) \times(1 / 60 \mathrm{k}+1 / 216 \mathrm{k})$
ACTH, PDRHL	$P_{\mathrm{G}}=\left(V_{\mathrm{BATH}}{ }^{2}-48^{2}\right) \times(1 / 60 \mathrm{k}+1 / 216 \mathrm{k})$
ACTR	$\begin{aligned} & P_{\mathrm{G}}=\left(V_{\mathrm{HR}}+\left\|V_{\mathrm{BATH}}\right\|\right) \times\left(\left\|V_{\mathrm{HR}}+V_{\mathrm{BATH}}+V_{\mathrm{TIP} / \mathrm{RING}}\right\|+\right. \\ & \left.\left\|V_{\mathrm{HR}}+V_{\mathrm{BATH}}-V_{\mathrm{TIP} / \mathrm{RING}}\right\|-2 \times\left\|V_{\mathrm{HR}}+V_{\mathrm{BATH}}\right\|\right) / 120 \mathrm{k}+ \\ & \left(V_{\mathrm{HR}}^{2}-32^{2}+V_{\mathrm{BATH}}-48^{2}\right) \times(1 / 60 \mathrm{k}+1 / 216 \mathrm{k}) \end{aligned}$
HIR, HIT, HIRT	$\begin{aligned} & P_{\mathrm{G}}=\left(V_{\mathrm{HR}}+\left\|V_{\mathrm{BATH}}\right\|\right) \times\left(\left\|V_{\mathrm{HR}}+V_{\mathrm{BATH}}+\exp V_{\mathrm{TIP} / \mathrm{RING}}{ }^{1}\right\|+\right. \\ & \left.\left\|V_{\mathrm{HR}}+V_{\mathrm{BATH}}-V_{\mathrm{TIP} / \mathrm{RING}}\right\|-2 \times\left\|V_{\mathrm{HR}}+V_{\mathrm{BATH}}\right\|\right) / 120 \mathrm{k}+ \\ & \left(V_{\mathrm{HR}}{ }^{2}-32^{2}+V_{\mathrm{BATH}}-48^{2}\right) \times(1 / 60 \mathrm{k}+1 / 216 \mathrm{k}) \end{aligned}$

1) Expected $V_{\text {TIP/RING }}$ when SLIC-S/-S2 output buffer in high impedance.

Table $73 \quad P_{\mathrm{O}}$ Calculation PEB 4264/-2 (SLIC-S/-S2)

Operating Mode	Equation for P_{O} Calculation
PDH, PDRH, PDRHL	$P_{\mathrm{O}}=0$ (output stage not working)
ACTL	$P_{\mathrm{O}}=\left(\left\|V_{\text {BATL }}\right\|-V_{\text {TIP/RING }}\right) \times I_{\text {Trans }}$
ACTH	$P_{\mathrm{O}}=\left(\mid V_{\text {BATH }}-V_{\text {TIP/RING }}\right) \times I_{\text {Trans }}$
ACTR	$P_{\mathrm{O}}=\left(V_{\text {HR }}+\left\|V_{\text {BATH }}\right\|-V_{\text {TIPRIING }}\right) \times I_{\text {Trans }}$
HIR, HIT	$P_{\mathrm{O}}=V_{\text {Supply-TorR }}{ }^{1} \times I_{\text {TorR }}$
HIRT	$P_{\mathrm{O}}=0$ (output stage not working)

1) $V_{\text {Supply-TorR }}=V_{\text {Supply }}-V_{\text {TIP }}$ or $V_{\text {RING }}$

7.1.6 Power Up Sequence PEB 4264/-2 (SLIC-S/-S2)

The supply voltages of the SLIC-S/-S2 have to be applied in the following order to the respective pin:

1) Ground to pins AGND and BGND
2) $V_{D D}$ to pin VDD
3) $V_{\text {BATH }}$ to pin VBATH
4) V_{HR} to pin VHR and $V_{\text {BATL }}$ to pin VBATL

If the V_{DD} voltage is applied more than one second later as $V_{\mathrm{BATH}}, V_{\mathrm{HR}}$ or V_{BATL} thermal damage of the SLIC-S/-S2 can accur.
If the above sequence of the battery voltages can not be guaranteed, a diode (1N4007) has to be inserted in the VBATH line

DuSLIC

Preliminary

7.2 Electrical Characteristics PEB 4265/-2 (SLIC-E/-E2)

7.2.1 Absolute Maximum Ratings PEB 4265/-2 (SLIC-E/-E2)

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	max.		
Battery voltage L	$\begin{aligned} & V_{\mathrm{BATL}} \\ & V_{\mathrm{BATL}}-V_{\mathrm{BATH}} \end{aligned}$	$\begin{array}{\|l\|} \hline-85 \\ -0.4 \end{array}$	0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	referred to $V_{\text {BGND }}$
Battery voltage H	$V_{\text {BATH }}$	-90	0.4	V	referred to $V_{\text {BGND }}$
Auxiliary supply voltage	$V_{\text {HR }}$	-0.4	90	V	referred to $V_{\text {BGND }}$
Total battery supply voltage, continuous	$V_{\mathrm{HR}}-V_{\text {BATH }}$	-	160	V	-
$V_{\text {DD }}$ supply voltage	$V_{\text {DD }}$	-0.4	7	V	referred to $V_{\text {AGND }}$
Ground voltage difference	$V_{\mathrm{BGND}}-V_{\mathrm{AGND}}$	-0.4	0.4	V	-
Input voltages	$V_{\mathrm{DCP}}, V_{\mathrm{DCN}}$, $V_{\mathrm{ACP}}, V_{\mathrm{ACN}}$, $V_{\mathrm{C} 1}, V_{\mathrm{C} 2}, V_{\mathrm{CMS}}$	-0.4	$V_{\mathrm{DD}}+0.4$	V	referred to $V_{\text {AGND }}$
Voltages on current outputs	$V_{\text {IT }}, V_{\text {IL }}$	-0.4	$V_{\mathrm{DD}}+0.4$	V	referred to $V_{\text {AGND }}$
RING, TIP voltages, continuous	$V_{\mathrm{R}}, V_{\mathrm{T}}$	$\begin{aligned} & V_{\mathrm{BATL}}-0.4 \\ & V_{\mathrm{BATH}}-0.4 \\ & V_{\mathrm{BATH}}-0.4 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & \\ & V_{\mathrm{HR}}+0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	ACTL ACTH, PDRH, PDRHL ACTR, PDH, HIRT, HIT, HIR
RING, TIP voltages, pulse $<10 \mathrm{~ms}$	$V_{\mathrm{R}}, V_{\mathrm{T}}$	t.b.d	t.b.d	V	all modes
RING, TIP voltages, pulse $<1 \mathrm{~ms}$	$V_{\mathrm{R}}, V_{\mathrm{T}}$	$V_{\text {BATH }}-10$	$V_{H R}+10$	V	all modes
RING, TIP voltages, pulse $<1 \mu \mathrm{~s}$	$V_{\mathrm{R}}, V_{\mathrm{T}}$	$V_{\text {BATH }}-10$	$V_{\mathrm{HR}}+30$	V	all modes
ESD voltage, all pins	-	-	1	kV	SDM (Socketed Device Model) ${ }^{1)}$
Junction temperature	T_{j}	-	$150{ }^{2)}$	${ }^{\circ} \mathrm{C}$	

[^12]DuSLIC

Preliminary

Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Maximum ratings are absolute ratings; even if only one of these values is exceeded, the integrated circuit may be irreversibly damaged.

7.2.2 Operating Range PEB 4265/-2 (SLIC-E/-E2)

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	max.		
Battery voltage $\mathrm{L}^{1)}$	$V_{\text {BATL }}$	-80	-15	V	referred to $V_{\text {BGND }}$
Battery voltage $\mathrm{H}^{1)}$	$V_{\text {BATH }}$	-85	-20	V	referred to $V_{\text {BGND }}$
Auxiliary supply voltage	$V_{\text {HR }}$	5	85	V	referred to $V_{\text {BGND }}$
Total battery supply voltage	$V_{\text {HR }}-V_{\text {BATH }}$	-	150	V	-
$V_{\text {DD }}$ supply voltage	$V_{\text {DD }}$	4.75	5.25	V	referred to $V_{\text {AGND }}$
Ground voltage difference	$V_{\mathrm{BGND}}-V_{\mathrm{AGND}}$	-0.4	0.4	V	-
Junction temperature	T_{j}	-	125	${ }^{\circ} \mathrm{C}$	simulated for a lifetime of 15 years
Voltage at pins IT, IL	$V_{\text {IT }}, V_{\text {IL }}$	-0.4	3.5	V	referred to $V_{\text {AGND }}$
Input range V_{DCP}, $V_{\mathrm{DCN}}, V_{\mathrm{ACP}}, V_{\mathrm{ACN}}$	$V_{\text {ACDC }}$	0	3.3	V	referred to $V_{\text {AGND }}$

[^13]
7.2.3 Thermal Resistances PEB 4265/-2 (SLIC-E/-E2)

Parameter	Symbol	Limit Values	Unit	Test Condition
Junction to case	$R_{\mathrm{th}, \mathrm{jc}}$	<2	K/W	-
Junction to ambient	$R_{\mathrm{th}, \mathrm{jA}}$	<50	$\mathrm{~K} / \mathrm{W}$	without heatsink

DuSLIC

Preliminary

7.2.4 Electrical Parameters PEB 4265/-2 (SLIC-E/-E2)

Minimum and maximum values are valid within the full operating range.
Functionality and performance is guaranteed for $T_{A}=0$ to $70^{\circ} \mathrm{C}$ by production testing. Extented temperature range operation at $-40^{\circ} \mathrm{C}<T_{A}<85^{\circ} \mathrm{C}$ is guaranteed by design, characterization and periodically sampling and testing production devices at the temperature extremes.
Testing is performed according to the specific test figures. Unless otherwise stated, load impedance $R_{\mathrm{L}}=600 \Omega, V_{\mathrm{BATH}}=-48 \mathrm{~V}, V_{\mathrm{BATL}}=-24 \mathrm{~V}, V_{\mathrm{HR}}=+32 \mathrm{~V}$ and $V_{\mathrm{DD}}=+5 \mathrm{~V}$, $R_{\mathrm{IT}}=1 \mathrm{k} \Omega, R_{\mathrm{IL}}=2 \mathrm{k} \Omega, C_{\mathrm{EXT}}=470 \mathrm{nF}$. Typical values are tested at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Supply Currents and Power Dissipation

$\left(I_{\mathrm{R}}=I_{\mathrm{T}}=0 \mathrm{~A} ; V_{\mathrm{CMS}}=V_{\mathrm{ACP}}=V_{\mathrm{ACN}}=V_{\mathrm{DCP}}=V_{\mathrm{DCN}}=1.5 \mathrm{~V}\right)$

No.	Parameter	Symbol	Mode	Limit Values		Unit
			min. typ. max.			

Power Down High Impedance, Power Down Resistive High

$\begin{aligned} & 1 . \\ & 2 . \end{aligned}$	V_{DD} current	$I_{\text {DD }}$	PDH PDRH	-	$\begin{aligned} & 120 \\ & 120 \end{aligned}$	-	$\mu \mathrm{A}$
$\begin{aligned} & 3 . \\ & 4 . \end{aligned}$	$V_{\text {BATH }}$ current	$I_{\text {BATH }}$	PDH PDRH	\|-	$\begin{aligned} & 65 \\ & 80 \end{aligned}$	-	$\mu \mathrm{A}$
$\begin{aligned} & 5 . \\ & 6 . \end{aligned}$	$V_{\text {BATL }}$ current	$I_{\text {BATL }}$	PDH PDRH	-	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	-	$\mu \mathrm{A}$
$\begin{aligned} & \hline 7 . \\ & 8 . \end{aligned}$	$V_{\text {HR }}$ current	$I_{\text {HR }}$	PDH PDRH	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	-	$\mu \mathrm{A}$
$\begin{aligned} & \hline 9 . \\ & 10 . \end{aligned}$	Quiescent power dissipation	P_{Q}	PDH PDRH	-	$\begin{aligned} & 3.7 \\ & 4.4 \end{aligned}$	-	mW

Active Low

11.	V_{DD} current	I_{DD}	ACTL	-	1000	1200	$\mu \mathrm{~A}$
12.	V_{BATH} current	I_{BATH}	ACTL	-	25	45	$\mu \mathrm{~A}$
13.	V_{BATL} current	I_{BATL}	ACTL	-	2800	3400	$\mu \mathrm{~A}$
14.	V_{HR} current	I_{HR}	ACTL	-	0	10	$\mu \mathrm{~A}$
15.	Quiescent power dissipation	P_{Q}	ACTL	-	73.4	89.8	mW

DuSLIC

Preliminary

Supply Currents and Power Dissipation

$\left(I_{\mathrm{R}}=I_{\mathrm{T}}=0 \mathrm{~A} ; V_{\mathrm{CMS}}=V_{\mathrm{ACP}}=V_{\mathrm{ACN}}=V_{\mathrm{DCP}}=V_{\mathrm{DCN}}=1.5 \mathrm{~V}\right)($ cont'd $)$

| No. | Parameter | Symbol | Mode | Limit Values | | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | min. | typ. | max. | |

Active High

16.	V_{DD} current	I_{DD}	ACTH	-	1000	1300	$\mu \mathrm{~A}$
17.	V_{BATH} current	I_{BATH}	ACTH	-	3500	4300	$\mu \mathrm{~A}$
18.	V_{BATL} current	I_{BALL}	ACTH	-	0	10	$\mu \mathrm{~A}$
19.	V_{HR} current	I_{HR}	ACTH	-	0	10	$\mu \mathrm{~A}$
20.	Quiescent power dissipation	P_{Q}	ACTH	-	173	213.5	mW

Active Ring

21.	V_{DD} current	I_{DD}	ACTR	-	500	700	$\mu \mathrm{~A}$
22.	V_{BATH} current	I_{BATH}	ACTR	-	3100	3700	$\mu \mathrm{~A}$
23.	V_{BATL} current	I_{BATL}	ACTR	-	0	10	$\mu \mathrm{~A}$
24.	V_{HR} current	I_{HR}	ACTR	-	2300	2800	$\mu \mathrm{~A}$
25.	Quiescent power dissipation	P_{Q}	ACTR	-	225	271	mW

High Impedance on RING, High Impedance on TIP

26.	V_{DD} current	I_{DD}	HIR, HIT	-	500	700	$\mu \mathrm{~A}$
27.	V_{BATH} current	I_{BATH}	HIR, HIT	-	2100	2600	$\mu \mathrm{~A}$
28.	V_{BATL} current	I_{BATL}	HIR, HIT	-	0	10	$\mu \mathrm{~A}$
29.	$V_{\text {HR }}$ current	I_{HR}	HIR, HIT	-	1500	2200	$\mu \mathrm{~A}$
30.	Quiescent power dissipation	P_{Q}	HIR, HIT	-	151	199	mW

High Impedance on RING and TIP

31.	V_{DD} current	I_{DD}	HIRT	-	500	700	$\mu \mathrm{~A}$
32.	V_{BATH} current	I_{BATH}	HIRT	-	1000	1500	$\mu \mathrm{~A}$
33.	V_{BATL} current	I_{BATL}	HIRT	-	0	10	$\mu \mathrm{~A}$
34.	$V_{\text {HR }}$ current	I_{HR}	HIRT	-	600	800	$\mu \mathrm{~A}$
35.	Quiescent power dissipation	P_{Q}	HIRT	-	69.7	101.3	mW

Preliminary

Electrical Characteristics

7.2.5 Power Calculation PEB 4265/-2 (SLIC-E/-E2)

The total power dissipation consists of the quiescent power dissipation P_{Q} given above, the current sensor power dissipation P_{1} (see Table 74), the gain stage power dissipation correction $P_{G}{ }^{1)}$ (see Table 75) and the output stage power dissipation PO (see Table 76):
$P_{\text {tot }}=P_{\mathrm{Q}}+P_{\mathrm{I}}+P_{\mathrm{G}}+P_{\mathrm{O}}$
with $P_{\mathrm{Q}}=V_{\mathrm{DD}} \times I_{\mathrm{DD}}+\left|V_{\mathrm{BATH}}\right| \times I_{\mathrm{BATH}}+\left|V_{\mathrm{BATL}}\right| \times I_{\mathrm{BATL}}+V_{\mathrm{HR}} \times I_{\mathrm{HR}}$

For the calculation of $P_{\mathrm{l}}, P_{\mathrm{G}}$ and P_{O} see the following tables:
Table $74 \quad P_{1}$ Calculation PEB 4265/-2 (SLIC-E/-E2)

Operating Mode	Equation for $\boldsymbol{P}_{\mathbf{I}}$ Calculation
PDH	$P_{\mathrm{I}}=0$ (no DC loop current $)$
PDRH, PDRHL	$P_{\mathrm{I}}=I_{\text {Trans }} \times I_{\text {Trans }} \times(10000+500+16)+I_{\text {Trans }} \times\left(0.6+0.425 \times\left\|V_{\mathrm{BATH}}\right\|\right)$
ACTL	$P_{\mathrm{I}}=0.055 \times I_{\text {Trans }} \times\left\|V_{\mathrm{BATL}}\right\|+0.04 \times I_{\text {Trans }} \times V_{\mathrm{DD}}$
ACTH	$P_{\mathrm{I}}=0.055 \times I_{\text {Trans }} \times\left\|V_{\mathrm{BATH}}\right\|+0.04 \times I_{\text {Trans }} \times V_{\mathrm{DD}}$
ACTR	$P_{\mathrm{I}}=0.015 \times I_{\text {Trans }} \times V_{\mathrm{HR}}+0.055 \times I_{\text {Trans }} \times\left\|V_{\mathrm{BATH}}\right\|+0.04 \times I_{\text {Trans }} \times V_{\mathrm{DD}}$
HIR, HIT	$P_{\mathrm{I}}=0.015 \times I_{\text {TorR }} \times V_{\mathrm{HR}}+0.04 \times I_{\text {TorR }} \times\left\|V_{\mathrm{BATH}}\right\|+0.02 \times I_{\text {TorR }} \times V_{\mathrm{DD}}$
HIRT	$P_{\mathrm{I}}=0$ (no DC loop current $)$

[^14]DuSLIC

Preliminary
Table $75 \quad P_{\mathrm{G}}$ Calculation PEB 4265/-2 (SLIC-E/-E2)

Operating Mode	Equation for P_{G} Calculation
PDH, PDRH	$P_{\mathrm{G}}=0$ (gain stage not working)
ACTL	$P_{\mathrm{G}}=\left(V_{\mathrm{BATL}}{ }^{2}-24^{2}\right) \times(1 / 60 \mathrm{k}+1 / 216 \mathrm{k})$
ACTH, PDRHL	$P_{\mathrm{G}}=\left(V_{\text {BATH }}{ }^{2}-48^{2}\right) \times(1 / 60 \mathrm{k}+1 / 216 \mathrm{k})$
ACTR	$P_{\mathrm{G}}=\left(V_{\mathrm{HR}}+\left\|V_{\mathrm{BATH}}\right\|\right) \times\left(\left\|V_{\mathrm{HR}}+V_{\mathrm{BATH}}+V_{\mathrm{TIPRRING}}\right\|+\right.$ $\left.\left\|V_{\mathrm{HR}}+V_{\mathrm{BATH}}-V_{\mathrm{TIP} / \mathrm{RING}}\right\|-2 \times\left\|V_{\mathrm{HR}}+V_{\mathrm{BATH}}\right\|\right) / 120 \mathrm{k}+$ $\left(V_{\mathrm{HR}}{ }^{2}-32^{2}+V_{\mathrm{BATH}}{ }^{2}-48^{2}\right) \times(1 / 60 \mathrm{k}+1 / 216 \mathrm{k})$
HIR, HIT, HIRT	$\begin{aligned} & P_{\mathrm{G}}=\left(V_{\mathrm{HR}}+\left\|V_{\mathrm{BATH}}\right\|\right) \times\left(\left\|V_{\mathrm{HR}}+V_{\mathrm{BATH}}+\exp V_{\mathrm{TIPR/RING}}{ }^{1}\right\|+\right. \\ & \left\|V_{\mathrm{HR}}+V_{\mathrm{BATH}}-\exp V_{\mathrm{TIP/RING}}\right\|-2 \times\left\|V_{\mathrm{HR}}+V_{\mathrm{BAPH}}\right\| / / 120 \mathrm{k}+ \\ & \left(V_{\mathrm{HR}} 2-32^{2}+V_{\mathrm{BATH}}{ }^{2}-48^{2}\right) \times(1 / 60 \mathrm{k}+1 / 216 \mathrm{k}) \end{aligned}$

1) Expected $V_{\text {TIP/RING }}$ when SLIC-E/-E2 output buffer in high impedance.

Table $76 \quad P_{0}$ Calculation PEB 4265/-2 (SLIC-E/-E2)

Operating Mode	Equation for P_{O} Calculation
PDH, PDRH, PDRHL	$P_{\mathrm{O}}=0$ (output stage not working)
ACTL	$P_{\mathrm{O}}=\left(\left\|V_{\mathrm{BATL}}\right\|-V_{\text {TIP/RING }}\right) \times I_{\text {Trans }}$
ACTH	$P_{\mathrm{O}}=\left(\left\|V_{\mathrm{BATH}}\right\|-V_{\text {TIPRRING }}\right) \times I_{\text {Trans }}$
ACTR	$P_{\mathrm{O}}=\left(V_{\text {HR }}+\left\|V_{\text {BATH }}\right\|-V_{\text {TIP/RING }}\right) \times I_{\text {Trans }}$
HIR, HIT	$P_{\mathrm{O}}=V_{\text {Supply-TorR }} \times I_{\text {TorR }}$
HIRT	$P_{\mathrm{O}}=0$ (output stage not working)

7.2.6 Power Up Sequence PEB 4265/-2 (SLIC-E/-E2)

The supply voltages of the SLIC-E/-E2 have to be applied in the following order to the respective pin:

1) Ground to pins AGND and BGND
2) $V_{D D}$ to pin VDD
3) $V_{\text {BATH }}$ to pin VBATH
4) V_{HR} to pin VHR and $V_{\text {BATL }}$ to pin VBATL

If the V_{DD} voltage is applied more than one second later as $V_{\mathrm{BATH}}, V_{\mathrm{HR}}$ or V_{BATL} thermal damage of the SLIC-E/-E2 can accur.
If the above sequence of the battery voltages can not be guaranteed, a diode (1N4007) has to be inserted in the VBATH line.

DuSLIC

Preliminary

7.3 Electrical Characteristics PEB 4266 (SLIC-P)

7.3.1 Absolute Maximum Ratings PEB 4266 (SLIC-P)

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	max.		
Battery voltage L	$V_{\text {BATL }}$ $V_{\mathrm{BATL}}-V_{\mathrm{BATH}}$	$\begin{aligned} & -145 \\ & -0.4 \end{aligned}$	0.4	V	referred to $V_{\text {BGND }}$
Battery voltage H	$V_{\text {BATH }}$	-150	0.4	V	referred to $V_{\text {BGND }}$
Battery voltage R	$V_{\text {BATR }}$ $V_{\mathrm{BATH}}-V_{\mathrm{BATR}}$	$\begin{aligned} & -155 \\ & -0.4 \end{aligned}$	0.4	V	referred to $V_{\text {BGND }}$
Total battery supply voltage, continuous	$V_{\text {DD }}-V_{\text {BATR }}$	-	160	V	-
$V_{\text {DD }}$ supply voltage	$V_{\text {DD }}$	-0.4	7	V	referred to $V_{\text {AGND }}$
Ground voltage difference	$V_{\text {BGND }}-V_{\text {AGND }}$	-0.4	0.4	V	-
Input voltages	$V_{\mathrm{DCP}}, V_{\mathrm{DCN}}$, $V_{\text {ACP }}, V_{\text {ACN }}$, $V_{\mathrm{CMS}} V_{\mathrm{C} 1}, V_{\mathrm{C} 2}$, $V_{\mathrm{C} 3}$	-0.4	$V_{\mathrm{DD}}+0.4$	V	referred to $V_{\text {AGND }}$
Voltages on current outputs	$V_{\mathrm{IT}}, V_{\mathrm{IL}}$	-0.4	$V_{\mathrm{DD}}+0.4$	V	referred to $V_{\text {AGND }}$
RING, TIP voltages, continuous	$V_{\mathrm{R}}, V_{\mathrm{T}}$	$\begin{aligned} & V_{\mathrm{BATL}}-0.4 \\ & V_{\mathrm{BATH}}-0.4 \\ & V_{\mathrm{BATR}}-0.4 \end{aligned}$	$\begin{aligned} & +0.4 \\ & +0.4 \\ & +0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	ACTL ACTH, PDRH, PDRHL ACTR, PDH, PDRR, PDRRL, HIRT, HIT, HIT, ROT, ROR
RING,TIP voltages, pulse < 10 ms	$V_{\mathrm{R}}, V_{\mathrm{T}}$	t.b.d	t.b.d	V	all modes
RING,TIP voltages, pulse $<1 \mathrm{~ms}$	$V_{\mathrm{R}}, V_{\mathrm{T}}$	$V_{\text {BATR }}-10$	+ 10	V	all modes
RING, TIP voltages, pulse $<1 \mu \mathrm{~s}$	$V_{\mathrm{R}}, V_{\mathrm{T}}$	$V_{\text {BATR }}-10$	$+30$	V	all modes

DuSLIC

Preliminary

7.3.1 Absolute Maximum Ratings PEB 4266 (SLIC-P) (cont'd)

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	max.		
ESD voltage, all pins	-	-	1	kV	SDM (Socketed Device Model) ${ }^{1)}$
Junction temperature	T_{j}	-	$150^{2)}$	${ }^{\circ} \mathrm{C}$	

1) EOS/ESD Assn. Standard DS5.3-1993.
2) Even higher value is possible when internal junction temperature protection is operative.

Note: Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
Maximum ratings are absolute ratings; even if only one of these values is exceeded, the intergated circuit may be irreversibly damaged.

DuSLIC

Preliminary

7.3.2 Operating Range PEB 4266 (SLIC-P)

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	max.		
Battery voltage $\mathrm{L}^{1)}$	V_{BATL}	-140	-15	V	referred to V_{BGND}
Battery voltage H ${ }^{1)}$	V_{BATH}	-145	-20	V	referred to V_{BGND}
Battery voltage R ${ }^{1)}$	V_{BATR}	-150	-25	V	referred to V_{BGND}
Total battery supply voltage	$V_{\mathrm{DD}}-V_{\mathrm{BATR}}$	-	155	V	-
V_{DD} supply voltage	V_{DD}	3.1	5.5	V	referred to V_{AGND}
Ground voltage difference	$V_{\mathrm{BGND}}-V_{\mathrm{AGND}}$	-0.4	0.4	V	-
Junction temperature	T_{j}	-	125	${ }^{\circ} \mathrm{C}$	simulated for a lifetime of 15 years
Voltage at pins IT, IL	$V_{\mathrm{IT}}, V_{\mathrm{IL}}$	-0.4	3.5	V	referred to V_{AGND}
Input range V_{DCP}, $V_{\mathrm{DCN}}, V_{\mathrm{ACP}}, V_{\mathrm{ACN}}$	V_{ACDC}	0	3.3	V	referred to V_{AGND}

1) Internal ringing: If the battery switch is not used both pins VBATL and VBATH should be connected together externally. In this case the full voltage range of -15 V to -145 V can be used.
External ringing: If only one negative battery voltage is used the pins VBATL, VBATH and VBATR should be connected together externally. In this case the full voltage range of -15 V to -145 V can be used.

7.3.3 Thermal Resistances PEB 4266 (SLIC-P)

Parameter	Symbol	Limit Values	Unit	Test Condition
Junction to case	$R_{\mathrm{th}, \mathrm{jC}}$	2	K/W	-
Junction to ambient	$R_{\mathrm{th}, \mathrm{jA}}$	50	K/W	without heatsink

DuSLIC

Preliminary

7.3.4 Electrical Parameters PEB 4266 (SLIC-P)

Minimum and maximum values are valid within the full operating range.
Functionality and performance is guaranteed for $T_{A}=0$ to $70^{\circ} \mathrm{C}$ by production testing. Extented temperature range operation at $-40^{\circ} \mathrm{C}<T_{A}<85^{\circ} \mathrm{C}$ is guaranteed by design, characterization and periodically sampling and testing production devices at the temperature extremes.
Testing is performed according to the test figures with external circuitry as indicated in the tables. Unless otherwise stated, load impedance $R_{\mathrm{L}}=600 \Omega, V_{\mathrm{BATH}}=-48 \mathrm{~V}$,
$V_{\mathrm{BATL}}=-24 \mathrm{~V}, \quad V_{\mathrm{BATR}}=-80 \mathrm{~V} \quad$ and $\quad V_{\mathrm{DD}}=+5 \mathrm{~V}, \quad R_{\mathrm{IT}}=1 \mathrm{k} \Omega, \quad R_{\mathrm{IL}}=2 \mathrm{k} \Omega$, $C_{\text {EXT }}=470 \mathrm{nF}$. Typical values are tested at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Supply Currents and Power Dissipation

$\left(I_{\mathrm{R}}=I_{\mathrm{T}}=0 \mathrm{~A} ; V_{\mathrm{CMS}}=V_{\mathrm{ACP}}=V_{\mathrm{ACN}}=V_{\mathrm{DCP}}=V_{\mathrm{DCN}}=1.5 \mathrm{~V}\right)$

| No. | Parameter | Symbol | Mode | Limit Values | | | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | min. | typ. | max. | |

Power Down High Impedance, Power Down Resistive Ring, Power Down Resistive High

$\left.\begin{array}{l|l|l|l|l|l|l|l}\hline \text { 1. } & V_{\mathrm{DD}} \text { current } & I_{\mathrm{DD}} & \text { PDH } & - & 130 & 180 & \mu \mathrm{~A} \\ \text { 2. } & & & \begin{array}{l}\text { PDRR } \\ \text { 3. }\end{array} & & & 140 & 190 \\ \mathrm{PDRH}\end{array}\right]$

DuSLIC

Preliminary

Supply Currents and Power Dissipation

$\left(I_{\mathrm{R}}=I_{\mathrm{T}}=0 \mathrm{~A} ; V_{\mathrm{CMS}}=V_{\mathrm{ACP}}=V_{\mathrm{ACN}}=V_{\mathrm{DCP}}=V_{\mathrm{DCN}}=1.5 \mathrm{~V}\right)($ cont'd $)$

No.	Parameter	Symbol	Mode	Limit Values		Unit	
				min.	typ.	max.	

Active Low

16.	V_{DD} current	I_{DD}	ACTL	-	900	1100	$\mu \mathrm{~A}$
17.	V_{BATH} current	I_{BATH}	ACTL	-	10	15	$\mu \mathrm{~A}$
18.	V_{BATL} current	I_{BATL}	ACTL	-	2100	2700	$\mu \mathrm{~A}$
19.	V_{BATR} current	I_{BATR}	ACTL	-	10	25	$\mu \mathrm{~A}$
20.	Quiescent power dissipation	P_{Q}	ACTL	-	56.1	73.0	mW

Active High

21.	V_{DD} current	I_{DD}	ACTH	-	900	1100	$\mu \mathrm{~A}$
22.	$V_{\text {BATH }}$ current	$I_{\text {BATH }}$	ACTH	-	2700	3400	$\mu \mathrm{~A}$
23.	$V_{\text {BATL }}$ current	$I_{\text {BATL }}$	ACTH	-	0	10	$\mu \mathrm{~A}$
24.	$V_{\text {BATR }}$ current	$I_{\text {BATR }}$	ACTH	-	10	25	$\mu \mathrm{~A}$
25.	Quiescent power dissipation	P_{Q}	ACTH	-	134.9	170.9	mW

Active Ring ${ }^{1)}$

26.	$V_{\text {DD }}$ current	$I_{\text {DD }}$	ACTR	-	900	1200	$\mu \mathrm{~A}$
27.	$V_{\text {BATH }}$ current	$I_{\text {BATH }}$	ACTR	-	0	10	$\mu \mathrm{~A}$
28.	$V_{\text {BATL }}$ current	$I_{\text {BATL }}$	ACTR	-	0	10	$\mu \mathrm{~A}$
29.	$V_{\text {BATR }}$ current	$I_{\text {BATR }}$	ACTR	-	3500	4400	$\mu \mathrm{~A}$
30.	Quiescent power dissipation	P_{Q}	ACTR	-	284.5	358.7	mW

Ring on Ring, Ring on Tip

31.	V_{DD} current	I_{DD}	ROR, ROT	-	800	1100	$\mu \mathrm{~A}$
32.	$V_{\text {BATH }}$ current	$I_{\text {BATH }}$	ROR, ROT	-	0	10	$\mu \mathrm{~A}$
33.	$V_{\text {BATL }}$ current	$I_{\text {BATL }}$	ROR, ROT	-	0	10	$\mu \mathrm{~A}$
34.	$V_{\text {BATR }}$ current	$I_{\text {BATR }}$	ROR, ROT	-	2400	2800	$\mu \mathrm{~A}$
35.	Quiescent power dissipation	P_{Q}	ROR, ROT	-	196	230.2	mW

DuSLIC

Preliminary

Supply Currents and Power Dissipation

$\left(I_{\mathrm{R}}=I_{\mathrm{T}}=0 \mathrm{~A} ; V_{\mathrm{CMS}}=V_{\mathrm{ACP}}=V_{\mathrm{ACN}}=V_{\mathrm{DCP}}=V_{\mathrm{DCN}}=1.5 \mathrm{~V}\right)($ cont'd $)$

No.	Parameter	Symbol	Mode	Limit Values			Unit
				min.	typ.	max.	

High Impedance on RING, High Impedance on TIP

36.	$V_{\text {DD }}$ current	$I_{\text {DD }}$	HIR, HIT	-	700	900	$\mu \mathrm{~A}$
37.	$V_{\text {BATH }}$ current	$I_{\text {BATH }}$	HIR, HIT	-	0	10	$\mu \mathrm{~A}$
38.	$V_{\text {BATL }}$ current	$I_{\text {BATL }}$	HIR, HIT	-	0	10	$\mu \mathrm{~A}$
39.	$V_{\text {BATR }}$ current	$I_{\text {BATR }}$	HIR, HIT	-	3000	3900	$\mu \mathrm{~A}$
40.	Quiescent power dissipation	P_{Q}	HIR, HIT	-	243.5	317.2	mW

High Impedance on RING and TIP

41.	$V_{\text {DD }}$ current	$I_{\text {DD }}$	HIRT	-	500	800	$\mu \mathrm{~A}$
42.	$V_{\text {BATH }}$ current	$I_{\text {BATH }}$	HIRT	-	0	10	$\mu \mathrm{~A}$
43.	$V_{\text {BATL }}$ current	$I_{\text {BATL }}$	HIRT	-	0	10	$\mu \mathrm{~A}$
44.	$V_{\text {BATR }}$ current	$I_{\text {BATR }}$	HIRT	-	2400	2900	$\mu \mathrm{~A}$
45.	Quiescent power dissipation	P_{Q}	HIRT	-	194.5	236.7	mW

[^15]DuSLIC

Preliminary

7.3.5 Power Calculation PEB 4266 (SLIC-P)

The total power dissipation includes the quiescent power dissipation P_{Q} given above, the current sensor power dissipation P_{1} (see Table 77), the gain stage power dissipation correction $P_{G}{ }^{1)}$ (see Table 78), and the output stage power dissipation P_{O} (see Table 79):
$P_{\text {tot }}=P_{\mathrm{Q}}+P_{\mathrm{I}}+P_{\mathrm{G}}+P_{\mathrm{O}}$
with $P_{\mathrm{Q}}=V_{\mathrm{DD}} \times I_{\mathrm{DD}}+\mid V_{\mathrm{BATR}} I \times I_{\mathrm{BATR}}+I V_{\mathrm{BATH}} I \times I_{\mathrm{BATH}}+V_{\mathrm{BATL}} \times I_{\mathrm{BATL}}$

For the calculation of $P_{\mathrm{l}}, P_{\mathrm{G}}$ and P_{O} see the following tables:
Table $77 \quad P_{1}$ Calculation PEB 4266 (SLIC-P)

Operating Mode	Equation for $\boldsymbol{P}_{\mathbf{I}}$ Calculation
PDH	$P_{\mathrm{I}}=0($ no DC loop current $)$
PDRH, PDRHL	$P_{\mathrm{I}}=I_{\text {Trans }} \times I_{\text {Trans }} \times(10000+500+24)$ $+I_{\text {Trans }} \times\left(0.6+0.425 \times\left\|V_{\text {BATH }}\right\|\right)$
PDRR, PDRRL	$P_{\mathrm{I}}=I_{\text {Trans }} \times I_{\text {Trans }} \times(10000+500+16)$ $+I_{\text {Trans }} \times\left(0.6+0.425 \times\left\|V_{\text {BATR }}\right\|\right)$
ACTL	$P_{\mathrm{I}}=0.055 \times I_{\text {Trans }} \times\left\|V_{\mathrm{BATL}}\right\|+0.04 \times I_{\text {Trans }} \times V_{\mathrm{DD}}$
ACTH	$P_{\mathrm{I}}=0.055 \times I_{\text {Trans }} \times\left\|V_{\mathrm{BATH}}\right\|+0.04 \times I_{\text {Trans }} \times V_{\mathrm{DD}}$
ACTR	$P_{\mathrm{I}}=0.055 \times I_{\text {Trans }} \times\left\|V_{\text {BATR }}\right\|+0.04 \times I_{\text {Trans }} \times V_{\mathrm{DD}}$
ROR, ROT	$P_{\mathrm{I}}=0.055 \times I_{\text {Trans }} \times\left\|V_{\text {BATR }}\right\|+0.04 \times I_{\text {Trans }} \times V_{\mathrm{DD}}$
HIR, HIT	$P_{\mathrm{I}}=0.055 \times I_{\text {TorR }} \times\left\|V_{\mathrm{BATR}}\right\|+0.04 \times I_{\text {TorR }} \times V_{\mathrm{DD}}$
HIRT	$P_{\mathrm{I}}=0($ no DC loop current $)$

[^16]DuSLIC

Preliminary
Table $78 \quad P_{\mathrm{G}}$ Calculation PEB 4266 (SLIC-P)

Operating Mode	Equation for P_{G} Calculation
PDH, PDRH, PDRR	$P_{\mathrm{G}}=0$ (gain stage not working $)$
ACTL	$P_{\mathrm{G}}=\left(V_{\mathrm{BATL}}{ }^{2}-24^{2}\right) \times(1 / 60 \mathrm{k}+1 / 216 \mathrm{k})$
ACTH, PDRHL	$P_{\mathrm{G}}=\left(V_{\mathrm{BATH}}{ }^{2}-48^{2}\right) \times(1 / 60 \mathrm{k}+1 / 216 \mathrm{k})$
ACTR, PDRRL, HIR, HIT, HIRT	$P_{\mathrm{G}}=\left(V_{\mathrm{BATR}}{ }^{2}-80^{2}\right) \times(1 / 60 \mathrm{k}+1 / 216 \mathrm{k})$
ROR, ROT	$P_{\mathrm{G}}=\left(V_{\mathrm{TIPRRING}}{ }^{2}-\left(V_{\mathrm{BATR}} / 2\right)^{2}\right) / 60 \mathrm{k}$ $+\left(V_{\mathrm{BATR}}{ }^{2}-80^{2} \times(1 / 60 \mathrm{k}+1 / 216 \mathrm{k})\right.$

Table $79 \quad P_{\mathrm{O}}$ Calculation PEB 4266 (SLIC-P)

Operating Mode	Equation for P_{O} Calculation
PDH, PDRH, PDRHL, PDRR, PDRRL	$P_{\mathrm{O}}=0$ (output stage not working)
ACTL	$P_{\mathrm{O}}=\left(\left\|V_{\text {BATL }}\right\|-V_{\text {TIP/RING }}\right) \times I_{\text {Trans }}$
ACTH	$P_{\mathrm{O}}=\left(\left\|V_{\text {BATH }}\right\|-V_{\text {TIP/RING }}\right) \times I_{\text {Trans }}$
ACTR	$P_{\mathrm{O}}=\left(\left\|V_{\text {BATR }}\right\|-V_{\text {TIP/RING }}\right) \times I_{\text {Trans }}$
ROR, ROT	$P_{\mathrm{O}}=\left(\left\|V_{\text {BATR }}\right\|-V_{\text {TIPRRING }}\right) \times I_{\text {Trans }}$
HIR, HIT	$P_{\mathrm{O}}=V_{\text {Supply-TorR }} \times I_{\text {TorR }}$
HIRT	$P_{\mathrm{O}}=0$ (output stage not working)

7.3.6 Power Up Sequence PEB 4266 (SLIC-P)

The supply voltages of the SLIC-P have to be applied in the following order to the respective pin:

1) Ground to pins AGND and BGND
2) $V_{D D}$ to pin VDD
3) $V_{\text {BATR }}$ to pin VBATR
4) $V_{\text {BATH }}$ to pin VBATH and $V_{\text {BATL }}$ to pin VBATL

If the V_{DD} voltage is applied more than one second later as $V_{\mathrm{BATR}}, V_{\mathrm{BATH}}$ or V_{BATL} thermal damage of the SLIC-P can accur.
If the above sequence of the battery voltages can not be guaranteed, a diode (1N4007) has to be inserted in the VBATR line.

DuSLIC

Preliminary

7.4 Electrical Characteristics PEB 3265/PEB 3264/PEB 3264-2 (SLICOFI-2/-2S/-2S2)

7.4.1 Absolute Maximum Ratings

Parameter ${ }^{1}$)	Symbol	Limit Values		Unit	Test Condition
		min.	max.		
Supply pins (VDDi) referred to the corresponding ground pin (GNDi)	-	-0.3	4.6	V	-
Ground pins (GNDi) referred to any other ground pin (GNDj)	-	-0.3	0.3	V	-
Supply pins (VDDi) referred to any other supply pin (VDDj)	-	-0.3	0.3	V	-
Analog input and output pins	-	-0.3	3.6	V	$V_{\mathrm{DDA}}=3.3 \mathrm{~V}$, $V_{\mathrm{GNDA} \mathrm{B}}=0 \mathrm{~V}$
Digital input and output pins	-	-0.3	5.5	V	$V_{\mathrm{DDD}}=3.3 \mathrm{~V}$, $V_{\mathrm{GNDD}}=0 \mathrm{~V}$
DC input and output current at any input or output pin (free from	-	-	100	mA	-
latch-up)					
Storage temperature	T_{STG}	-65	125	${ }^{\circ} \mathrm{C}$	-
Ambient temperature under bias	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$	-
Power dissipation	P_{D}	-	1	W	-
ESD voltage	-	-	2	kV	Human body model $\left.{ }^{2}\right)$
ESD voltage, all pins	-	-	1	kV	SDM (Socketed Device Model) $)^{3)}$

1) $\mathrm{i}, \mathrm{j}=\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{R}, \mathrm{PLL}$
2) MIL STD 883D, method 3015.7 and ESD Assn. standard S5.1-1993.
3) EOS/ESD Assn. Standard DS5.3-1993.

Note: Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. Functional operation under these conditions is not guaranteed. Exposure to conditions beyond those indicated in the recommended operational conditions of this specification may affect device reliability.

7.4.2 Operating Range

$V_{\mathrm{GNDD}}=V_{\mathrm{GNDPLL}}=V_{\mathrm{GNDR}}=V_{\mathrm{GNDA} / \mathrm{B}}=0 \mathrm{~V}$

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Supply pins (VDDi) referred to the corresponding ground pin (GNDi) (i = A, B, D, R, PLL)		3.135	3.3	3.465	V	
Analog input pins referred to the ground pin (GNDj) (j = A, B)		0	-	3.3	V	$V_{\mathrm{DDj}}=3.3 \mathrm{~V}$
ITj, ILj, ITACj,						$V_{\mathrm{GNDj}}=0 \mathrm{~V}$

DuSLIC

Preliminary

7.4.3 Power Dissipation PEB 3265 (SLICOFI-2)

$T_{A}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise stated.
$V_{\mathrm{DDD}}=V_{\mathrm{DDA}}=V_{\mathrm{DDB}}=V_{\mathrm{DDR}}=V_{\mathrm{DDPLL}}=3.3 \mathrm{~V} \pm 5 \%$;
$V_{\mathrm{GNDA}}=V_{\mathrm{GNDB}}=V_{\mathrm{GNDR}}=V_{\mathrm{GNDD}}=V_{\mathrm{GNDPLL}}=0 \mathrm{~V}$

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
$V_{\text {DD }}$ supply current ${ }^{1)}$						
Sleep both channels	$I_{\text {DDSleep }}$	-	5	7	mA	(MCLK, PCLK $=2 \mathrm{MHz}$)
Power Down both channels	$I_{\text {DDPDown }}$	-	24	30	mA	-
Active one channel	$I_{\text {DDAct1 }}$	-	39	46	mA	without EDSP ${ }^{2}$
		-	43	50	mA	with 8 MIPS (DTMF detection)
		-	47	55	mA	with 16 MIPS
Active both channels	$I_{\text {DDAct2 }}$	-	$\begin{aligned} & 55 \\ & 70 \end{aligned}$	$\begin{aligned} & 70 \\ & 90 \end{aligned}$	mA mA	without EDSP with 32 MIPS
Power dissipation ${ }^{1)}$						
Sleep both channels	$P_{\text {DDSleep }}$	-	17	25	mW	(MCLK, PCLK $=2 \mathrm{MHz}$)
Power Down both channels	$P_{\text {DDPDown }}$	-	79	104	mW	-
Active one channel	$P_{\text {DDAct1 }}$	-	129	160	mW	without EDSP
		-	142	174	mW	with 8 MIPS (DTMF detection)
		-	155	191	mW	with 16 MIPS
Active both channels	$P_{\text {DDAct2 }}$	-	182	243	mW	without EDSP
		-	231	315	mW	with 32 MIPS

[^17]
Preliminary

7.4.4 Power Dissipation PEB 3264, PEB 3264-2 (SLICOFI-2S/-2S2)

$T_{A}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise stated.
$V_{\mathrm{DDD}}=V_{\mathrm{DDA}}=V_{\mathrm{DDB}}=V_{\mathrm{DDR}}=V_{\mathrm{DDPLL}}=3.3 \mathrm{~V} \pm 5 \%$;
$V_{\mathrm{GNDA}}=V_{\mathrm{GNDB}}=V_{\mathrm{GNDR}}=V_{\mathrm{GNDD}}=V_{\mathrm{GNDPLL}}=0 \mathrm{~V}$

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
V_{DD} supply current ${ }^{1)}$						
Power Down both channels	$I_{\text {DDPDown }}$	-	24	30	mA	-
Active one channel	I_{DDAct1}	-	39	46	mA	
Active both channels	$I_{\mathrm{DDAct} 2}$	-	55	70	mA	
Power dissipation						
Power Down both channels	P_{DDPDown}	-	79	104	mW	-
Active one channel	P_{DDAct1}	-	129	160	mW	
Active both channels	$P_{\text {DDAct2 }}$	-	182	243	mW	

1) Power dissipation and supply currents are target values

7.4.5 Power Up Sequence for Supply Voltages

The power up of VDDA, VDDB, VDDR, VDDD and VDDPLL should be performed simultaneously. No voltage should be supplied to any input or output pin before the VDD voltages are applied.

Preliminary

7.4.6 Digital Interface

$T_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated.
$V_{\mathrm{DD}}=V_{\mathrm{DDD}}=V_{\mathrm{DDA} / \mathrm{B}}=3.3 \mathrm{~V} \pm 5 \% ; V_{\mathrm{GNDD}}=V_{\mathrm{GNDA} / \mathrm{B}}=0 \mathrm{~V}$

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
For all input pins (including IO pins):						
Low-input pos.-going	$V_{\text {T+ }}$	-	1.70	1.82	V	see Figure 78
High-input neg.-going	$V_{\text {T- }}$	1.13	1.20	-	V	see Figure 78
Input hysteresis	V_{H}	0.48	0.5	0.56	V	$V_{\mathrm{H}}=V_{\mathrm{T}+}-V_{\mathrm{T}-}$
Spike rejection for reset	$t_{\text {rej }}$	1	-	4	$\mu \mathrm{s}$	-
For all output pins except DU, DXA, DXB, IO1, IO2 (including IO pins):						
Low-output voltage	$V_{\text {OL }}$	-	0.35	0.4	V	$I_{\mathrm{O}}=-3.6 \mathrm{~mA}$
High-output voltage	V_{OH}	2.7	3.0	-	V	$I_{\mathrm{O}}=3.3 \mathrm{~mA}$
for pins DU, DXA, DXB						
Low-output voltage	$V_{\text {OLDU }}$	-	0.35	0.4	V	$I_{\mathrm{O}}=-6 \mathrm{~mA}$
High-output voltage	$V_{\text {OHDU }}$	2.7	3.0	-	V	$I_{O}=5.3 \mathrm{~mA}$
for pins IO1, IO2						
Low-output voltage	$V_{\text {OLDU }}$	-	0.35	0.4	V	$I_{\mathrm{O}}=-50 \mathrm{~mA}$ (PEB 3265)
	$V_{\text {OLDU }}$	-	0.35	0.4	V	$\begin{aligned} & I_{\mathrm{O}}=-30 \mathrm{~mA} \\ & (\text { PEB } 3264 /-2) \end{aligned}$
High-output voltage	$V_{\text {OHDU }}$	2.7	3.0	-	V	$I_{\mathrm{O}}=3.3 \mathrm{~mA}$

Figure $78 \quad$ Hysteresis for Input Pins

DuSLIC

Preliminary

7.5 AC Transmission DuSLIC

The target figures in this specification are based on the subscriber linecard requirements. The proper adjustment of the programmable filters (transhybrid balancing, impedance matching, frequency-response correction) requires the consideration of the complete analog environment of the SLICOFI-2x device.
Functionality and performance is guaranteed for $T_{A}=0$ to $70^{\circ} \mathrm{C}$ by production testing. Extented temperature range operation at $-40^{\circ} \mathrm{C}<T_{A}<85^{\circ} \mathrm{C}$ is guaranteed by design, characterization and periodically sampling and testing production devices at the temperature extremes.

Test Conditions

$T_{A}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise stated.
$V_{\mathrm{DDD}}=V_{\mathrm{DDA}}=V_{\mathrm{DDB}}=V_{\mathrm{DDR}}=V_{\mathrm{DDPLL}}=3.3 \mathrm{~V} \pm 5 \%$;
$V_{\mathrm{GNDA}}=V_{\mathrm{GNDB}}=V_{\mathrm{GNDR}}=V_{\mathrm{GNDD}}=V_{\mathrm{GNDPLL}}=0 \mathrm{~V}$
$R_{\mathrm{L}}>600 \Omega ; C_{\mathrm{L}}<10 \mathrm{pF}$
$\mathrm{L}_{\mathrm{R}}=0 \ldots-10 \mathrm{dBr}$
$\mathrm{L}_{\mathrm{x}}=0 \ldots+3 \mathrm{dBr}$
$f=1014 \mathrm{~Hz}$; $0 \mathrm{dBm0}$; A-Law or μ-Law;

Figure 79 Signal Definitions Transmit, Receive
Note: To ensure the stability of the SLIC output buffer, $R_{\text {STAB }}$ and $C_{\text {STAB }}$ have to be set to the values $R_{\text {STAB }}=30 \Omega$ and $C_{\text {STAB }} \geq 300 \mathrm{pF}$ (1 nF in the test circuit Figure 79).
For electromagnetic compatibility $C_{\text {STAB }}$ must be set to the much higher value of $C_{S T A B}=15 \mathrm{nF}$ (see Figure 98).

Preliminary

The 0 dBm 0 definitions for Receive and Transmit are:
A $0 \mathrm{dBm0}$ AC signal in Transmit direction is equivalent to 0.775 Vrms (referred to an impedance of 600Ω).
A $0 \mathrm{dBm0}$ AC signal in Receive direction is equivalent to 0.775 Vrms (referred to an impedance of 600Ω).
$L_{R}=-10 \mathrm{dBr}$ means:
A signal of 0 dBm 0 at the digital input correspond to -10 dBm at the analog interface.
$L_{X}=+3 \mathrm{dBr}$ means:
A signal of 3 dBm at the analog interface correspond to 0 dBm 0 at the digital output.

Table 80 AC Transmission

Parameter	Symbol	Conditions	Limit Values			Unit
			min.	typ.	max.	
Longitudinal current capability AC	$I_{\text {II }}$	per active line	30	-	-	mArms
Overload level	$V_{\text {RT }}$	$300-4000 \mathrm{~Hz}$	2.3	-	-	Vrms

Transmission Performance (2-wire)

Return loss	RL	$200-3600 \mathrm{~Hz}$	26	-	-	dB

Insertion Loss (2-wire to 4-wire and 4-wire to 2-wire)

Gain accuracy - Transmit	G_{X}	$0 \mathrm{dBm0}, 1014 \mathrm{~Hz}$	-0.25	-	+0.25	dB
Gain accuracy - Receive	G_{R}	$0 \mathrm{dBm0}, 1014 \mathrm{~Hz}$	-0.25	-	+0.25	dB
Gain variation with temperature $-40 \ldots+85^{\circ} \mathrm{C}$	-	-	-	-	± 0.1	dB

Preliminary

Electrical Characteristics

Table 80 AC Transmission (cont'd)

Parameter	Symbol	Conditions	Limit Values		Unit	
			min.	typ.	max.	

Frequency Response (see Figure 81 and Figure 82)

Receive loss Frequency variation	$\mathrm{G}_{\text {RAF }}$	Reference frequency 1014 Hz , signal level 0 dBm 0 , $H_{\text {FRR }}=1$				
		$f=0-300 \mathrm{~Hz}$	-0.25	-	-	dB
		$f=300-400 \mathrm{~Hz}$	-0.25	-	0.9	dB
		$f=400-600 \mathrm{~Hz}$	-0.25	-	0.65	dB
		$f=600-2400 \mathrm{~Hz}$	-0.25	-	0.25	dB
		$f=2400-3000 \mathrm{~Hz}$	-0.25	-	0.45	dB
		$f=3000-3400 \mathrm{~Hz}$	-0.25	-	1.4	dB
		$f=3400-3600 \mathrm{~Hz}$	-0.25	-	-	dB
Transmit loss Frequency variation	$\mathrm{G}_{\mathrm{XAF}}$	Reference frequency 1014 Hz , signal level $0 \mathrm{dBm0}$, $H_{F R X}=1$				
		$f=0-200 \mathrm{~Hz}$	0	-	-	dB
		$f=200-300 \mathrm{~Hz}$	-0.25	-	-	dB
		$f=300-400 \mathrm{~Hz}$	-0.25	-	0.9	dB
		$f=400-600 \mathrm{~Hz}$	-0.25	-	0.65	dB
		$f=600-2400 \mathrm{~Hz}$	-0.25	-	0.25	dB
		$f=2400-3000 \mathrm{~Hz}$	-0.25	-	0.45	dB
		$f=3000-3400 \mathrm{~Hz}$	-0.25	-	1.4	dB
		$f=3400-3600 \mathrm{~Hz}$	-0.25	-	-	dB

Preliminary

Table 80 AC Transmission (cont'd)

Parameter	Symbol	Conditions	Limit Values		Unit	
			min.	typ.	max.	

Gain Tracking (see Figure 83 and Figure 84)

Transmit gain Signal level variation	$\mathrm{G}_{\mathrm{XAL}}$	Sinusoidal test method $f=1014 \mathrm{~Hz}$, reference level -10 dBm 0				
		$\begin{aligned} & \mathrm{VF} \mathrm{XI}=-55 \text { to } \\ & -50 \mathrm{dBm0} \end{aligned}$	-1.4	-	1.4	dB
		$\begin{aligned} & \mathrm{VF} \mathrm{XI}^{\prime}=-50 \text { to } \\ & -40 \mathrm{dBm0} \end{aligned}$	-0.5	-	0.5	dB
		$\begin{aligned} & \mathrm{VF} \mathrm{I}=-40 \text { to } \\ & +3 \mathrm{dBm0} \end{aligned}$	-0.25	-	0.25	dB
Receive gain Signal level variation	$\mathrm{G}_{\text {RAL }}$	Sinusoidal test method $f=1014 \mathrm{~Hz}$, reference level -10 dBm 0				
		$\begin{aligned} & \mathrm{D}_{\mathrm{R}} 0=-55 \text { to } \\ & -50 \mathrm{dBm0} \end{aligned}$	- 1.4	-	1.4	dB
		$\begin{aligned} & \mathrm{D}_{\mathrm{R}} 0=-50 \text { to } \\ & -40 \mathrm{dBm0} \end{aligned}$	-0.5	-	0.5	dB
		$\begin{aligned} & \mathrm{D}_{\mathrm{R}} 0=-40 \text { to } \\ & +3 \mathrm{dBm} 0 \end{aligned}$	-0.25	-	0.25	dB
Balance return loss		$300-3400 \mathrm{~Hz}$	26	-	-	dB

Group Delay (see Figure 85)

Transmit delay, absolute	$\mathrm{D}_{\text {XA }}$	$f=500-2800 \mathrm{~Hz}$	400	490	585	$\mu \mathrm{s}$
Receive delay, absolute	$\mathrm{D}_{\text {RA }}$	$f=500-2800 \mathrm{~Hz}$	290	380	475	$\mu \mathrm{s}$
Group delay, Receive and Transmit, relative to 1500 Hz	D_{XR}					
		$f=500-600 \mathrm{~Hz}$	-	-	300	$\mu \mathrm{s}$
		$f=600-1000 \mathrm{~Hz}$	-	-	150	$\mu \mathrm{S}$
		$f=1000-2600 \mathrm{~Hz}$	-	-	100	$\mu \mathrm{s}$
		$f=2600-2800 \mathrm{~Hz}$	-	-	150	$\mu \mathrm{s}$
		$f=2800-3000 \mathrm{~Hz}$	-	-	300	$\mu \mathrm{s}$
Overload compression A/D	OC	-	-	-	-	-

DuSLIC

Preliminary

Table 80 AC Transmission (cont'd)

Parameter	Symbol	Conditions	Limit Values			Unit
			min.	typ.	max.	

Longitudinal Balance (according to ITU-T O.9)

Longitudinal conversion loss	L-T	$300-1000 \mathrm{~Hz}$ DuSLIC-S/-E/-P DuSLIC-S2/-E2 3400 Hz DuSLIC-S/-E/-P DuSLIC-S2/-E2	$\begin{aligned} & 53 \\ & 60 \\ & 52 \\ & 56 \end{aligned}$	$\begin{aligned} & 58 \\ & 65 \\ & 55 \\ & 59 \end{aligned}$		dB dB dB dB
Input longitudinal interference loss	L-4	300-1000 Hz DuSLIC-S/-E/-P DuSLIC-S2/-E2 3400 Hz DuSLIC-S/-E/-P DuSLIC-S2/-E2	$\begin{aligned} & 53 \\ & 60 \\ & 52 \\ & 56 \end{aligned}$	$\begin{aligned} & 58 \\ & 65 \\ & 55 \\ & 59 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & - \end{aligned}$	dB dB dB dB
Transversal to longitudinal	T-L	$300-4000 \mathrm{~Hz}$	46	-	-	dB
Longitudinal signal generation	4-L	$300-4000 \mathrm{~Hz}$	46	-	-	dB

TTX Signal Generation

TTX signal	$V_{\text {TTX }}$	at 200Ω	-	-	2.5	Vrms

Out-of-Band Noise (Single Frequency Inband - $\mathbf{2 5} \mathbf{d B m 0}$)

Transversal	$V_{R T}$	$12 \mathrm{kHz}-200 \mathrm{kHz}$	-	-55	-50	dBm
Longitudinal	V_{RT}	$12 \mathrm{kHz}-200 \mathrm{kHz}$	-	-55	-50	dBm

Out-of-Band Idle Channel Noise at Analog Output

Measured with $\mathbf{3} \mathbf{~ k H z}$ Bandwidth

	V_{RT}	10 kHz	-	-	-50	dBm
	V_{RT}	300 kHz	-	-	-50	dBm
	V_{RT}	500 kHz	-	-	-70	dBm
	V_{RT}	1000 kHz	-	-	-70	dBm

DuSLIC
†echnologies

Table 80 AC Transmission (cont'd)

Parameter	Symbol	Conditions	Limit Values		Unit	
			min.	typ.	max.	

Out-of-Band Signals at Analog Output (Receive) (see Figure 86)

Out-of-Band Signals at Analog Input (Transmit) (see Figure 87)

Total Harmonic Distortion

2-wire to 4-wire	THD4	$-7 \mathrm{dBm0}$, $300-3400 \mathrm{~Hz}$	-	-50	-44	dB
4-wire to 2-wire	THD2	$-7 \mathrm{dBm0}$, $300-3400 \mathrm{~Hz}$	-	-50	-44	dB

Idle Channel Noise

2-wire port (receive) A-law	$N_{\text {RP }}$	Psophometric TTX disabled TTX enabled	-	-	-74	dBmp
μ-law	$N_{\text {RC }}$	C message TTX disabled TTX enabled	-	-	-	16
dBmp						

Preliminary

Table 80 AC Transmission (cont'd)

Parameter	Symbol	Conditions	Limit Values			Unit
			min.	typ.	max.	

Distortion (Sinusoidal Test Method, see Figure 89, Figure 88 and Figure 90)

Signal to total distortion Transmit	STD $_{\mathrm{x}}$	Output connection: $\mathrm{L}_{\mathrm{x}}=0 \mathrm{dBr}$ $f=1014 \mathrm{~Hz}$ (C message-weighted for μ-law, psophometrically weighted for A-law)				
		- $45 \mathrm{dBm0}$	22	-	-	dB
		- $40 \mathrm{dBm0}$	27	-	-	dB
		- $30 \mathrm{dBm0}$	34	-	-	dB
		-20 dBm0	36	-	-	dB
		- $10 \mathrm{dBm0}$	36	-	-	dB
		$3 \mathrm{dBm0}$	36	-	-	dB
Signal to total distortion Receive	STD ${ }_{\text {R }}$	Input connection: $\mathrm{L}_{\mathrm{R}}=-7 \mathrm{dBr}$ $f=1014 \mathrm{~Hz}$ (C message-weighted for μ-law, psophometrically weighted for A-law)				
		- $45 \mathrm{dBm0}$	17	-	-	dB
		-40 dBm0	22	-	-	dB
		-30 dBm0	31	-	-	dB
		-20 dBm0	35.5	-	-	dB
		- $10 \mathrm{dBm0}$	36	-	-	dB
		$3 \mathrm{dBm0}$	36	-	-	dB
Signal to total distortion Receive	STD ${ }_{\text {R }}$	Input connection: $\mathrm{L}_{\mathrm{R}}=0 \mathrm{dBr}$ $f=1014 \mathrm{~Hz}$ (C message-weighted for μ-law, psophometrically weighted for A-law)				
		- $45 \mathrm{dBm0}$	22	-	-	dB
		-40 dBm0	27	-	-	dB
		- $30 \mathrm{dBm0}$	34	-	-	dB
		-20 dBm0	36	-	-	dB
		-10 dBm0	36	-	-	dB
		$3 \mathrm{dBm0}$	36	-	-	dB

Preliminary

Electrical Characteristics

Table 80 AC Transmission (cont'd)

Parameter	Symbol	Conditions	Limit Values			Unit
			min.	typ.	max.	

Power Supply Rejection Ratio

$V_{\mathrm{DD}} / V_{\mathrm{RT}}$ (SLIC)	PSRR	$300-3400 \mathrm{~Hz}$ ACTL, ACTH	33	-	-	dB
$V_{\mathrm{DD} /} / V_{\mathrm{RT}}$ $(S L I C O F I-2 x)$ $\mathrm{i}=\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{R}, \mathrm{PLL}$	PSRR	$300-3400 \mathrm{~Hz}$ ACTL, ACTH	27	-	-	dB
$V_{\mathrm{BATH}} / V_{\mathrm{RT}}$, $V_{\mathrm{BATL}} / V_{\mathrm{RT}}$ (SLIC)	PSRR	$300-3400 \mathrm{~Hz}$	33	-	-	dB

Figure 80 Overload Compression

Preliminary

7.5.1 Frequency Response

Figure 81 Frequency Response Transmit
Reference frequency 1 kHz , signal level $0 \mathrm{dBm0}, \mathrm{H}_{\mathrm{FRX}}=1$

Figure 82 Frequency Response Receive
Reference frequency 1 kHz , signal level $0 \mathrm{dBm0}, \mathrm{H}_{\mathrm{FRR}}=1$

Preliminary

7.5.2 Gain Tracking (Receive or Transmit)

The gain deviations stay within the limits in the figures below.

Figure 83 Gain Tracking Receive
Measured with a sine wave of $f=1014 \mathrm{~Hz}$, the reference level is $-10 \mathrm{dBm0}$.

Figure 84 Gain Tracking Transmit
Measured with a sine wave of $f=1014 \mathrm{~Hz}$, the reference level is $-10 \mathrm{dBm0}$.

Preliminary

7.5.3 Group Delay

Minimum delays occure when the SLICOFI-2x is operating with disabled Frequency Response Receive and Transmit filters (bit FRR-DIS and bit FRX-DIS in register BCR4 set to 1) including the delay through A / D and D / A converters. Specific filter programming may cause additional group delays. Absolute Group delay also depends on the programmed time slot.
Group delay distortion stays within the limits in the figures below.
Table 81 Group Delay Absolute Values: Signal level 0 dBm 0

Parameter	Symbol	Limit Values			Unit	Test Condition	Fig.
		min.	typ.	max.			
Transmit delay	D_{XA}	400	490	585	$\mu \mathrm{~s}$	$f=1.5 \mathrm{kHz}$	-
Receive delay	D_{RA}	290	380	475	$\mu \mathrm{~s}$	$f=1.5 \mathrm{kHz}$	-

Figure 85 Group Delay Distortion Receive and Transmit
Signal level 0 dBm 0

Preliminary

Electrical Characteristics

7.5.4 Out-of-Band Signals at Analog Output (Receive)

With a 0 dBm 0 sine wave with a frequency of $f(300 \mathrm{~Hz}$ to 3.4 kHz$)$ applied to the digital input, the level of any resulting out-of-band signal at the analog output will stay at least X dB below a $0 \mathrm{dBm0}, 1 \mathrm{kHz}$ sine wave reference signal at the analog output.

Figure 86 Out-of-Band Signals at Analog Output (Receive)

Preliminary

Electrical Characteristics

7.5.5 Out-of-Band Signals at Analog Input (Transmit)

With a $0 \mathrm{dBm0}$ out-of-band sine wave signal with a frequency of $f(<100 \mathrm{~Hz}$ or 3.4 kHz to 100 kHz) applied to the analog input, the level of any resulting frequency component at the digital output will stay at least X dB below a $0 \mathrm{dBm0}, 1 \mathrm{kHz}$ sine wave reference signal at the analog input. ${ }^{1)}$

Figure 87 Out-of-Band Signals at Analog Input (Transmit)

[^18]
Preliminary

Electrical Characteristics

7.5.6 Total Distortion Measured with Sine Wave

The signal to total distortion ratio exceeds the limits in the following figure:

Figure 88 Total Distortion Transmit ($\mathrm{L}_{\mathrm{x}}=\mathbf{0 d B r}$)
Measured with a sine wave of $f=1014 \mathrm{~Hz}$ (C message-weighted for μ-law, psophometrically weighted for A-law).

Figure 89 Total Distortion Receive ($\mathrm{L}_{\mathrm{R}}=\mathbf{- 7} \mathbf{~ d B r}$)
Measured with a sine wave of $f=1014 \mathrm{~Hz}$ (C message-weighted for μ-law, psophometrically weighted for A-law).

Preliminary

Figure 90 Total Distortion Receive ($\mathrm{L}_{\mathbf{R}}=0 \mathrm{dBr}$)
Measured with a sine wave of $f=1014 \mathrm{~Hz}$ (C message-weighted for μ-law, psophometrically weighted for A -law).

DuSLIC

Preliminary

7.6 DC Characteristics

$T_{A}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise stated.
Table 82 DC Characteristics

Parameter	Symbol	Conditions	Limit Values			Unit
			min.	typ.	max.	

Line Termination Tip, Ring

Sinusoidal Ringing						
Max. ringing voltage	$V_{\text {RNG0 }}$	$V_{\mathrm{HR}}-V_{\mathrm{BATH}}=150 \mathrm{~V}$, $V_{\mathrm{DC}}=20 \mathrm{~V}$ for ring trip (DuSLIC-E/-E2) $-V_{\text {BATR }}=150 \mathrm{~V}$, $V_{\mathrm{DC}}=20 \mathrm{~V}$ for ring trip (DuSLIC-P) $V_{\mathrm{HR}}-V_{\mathrm{BATH}}=90 \mathrm{~V}$, $V_{\mathrm{DC}}=20 \mathrm{~V}$ for ring trip (DuSLIC-S/-S2)	85 85 45			Vrms Vrms Vrms
Output impedance	$R_{\text {OUT }}$	SLIC output buffer and $R_{\text {STAB }}$	-	61	-	Ω
Harmonic distortion	THD	-	-	-	5	\%
Output current limit	\| $I_{\mathrm{R}, \text { max. }}$ \|, $\mid I_{T}$, max. \mid	Modes: Active SLIC-E/-E2/-S/-S2: SLIC-P:	$\begin{aligned} & 80 \\ & 70 \end{aligned}$	$\begin{aligned} & \hline- \\ & 105 \\ & 90 \end{aligned}$	$\begin{aligned} & 130 \\ & 110 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Loop current gain accuracy	-	-	-	-	3	\%
Loop current offset error ${ }^{1}$	-	-	-0.75		0.75	mA
Loop open resistance TIP to $V_{\text {BGND }}$	$R_{\text {TG }}$	Modes: Power Down $I_{\mathrm{T}}=2 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C}$	-	5	-	k Ω
Loop open resistance RING to $V_{\text {BAT }}$	$R_{\text {BG }}$	Modes: Power Down $I_{\mathrm{R}}=2 \mathrm{~mA}, T_{A}=25^{\circ} \mathrm{C}$	-	5	-	k Ω
Ring trip function	-	$-\quad$	-	-	-	-
Ring trip DC voltage	-	SLIC-E/-E2/-S/-S2: SLIC-P: balanced SLIC-P: unbalanced	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$V_{\text {BatR }} / 2$	$\begin{aligned} & 30 \\ & 30 \\ & - \end{aligned}$	$\begin{aligned} & \text { Vdc } \\ & \text { Vdc } \\ & \text { Vdc } \end{aligned}$

DuSLIC

Preliminary			Electrical Characteristics			
Table 82 DC Characteristics (cont'd)						
Parameter	Symbol	Conditions	Limit Values			Unit
			min.	typ.	max.	
Ring trip detection time delay	-	-	-	-	2	pe- riods
Ring off time delay	-	-	-	-	2	periods

${ }^{1)}$ can be reduced with current offset error compensation described in Chapter 4.8.2.8

DuSLIC

Preliminary

7.7 DuSLIC Timing Characteristics

$T_{A}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise stated.

7.7.1 MCLK/FSC Timing

Figure 91 MCLK / FSC-Timing

Parameter	Symbol	Limit Values			
		Unit			
	min.	typ.	max.		
Period MCLK ${ }^{1)}$	$t_{\text {MCLK }}$				ns
$512 \mathrm{kHz} \pm 100 \mathrm{ppM}$		1952.93	1953.13	1953.32	
$1536 \mathrm{kHz} \pm 100 \mathrm{ppM}$		650.98	651.04	651.11	
$2048 \mathrm{kHz} \pm 100 \mathrm{ppM}$		488.23	488.28	488.33	
$4096 \mathrm{kHz} \pm 100 \mathrm{ppM}$		244.116	244.141	244.165	
$7168 \mathrm{kHz} \pm 100 \mathrm{ppM}$		139.495	139.509	139.523	
$8192 \mathrm{kHz} \pm 100 \mathrm{ppM}$		122.058	122.070	122.082	
MCLK high time	$t_{\text {MCLKh }}$	$0.4 \times t_{\text {MCLK }}$	$0.5 \times t_{\text {MCLK }}$	$0.6 \times t_{\text {MCLK }}$	$\mu \mathrm{s}$
Period FSC ${ }^{1)}$	$t_{\text {FSC }}$	-	125	-	$\mu \mathrm{s}$
FSC setup time	$t_{\text {FSC_s }}$	10	50	-	ns
FSC hold time	$t_{\text {FSC_h }}$	40	50	-	ns
FSC (or PCM) jitter		$-0.2 \times t_{\text {MCLK }}$		$+0.2 \times t_{\text {MCLK }}$	ns
time					

[^19]DuSLIC

Preliminary

7.7.2 PCM Interface Timing

7.7.2.1 Single-Clocking Mode

Figure 92 PCM Interface Timing - Single-Clocking Mode

Parameter	Symbol	Limit Values			Unit
		min.	typ.	max.	
Period PCLK ${ }^{1)}$	$t_{\text {PCLK }}$	$1 / 8192$	$1 /\left(\mathrm{n}^{*} 64\right)$ with $2 \leq \mathrm{n} \leq 128$	$1 / 128$	ms
PCLK high time	$t_{\text {PCLKh }}$	$0.4 \times t_{\text {PCLK }}$	$0.5 \times t_{\text {PCLK }}$	$0.6 \times t_{\text {PCLK }}$	$\mu \mathrm{s}$
Period FSC ${ }^{1)}$	$t_{\text {FSC }}$	-	125	-	$\mu \mathrm{s}$
FSC setup time	$t_{\text {FSC_s }}$	10	50	-	ns
FSC hold time	$t_{\text {FSC_h }}$	40	50	-	ns
DRA/B setup time	$t_{\text {DR_s }}$	10	50	-	ns
DRA/B hold time	$t_{\text {DR_h }}$	10	50	-	ns
DXA/B delay time ${ }^{2)}$	$t_{\text {dDX }}$	25	-	$t_{\text {dDX_min }}+$ $0.4 \times C_{\text {Load }}[\mathrm{pF}]$	ns

Parameter	Symbol	Limit Values			Unit
		min.	typ.	max.	
DXA/B delay time to high Z	$t_{\text {dDXhz }}$	25	-	50	ns
TCA/B delay time on	$t_{\text {dTCon }}$	25	-	$\begin{aligned} & \hline t_{\text {dTCon } \min }+ \\ & 0.4 \times \bar{C}_{\text {Load }}[\mathrm{pF}] \end{aligned}$	ns
TCA/B delay time off	$t_{\text {dTCoff }}$	25	-	$t_{\text {dTCoff_min }}+$ ($R_{\text {Pullup }}[\mathrm{K} \Omega] \times$ $\left.C_{\text {Load }}[\mathrm{pF}]\right)$	ns

1) The PCLK frequency must be an integer multiple of the FSC frequency.
${ }^{2)}$ All delay times are made up by two components: an intrinsic time (min-time), caused by internal processings, and a second component caused by external circuitry ($C_{\text {Load }}, R_{\text {Pullup }}>1.5 \mathrm{k} \Omega$)

7.7.2.2 Double-Clocking Mode

Figure 93 PCM Interface Timing - Double-Clocking Mode

DuSLIC

Electrical Characteristics

Parameter	Symbol	Limit Values			Unit
		min.	typ.	max.	
Period PCLK ${ }^{1}$)	$t_{\text {PCLK }}$	1/8192	$\begin{aligned} & 1 /(n * 64) \text { with } \\ & 2 \leq n \leq 64 \end{aligned}$	1/256	ms
PCLK high time	$t_{\text {PCLKh }}$	$0.4 \times t_{\text {PCLK }}$	$0.5 \times t_{\text {PCLK }}$	$0.6 \times t_{\text {PCLK }}$	$\mu \mathrm{s}$
Period FSC ${ }^{1)}$	$t_{\text {FSC }}$	-	125	-	$\mu \mathrm{s}$
FSC setup time	$t_{\text {FSC_s }}$	10	50	-	ns
FSC hold time	$t_{\text {FSC_h }}$	40	50	-	ns
DRA/B setup time	$t_{\text {DR_s }}$	10	50	-	ns
DRA/B hold time	$t_{\text {DR_h }}$	10	50	-	ns
DXA/B delay time ${ }^{2)}$	t_{dDX}	25	-	$\begin{aligned} & t_{\mathrm{dDX}} \min + \\ & 0.4 \times C_{\mathrm{Load}}[\mathrm{pF}] \end{aligned}$	ns
DXA/B delay time to high Z	$t_{\text {dDXhz }}$	25	-	50	ns
TCA/B delay time on	$t_{\text {dTCon }}$	25	-	$\begin{aligned} & t_{\mathrm{dTCon}}^{\mathrm{dT}} \mathrm{~min}^{+} \\ & 0.4 \times \bar{C}_{\text {Load }}[\mathrm{pF}] \end{aligned}$	ns
TCA/B delay time off	$t_{\text {dTCoff }}$	25	-	$t_{\text {dTCoff_min }}{ }^{+}$ ($R_{\text {Pullup }}[\mathrm{k} \Omega$] \times $\left.C_{\text {Load }}[\mathrm{pF}]\right)$	ns

1) The PCLK frequency must be an integer multiple of the FSC frequency.
2) All delay times are made up by two components: an intrinsic time (min-time), caused by internal processings, and a second component caused by external circuitry ($C_{\text {Load }}, R_{\text {Pullup }}>1.5 \mathrm{k} \Omega$)

DuSLIC

Preliminary

7.7.3 Microcontroller Interface Timing

Figure 94 Microcontroller Interface Timing

Parameter	Symbol	Limit Values			Unit
		min.	typ.	max.	
Period DCLK	$t_{\text {DCLK }}$	$1 / 8192$	-	-	ms
DCLK high time	$t_{\text {DCLKh }}$	-	$0.5 \times$ $t_{\text {DCLK }}$	-	$\mu \mathrm{s}$
CS setup time	$t_{\text {Cs_s }}$	10	50	-	ns
CS hold time	$t_{\text {Cs_h }}$	30	50	-	ns
DIN setup time	$t_{\text {DIN_s }}$	10	50	-	ns
DIN hold time	$t_{\text {DIN_h }}$	10	50	-	ns
DOUT delay time ${ }^{1)}$	$t_{\text {dDOUT }}$	30	-	$t_{\text {dDOUT_min }}+$ $0.4 \times C_{\text {Load }}[\mathrm{pF}]$	ns
DOUT delay time to high Z	$t_{\text {dDouThz }}$	30	-	50	ns
1) All delay times are made up by two components: an intrinsic time (min-time $), ~ c a u s e d ~ b y ~ i n t e r n a l ~ p r o c e s s i n g s, ~$					
and a second component caused by external circuitry $\left(C_{\text {Load }}\right)$					

DuSLIC

Preliminary

7.7.4 IOM-2 Interface Timing

7.7.4.1 Single-Clocking Mode

Figure 95 IOM-2 Interface Timing - Single-Clocking Mode

Parameter	Symbol	Limit Values			Unit
		min.	typ.	max.	
Period DCL ${ }^{1)}$	$t_{\text {DCL }}$	-	1/2048	-	ms
DCL high time	$t_{\text {DCLh }}$	$0.4 \times t_{\text {DCL }}$	$0.5 \times t_{\text {DCL }}$	$0.6 \times t_{\text {DCL }}$	$\mu \mathrm{s}$
Period FSC ${ }^{1)}$	$t_{\text {FSC }}$	-	125	-	$\mu \mathrm{s}$
FSC setup time	$t_{\text {FSC_s }}$	10	50	-	ns
FSC hold time	$t_{\text {FSC_h }}$	40	50	-	ns
DD setup time	$t_{\text {DD_s }}$	10	50	-	ns
DD hold time	$t_{\text {DD_h }}$	10	50	-	ns
DU delay time ${ }^{2)}$	t_{dDX}	25	-	$\begin{aligned} & t_{\mathrm{dDX}} \min + \\ & 0.4 \times C_{\text {Load }}[\mathrm{pF}] \end{aligned}$	ns
DU delay time to high Z	$t_{\text {dDXhz }}$	25	-	50	ns

[^20]
7.7.4.2 Double-Clocking Mode

Figure 96 IOM-2 Interface Timing - Double-Clocking Mode

Parameter	Symbol	Limit Values			Unit
		min.	typ.	max.	
Period DCL ${ }^{1)}$	$t_{\text {DCL }}$	-	1/4096	-	ms
DCL high time	$t_{\text {DCLh }}$	$0.4 \times t_{\mathrm{DCL}}$	$0.5 \times t_{\text {DCL }}$	$0.6 \times t_{\text {DCL }}$	$\mu \mathrm{s}$
Period FSC ${ }^{1)}$	$t_{\text {FSC }}$	-	125	-	$\mu \mathrm{s}$
FSC setup time	$t_{\text {FSC }}$	10	50	-	ns
FSC hold time	$t_{\text {FSC_h }}$	40	50	-	ns
DD setup time	$t_{\text {DD_s }}$	10	50	-	ns
DD hold time	$t_{\text {DD_h }}$	10	50	-	ns
DU delay time ${ }^{2)}$	$t_{\text {dDX }}$	25	-	$\begin{aligned} & t_{\mathrm{dDX}}^{\mathrm{dD}} \text { min }+ \\ & 0.4 \times C_{\text {Load }}[\mathrm{pF}] \end{aligned}$	ns
DU delay time to high Z	t_{dDXhz}	25	-	50	ns

[^21]
Preliminary

8 Application Circuits

Application circuits are shown for internal ringing with DuSLIC-E/-E2/-S/-P (balanced and unbalanced) and for external unbalanced ringing with DuSLIC-E/-E2/-S/-S2/-P for one line. Channel A and the SLIC have to be duplicated in the circuit diagrams to show all components for 2 channels.

8.1 Internal Ringing (Balanced/Unbalanced)

Internal balanced ringing is supported up to 85 Vrms for DuSLIC-E/-E2/-P and up to 45 Vrms for DuSLIC-S. Internal unbalanced ringing is supported for SLIC-P with ringing amplitudes up to 50 Vrms without any additional external components. Off-hook detection and ring trip detection are also fully internal in the DuSLIC chip set.

Preliminary

8.1.1 Circuit Diagram Internal Ringing

Figure 97 Application Circuit, Internal Ringing (Balanced \& Unbalanced)
As sown in Figure 97 both balanced and unbalanced internal ringing uses the same line circuit.
Note: Only the codec/SLIC combinations shown in Table 1 "DuSLIC Chip Sets" on Page 16 are possible.

Preliminary

Application Circuits

8.1.2 Protection Circuit for SLIC-E/-E2 and SLIC-S

A typical overvoltage protection circuit for SLIC-E/S is shown in Figure 98. Other proved application schemes are available on request.

Figure 98 Typical Overvoltage Protection for SLIC-E/-E2 and SLIC-S
The LCP02 (from STM) protects against overvoltage strikes exceeding V_{HR} and $\mathrm{V}_{\text {BATH }}$. Protection resistors must be rated for lightning pulses. In case of power contact, protection resistors must become high impedance or additional fuses are needed.

Preliminary

8.1.3 Protection Circuit for SLIC-P

A typical protection circuit for SLIC-P is shown in Figure 99. Other proved application schemes are available on request.

Figure 99 Typical Overvoltage Protection for SLIC-P
The gate trigger voltage of the Battrax B1160CC (Teccor) can be set down to the battery voltage of $V_{\text {BATR }}(-150 \mathrm{~V}$).
Protection resistors must be rated for lightning pulses. In case of power contact, protection resistors must become high impedance or additional fuses are needed.

DuSLIC

Preliminary

Application Circuits

8.1.4 Bill of Materials (Including Protection)

Table 83 shows the external passive components needed for a dual channel solution consisting of one SLICOFI-2/-2S and two SLIC-E/-E2/-S/-P.

Table 83 External Components in Application Circuit for DuSLIC-E/-E2/-S/-P

No.	Symbol	Value	Unit	Tolerance	Rating	$\begin{array}{\|l\|} \hline \text { DuSLIC } \\ \hline-E /-E 2 /-S \end{array}$	DuSLIC
2	$R_{\text {IT1 }}$	470	Ω	1%		x	x
2	$R_{\text {IT2 }}$	680	Ω	1%		x	x
2	$R_{\text {IL }}$	1.6	k Ω	1 \%		x	x
4	$R_{\text {STAB }}$	30	Ω	0.1 \%		x	x
4	$R_{\text {PROT }}$	20	Ω	0.1 \%		x	x
4	$C_{\text {STAB }}$	15	nF	10%	see ${ }^{1)}$	x	x
2	$C_{\text {DC }}$	120	nF	10%	10 V	x	x
2	$C_{\text {ITAC }}$	680	nF	10%	10 V	x	x
2	$C_{\text {VCMIT }}$	680	nF	10%	10 V	x	x
1	$C_{\text {REF }}$	68	nF	20 \%	10 V	x	X
2	$C_{\text {EXT }}$	470	nF	20%	10 V	x	x
12	C_{1}	100	nF	10 \%		x	x
2	Battrax	B1160CC	-	-	according to supply voltage $V_{\text {BATR }}$		x
2	Diodebridge	MB2S					x
2	STM	LCP-02				x	
4	C_{P}	220	nF	20 \%	according to supply voltage $V_{\text {BATH }}$ and $V_{\text {HR }}$	x	

${ }^{1)}$ according to the highest used battery voltage $\mid V_{\text {BATR }} I$ for SLIC-P and $I V_{\text {HR }} I$ or $\left|V_{\text {BATH }}\right|$ for SLIC-E/-E2/-S
For handling higher electromagnetic compatibility (EMC) requirements, additional effort in the circuit design may be necessary, e.g., a current-compensated choke of $470 \mu \mathrm{H}$ in the Ring/Tip lines.
Additionally to the capacitors C_{1} a $22 \mu \mathrm{~F}$ capacitor per 8 Ring/Tip lines is recommended for buffering the supply voltages.

Preliminary

8.2 External Unbalanced Ringing with DuSLIC-E/-E2/-S/-S2/-P

External unbalanced ringing applications are shown for a standard solution (see Figure 100) and for a solution dedicated to higher loop lenghts (see Figure 101).
Note: Only the codec/SLIC combinations shown in Table 1 "DuSLIC Chip Sets" on Page 16 are possible.

Figure 100 Application Circuit, External Unbalanced Ringing
This circuit senses the ring current on only one line (Tip line). It is therefore restricted to applications with low longitudinal influence (short lines).

Preliminary

Figure 101 Application Circuit, External Unbalanced Ringing for Long Loops
For handling higher electromagnetic compatibility (EMC) requirements, additional effort in the circuit design may be necessary, e.g., a current-compensated choke of $470 \mu \mathrm{H}$ in the Ring/Tip lines.
This circuit senses the ring current in both Tip and Ring lines. Longitudinal influence is cancelled out. This circuit therefore is recommended for long line applications.

DuSLIC

Preliminary

8.3 DuSLIC Layout Recommendation

- For each of the supply pins of SLICOFI-2x and SLIC, 100 nF capacitors should be used. These capacitors should be placed as close as possible to the supply pin of the associated ground/supply pins
- SLICOFI-2x and SLIC should be placed as close to each other as possible.
- SLICOFI-2x and SLIC should be placed in such way that lines ACP, ACN, DCP, DCN, IT, ITAC are as short as possible
- ACP/ACN lines should be placed parallel and symmetrical; via holes should be avoided ACP/ACN lines should be run above a GND plane;
- DCP/DCN lines should be placed parallel and symmetrical; via holes should be avoided
DCP/DCN lines should be run above a GND plane
- VCMITA and VCM should be connected directly (VCMITA via $C_{\text {VCMITA }}$) at resistor $R_{\text {IT2A }}(680 \Omega)$
- VCMITB and VCM should be connected directly (VCMITB via $C_{\text {VCMITB }}$) at resistor $R_{\text {IT2B }}(680 \Omega)$
- Use separate traces for connecting VCM/VCMITA and VCM/VCMITB these two VCM traces should be connected directly at the VCM pin of SLICOFI-2x
- In case of a multilayer board it is recommended to use one common ground layer (AGND, BGND, GNDD, GNDA, GNDB, GNDPLL connected together and share one ground layer)
- In case of a two-layer board a common ground should be used for AGND, BGND, GNDD, GNDA, GNDB and GNDPLL. Ground traces should be layed out as large as possible. Connections to and from groud pins should be as short as possible. Any unused area of the board should be filled with ground (copper pouring)
- The connection of GND, V_{H} and V_{BAT} to the protection devices should be lowimpedance in order to avoid, e.g., a GND shift due to the high impulse currents in case of an overvoltage strike.
- Tip/ring traces from the SLIC should be symmetrical

Preliminary

Figure 102 DuSLIC Layout Recommendation

Preliminary

$9 \quad$ Package Outlines

P-DSO-20-5
 (Plastic Dual Small Outline)

Figure 103 PEB426x (SLIC-S/-S2, SLIC-E/-E2, SLIC-P)

Note: The SLIC is only available in a P-DSO-20-5 package with heatsink on top. Please note that the pin counting for the P-DSO-20-5 package is clockwise (top view) in contrast to similar type packages which mostly count counterclockwise.

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our data book "Package Information".
SMD = Surface Mounted Device

Preliminary

P-MQFP-64-1

(Plastic Metric Quad Flat Package)

1) Does not include plastic or metal protrusion of 0.25 max. per side

Figure 104 PEB 3264, PEB 3264-2, PEB 3265 (SLICOFI-2x)

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our data book "Package Information".
SMD = Surface Mounted Device

$\underbrace{0}_{\text {techn }}$	on	DuSLIC
Prelimin		Glossary
10	Glossary	
10.1	List of Abbreviations	
ACTL	Active with $V_{\text {BATL }}$ and $V_{\text {BGND }}$	
ACTH	Active with $V_{\text {BATH }}$ and $V_{\text {BGND }}$	
ACTR	Active with $V_{\text {BATR }}$ and V_{GND} or V_{HR} and V_{BATH}	
ADC	Analog Digital Converter	
AR	Attenuation Receive	
AX	Attenuation Transmit	
BP	Band Pass	
CMP	Compander	
Codec	Coder Decoder	
COP	Coefficient Operation	
CRAM	Coefficient RAM	
DAC	Digital Analog Converter	
DSP	Digital Signal Processor	
DUP	Data Upstream Persistence Counter	
DuSLIC	Dual Channel Subscriber Line Interface Concept	
EXP	Expander	
FRR	Frequency Response Receive Filter	
FRX	Frequency Response Transmit Filter	
LSSGR	Local area transport access Switching System Generic Requirements	
PCM	Pulse Code Modulation	
PDH	Power Down High Impedance	

10 Glossary

10.1 List of Abbreviations

Preliminary	Glossary
PDRHL	Power Down Load Resistive on $V_{\text {BATH }}$ and $V_{\text {BGND }}$
PDRRL	Power Down Load Resisitve on $V_{\text {BATR }}$ and $V_{\text {BGND }}$
PDRH	Power Down Resistive on $V_{\text {BATH }}$ and $V_{\text {BGND }}$
PDRR	Power Down Resistive on $V_{\text {BATR }}$ and $V_{\text {BGN }}$
POFI	Post Filter
PREFI	Antialiasing Pre Filter
RECT	Rectifier (Testloops, Levelmetering)
SLIC	Subscriber Line Interface Circuit (synonym for all versions)
SLIC-S/-S2	Subscriber Line Interface Circuit Standard Feature Set PEB 4264/-2
SLIC-E/-E2	Subscriber Line Interface Circuit Enhanced Feature Set PEB 4265/-2
SLIC-P	Subscriber Line Interface Circuit Enhanced Power Management PEB 4266
SLICOFI-2x	Dual Channel Signal Processing Subscriber Line Interface Codec Filter (synonym for all versions)
SLICOFI-2	Dual Channel Signal Processing Subscriber Line Interface Codec Filter PEB 3265
SLICOFI-2S/-2S2	Dual Channel Signal Processing Subscriber Line Interface Codec Filter PEB 3264/-2
SOP	Status Operation
TG	Tone Generator
TH	Transhybrid Balancing
THFIX	Transhybrid Balancing Filter (fixed)
TS	Time Slot
TTX	Teletax

DuSLIC

Preliminary

11 Index

Numerics

170V technology 52

A

Active 93, 157, 160, 161
Active High 78, 80, 82, 84, 86
Active Low 78, 80, 82, 84, 86
Active Ring 78, 80, 82, 84, 87, 154, 157, 160
Active State 59, 95
Active with HIR 78, 81, 83, 85, 87
Active with HIT 78, 80, 83, 85, 87
Active with Metering 78, 81, 164, 262, 312

B

Balanced ringing 53, 367
Battery feed 33

C

Caller ID 19, 34, 66, 71, 180
Central Office 22
Coding 33
Constant Current Zone 42
Constant Voltage Zone 44
COP-command 164, 165, 224, 308
CRAM coefficients 226,310

D

DC characteristic 45
Digital Loop Carrier 22
DTMF 34, 71, 178, 198, 200, 228, 294
DTMF decoder 19,34
DTMF generator 19, 34,63
DuSLICOS 33, 224, 308

E

Enhanced Digital Signal Processor 174, 180
MIPS Requirements 71

Index

POP Commands 228

Power Dissipation 340
External Components
DuSLIC-P 371
External conference 75
External Ringing 31, 55, 107, 192, 289

F

Fiber in the Loop
22
First Command Byte 163, 264, 265, 314, 315
Frequency response 33,345
FSK 34

G

Ground Key 60, 175, 275
Ground Start 81

H

Hybrid 33
Hybrid balance 33

I

Impedance matching 33,51
Intelligent NT 22
Internal conference 75
IOM-2 interface 29, 138, 145, 262, 265, 312, 315
ISDN Terminal Adapters 22

L

Layout Recommendation 374
Levelmeter
AC 117
DC 112
TTX 121
LIN mode 77
LIN16 mode 77
Line Echo Cancellation 34, 69, 71, 199
POP Commands 239
Line Resistance 102, 125
Line Testing 107

DuSLIC

Index
SLIC-P 333
SLIC-S/-S2 320
Power Down 93, 164, 190, 262, 312
Power Down High Impedance 78, 80, 156, 159, 160, 164, 193, 262, 290, 312
Power Down Resistive 78, 80, 82, 84, 86, 153, 156, 159, 160
Power Down state 60, 75, 95, 154, 160, 161, 218, 220, 302, 304
Power Management 17, 19, 80, 93
Private Branch Exchange 22

R

Ramp generator 72, 83, 85, 87
Read command 143
Receive gain 33
Receive path 50, 199, 218, 220, 222, 302, 304, 306
Register Description Example 165
Reset 88, 164
Status 177, 277
Resistive Zone 43
Ring on Ring 80, 160
Ring on Tip 80, 160
Ring Pause 79, 81, 83, 85, 87
Ring Trip 52, 81, 358
Ringer Equivalence Number 52
Ringing $33,52,78,80,82,85,87,94$, 160, 164, 262, 312

S

Second Command Byte 143, 165, 264, 265, 314, 315
Signaling 33, 59, 65, 265, 315
Sleep $78,79,84,86,164,262,312,340$
SLIC Interface 153, 156
Soft reversal 62, 192, 289
SOP-command 164, 167, 267
Supervision 33, 59

T

Teletax Metering 34

Test Loops 132
Three-party Conferencing 74, 194
Time Slot Assignment 50, 147
TIP/RING interface 138, 152
Transmit gain 33, 346
Transmit path $50,199,218,220,222$, 302, 304, 306
TTX 33, 61, 81, 192, 220, 225, 304, 309

U

Unbalanced ringing 53, 94, 190, 287
Universal Tone Detection 34, 70, 71, 179, 193
POP Commands 253
Universal Tone detection 198

V

Voice over IP 22
Voltage reserve 41, 47

W

Wireless Local Loop 22
Write command 143

Infineon goes for Business Excellence

"Business excellence means intelligent approaches and clearly defined processes, which are both constantly under review and ultimately lead to good operating results.
Better operating results and business excellence mean less idleness and wastefulness for all of us, more professional success, more accurate information, a better overview and, thereby, less frustration and more satisfaction."

Dr. Ulrich Schumacher
http://www.infineon.com

[^0]: 1) Nevertheless marked on the chip as PEB 4264
 2) Nevertheless marked on the chip as PEB 4265
 3) Integrated Test and Diagnosis Functions
 ${ }^{4)}$ The add-on functions are DTMF detection, Caller ID generation, Message Waiting lamp support, Three Party Conferencing, Universal Tone Detection (UTD), Line Echo Cancellation (LEC) and Sleep Mode.
[^1]: ${ }^{1)}$ If SLIC-P is selected, IO2 cannot be controlled by the user, but is utilized by the SLICOFI-2 to control the C3 pin of SLIC-P.

[^2]: 1) For DuSLIC-S2 chip set external ringing is supported
 2) Not available with DuSLIC-S2 chip set
[^3]: 1) The add-on functions are DTMF detection, Caller ID generation, Message Waiting lamp support, Three Party Conferencing, Universal Tone Detection (UTD), Line Echo Cancellation (LEC) and Sleep Mode.
[^4]: ${ }^{1)}$ In most applications $20 V_{\mathrm{DC}}$ are sufficient for reliable ring trip detection. A higher DC voltage will reduce the achievable maximum ringing voltage. For short loops $10 V_{\mathrm{DC}}$ may be sufficient.

[^5]: ${ }^{1)}$ In this case $V_{\text {BATR }}$ is typically used for the on-hook state, while $V_{\text {BATH }}$ and $V_{\text {BATL }}$ are used for optimized feeding of different loop length in the off-hook state.

[^6]: 1) In this case $V_{\mathrm{RING}, \mathrm{RMS}}=V_{\mathrm{RT}, \mathrm{RMS}}=V_{\mathrm{RTO}, \mathrm{RMS}}$ because of the low impedance of the SLIC output $(<1 \Omega)$. $V_{\mathrm{RT}, \mathrm{RMS}}$ is the open-circuit rms voltage measured directly at pins RING and TIP at the SLIC output with ringer load. $V_{\text {RTO,RMS }}$ is the rms voltage measured directly at pins RING and TIP at the SLIC output without any ringer load. For calculation of the ringing voltage at the ringer load see the Voltage and Power Application Note and the accompanying MS Excel Sheet for calculation.
 2) SLICOFI-2S2 supports only external ringing
[^7]: 1) see "Control of the Active PCM Channels" on Page 142
 2) Time slot R1 + 1
 3) Time slot $\mathrm{X} 1+1$
 ${ }^{4)}$ Empty cells in the table mark unused data in the PCM receive channels and switched-off line drivers in the PCM transmit channels
[^8]: 1) load ext. C for switching from PDRH to ACTH in on-hook mode
 $V_{\text {AC }} \ldots$ Tip/Ring AC Voltage
 $V_{\mathrm{DC}} \ldots$ Tip/Ring DC Voltage
[^9]: 1) load ext. C for switching from PDRH to ACTH in on-hook mode
 2) load ext. C for switching from PDRR to ACTR in on-hook mode
[^10]: 1) Maximum spike rejection time $t_{\text {rej, }}$ max
 2) Minimum spike rejection time $t_{\text {rej, min }}$
[^11]: 1) The gain stage power dissipation correction P_{G} is a correcting term necessary to ensure a correct power calculation if other as the defined supply voltages are used.
[^12]: 1) EOS/ESD Assn. Standard DS5.3-1993.
 2) Even higher value is possible when internal junction temperature protection is operative.
[^13]: 1) If the battery switch is not used both pins VBATL and VBATH should be connected together externally. In this case the full voltage range of -15 V to -85 V can be used.
[^14]: 1) The gain stage power dissipation correction P_{G} is a correcting term necessary to ensure a correct power calculation if other as the defined supply voltages are used.
[^15]: 1) ROR and ROT for $I_{\mathrm{R}}=I_{\mathrm{T}}=0$ and $V_{\mathrm{TR}}=V_{\mathrm{BATR}} / 2$
[^16]: 1) The gain stage power dissipation correction P_{G} is a correcting term necessary to ensure a correct power calculation if other as the defined supply voltages are used.
[^17]: 1) Power dissipation and supply currents are target values
 2) EDSP features are DTMF detection, Caller ID generation, Line Echo Cancellation (LEC) and Universal Tone Detection (UTD).
[^18]: 1) Poles at $12 \mathrm{kHz} \pm 150 \mathrm{~Hz}$ and $16 \mathrm{kHz} \pm 150 \mathrm{~Hz}$ respectively and harmonics will be provided
[^19]: 1) The MCLK frequency must be an integer multiple of the FSC frequency.
[^20]: 1) The DCL frequency must be an integer multiple of the FSC frequency.
 2) All delay times are made up by two components: an intrinsic time (min-time), caused by internal processings, and a second component caused by external circuitry ($C_{\text {Load }}, R_{\text {Pullup }}>1.5 \mathrm{k} \Omega$)
[^21]: 1) The DCL frequency must be an integer multiple of the FSC frequency.
 2) All delay times are made up by two components: an intrinsic time (min-time), caused by internal processings, and a second component caused by external circuitry ($C_{\text {Load }}, R_{\text {Pullup }}>1.5 \mathrm{k} \Omega$)
