September 2001
Revised December 2001

FIN1022

2 X 2 LVDS High Speed Crosspoint Switch

General Description

This non－blocking 2×2 crosspoint switch has a fully differ－ ential input to output data path for low noise generation and low pulse width distortion．The device can be used as a high speed crosspoint switch，2：1 multiplexer，1：2 demulti－ plexer or 1：2 signal splitter．The inputs can directly interface with LVDS and LVPECL levels．

Features

－Low jitter， 800 Mbps full differential data path
－Worst case jitter of 190ps with PRBS $=2^{23}-1$ data pattern at 800 Mbps
■ Rail－to－rail common mode range is 0.5 V to 3.25 V
－Worst case power dissipation is less than 126 mW
■ Open－circuit fail safe protection
■ Fast switch time of 1.1 ns typical
－ 35 ps typical pin channel to channel skew
－3．3V power supply operation
－Non－blocking switch
－LVDS receiver inputs accept LVPECL signals directly
■ 7.5 kV HBM ESD protection
－16－lead SOIC package and TSSOP package
■ Inter－operates with TIA／EIA 644－1995 specification
－See the Fairchild Interface Solutions web page for cross reference information： www．fairchildsemi．com／products／interface／lvds．html

Ordering Code：

Order Number	Package Number	Package Description
FIN1022M	M16A	16－Lead Small Outline Integrated Circuit（SOIC），JEDEC MS－012，0．150＂Narrow
FIN1022MTC	MTC16	16－Lead Thin Shrink Small Outline Package（TSSOP），JEDEC MO－153，4．4mm Wide

Devices also available in Tape and Reel．Specify by appending suffix letter＂ X ＂to the ordering code．

Logic Symbol

Pin Descriptions

Pin Name	Description
$\mathrm{R}_{\text {INO+ }}, \mathrm{R}_{\text {IN } 1+}$	LVDS non-inverting data inputs
$\mathrm{R}_{\text {IN0-, }} \mathrm{R}_{\text {IN1- }}$	LVDS inverting data inputs
$\mathrm{D}_{\text {OUT0+ }}, \mathrm{D}_{\text {OUT1+ }}$	LVDS non-inverting data outputs
Dout0-, $\mathrm{D}_{\text {OUT1- }}$	LVDS inverting data outputs
EN_{0}	LVTTL input for enabling $\mathrm{D}_{\text {OUTO+ }} / \mathrm{D}_{\text {OUT0 }-}$
EN_{1}	LVTTL input for enabling $\mathrm{D}_{\text {OUT1+ }} / \mathrm{D}_{\text {OUT1- }}$
SEL_{0}	LVTTL input for selecting $\mathrm{R}_{\mathrm{INO} \mathrm{O}_{+}} / \mathrm{R}_{\mathrm{INO} \mathrm{O}_{-}}$or $\mathrm{R}_{\text {IN } 1+} / \mathrm{R}_{\text {IN } 1-}$ for output $\mathrm{D}_{\text {OUTO+ }} / \mathrm{D}_{\text {OUTO- }}$
SEL_{1}	LVTTL input for selecting $\mathrm{R}_{\mathrm{INO}_{+} /} / \mathrm{R}_{\text {INO- }}$ or $\mathrm{R}_{\text {IN1+ }} / \mathrm{R}_{\text {IN1- }}$ for output $\mathrm{D}_{\text {OUT } 1+} / \mathrm{D}_{\text {OUT1- }}$
$\mathrm{V}_{\text {CC }}$	Power Supply
GND	Ground

Function Table

Inputs				Outputs				Mode
SEL_{0}	SEL ${ }_{1}$	EN_{0}	EN_{1}	$\mathrm{D}_{\text {OUT0+ }}$	$\mathrm{D}_{\text {OUT0- }}$	$\mathrm{D}_{\text {OUT1+ }}$	$\mathrm{D}_{\text {OUT1- }}$	
L/O	L/O	H	H	$\mathrm{R}_{\text {INO+ }}$	$\mathrm{R}_{\text {INO- }}$	$\mathrm{R}_{\mathrm{IN} \mathrm{O}_{+}}$	$\mathrm{R}_{\text {IN0- }}$	1:2 Splitter
L/O	H	H	H	$\mathrm{R}_{\text {IN0+ }}$	$\mathrm{R}_{\text {IN } 0-}$	$\mathrm{R}_{\mathrm{IN} 1+}$	$\mathrm{R}_{\text {IN } 1-}$	Repeater
H	L / O	H	H	$\mathrm{R}_{\text {IN1+ }}$	$\mathrm{R}_{\text {IN1- }}$	$\mathrm{R}_{\text {IN } 0_{+}}$	$\mathrm{R}_{\text {IN0- }}$	Switch
H	H	H	H	$\mathrm{R}_{\mathrm{IN} 1+}$	$\mathrm{R}_{\text {IN1- }}$	$\mathrm{R}_{\mathrm{IN} 1+}$	$\mathrm{R}_{\text {IN1- }}$	1:2 Splitter
X	L/O	L/O	H	Z	Z	$\mathrm{R}_{\text {IN } \mathrm{O}_{+}}$	$\mathrm{R}_{\text {IN0- }}$	D ${ }_{\text {Outo }}$ Disabled
X	H	L/O	H	Z	Z	$\mathrm{R}_{\mathrm{IN} 1+}$	$\mathrm{R}_{\text {IN1- }}$	D ${ }_{\text {Outo }}$ Disabled
L/O	X	H	L/O	$\mathrm{R}_{\text {IN0+ }}$	$\mathrm{R}_{\text {INO- }}$	Z	Z	D ${ }_{\text {Out1 }}$ Disabled
H	X	H	L/O	$\mathrm{R}_{\mathrm{IN} 1+}$	$\mathrm{R}_{\text {IN1- }}$	Z	Z	$\mathrm{D}_{\text {Out1 }}$ Disabled
X	X	L/O	L/O	Z	Z	Z	Z	$\mathrm{D}_{\text {OUT0 }}$ and $\mathrm{D}_{\text {OUT1 }}$ Disabled
EN	/ 0 = LO	or OPEN	$\mathrm{H}=\mathrm{H}$	Logic Le	L =	LOW Logic	Level	X = Don't Care \quad Z $=$ High Imped

Function Diagrams

Absolute Maximum Ratings(Note 1)

Supply Voltage (VCC)
DC Input Voltage (V_{IN})
DC Output Voltage ($\mathrm{V}_{\text {OUT }}$)
Driver Short Circuit Current (IOSD)
Storage Temperature Range ($\mathrm{T}_{\mathrm{STG}}$) Max Junction Temperature (T_{J})
Lead Temperature (T_{L})
(Soldering, 10 seconds)
-0.3 V to +4.6 V
-0.3 V to +4.6 V
-0.3 V to +4.6 V
Continuous
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $150^{\circ} \mathrm{C}$
$260^{\circ} \mathrm{C}$

Recommended Operating Conditions

Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	3.0 V to 3.6 V
Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	0 to V_{CC}
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Electrostatic Discharge	
$\quad(\mathrm{HBM} 1.5 \mathrm{k} \Omega, 100 \mathrm{pF})$	$>7500 \mathrm{~V}$
Electrostatic Discharge	
$(\mathrm{MM} 0 \Omega, 100 \mathrm{pF})$	$>300 \mathrm{~V}$

Note 1: The "Absolute Maximum Ratings": are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature and output/input loading variables. Fairchild does not recommend operation of circuits outside databook specification.

DC Electrical Characteristics

Over supply voltage and operating temperature ranges, unless otherwise specified (Note 2)

Symbol	Parameter	Test Conditions	Min	$\begin{gathered} \text { Typ } \\ \text { (Note 3) } \end{gathered}$	Max	Units
LVDS Differential Driver Characteristics						
$\mathrm{V}_{\text {OD }}$	Output Differential Voltage	$\mathrm{R}_{\mathrm{L}}=75 \Omega$, See Figure 3	270	365	475	mV
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=75 \Omega, \text { See Figure } 3 \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \text { and } \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$	285	365	440	
$\Delta \mathrm{V}_{\mathrm{OD}}$	V_{OD} Magnitude Change from Differential LOW-to-HIGH	$\mathrm{R}_{\mathrm{L}}=75 \Omega$, See Figure 3			35	mV
$\mathrm{V}_{\text {OS }}$	Offset Voltage	See Figure 3	1.0	1.2	1.45	V
$\Delta \mathrm{V}_{\text {OS }}$	Offset Magnitude Change from Differential LOW-to-HIGH	See Figure 3			35	mV
IOZD	Disabled Output Leakage Current	$\mathrm{V}_{\text {OUT }}=3.6 \mathrm{~V}$ or GND, Driver Disabled			± 10	$\mu \mathrm{A}$
IOFF	Power-Off Current	$\mathrm{V}_{\text {CC }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}$ or $\mathrm{V}_{\text {OUT }}=3.6 \mathrm{~V}$ or 0 V			± 20	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OS }}$	Short Circuit Output Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$, Driver Enabled			-10	mA
		$\mathrm{V}_{\text {OUTx+ }}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUTX- }}=0 \mathrm{~V}$, Driver Enabled			-10	
LVDS Differential Receiver Characteristics						
$\mathrm{V}_{\text {TH }}$	Differential Input Threshold HIGH	$\begin{aligned} & \mathrm{V}_{\mathrm{IC}}=0.05 \mathrm{~V} \text { or } 1.2 \mathrm{~V} \text { or } 3.25 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$			100	mV
$\mathrm{V}_{\text {TL }}$	Differential Input Threshold LOW		-100			
$V_{\text {IC }}$	Input Common Mode Voltage		0.05		3.25	V
$\mathrm{I}_{\text {IND }}$	Input Current (Differential Inputs)	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$			± 20	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$			± 20	
LVTTL Control Characteristics						
V_{IH}	Input High Voltage		2			V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage				0.8	V
I_{IN}	Input Current	$\mathrm{V}_{\mathrm{IN}}=3.6 \mathrm{~V}$ or GND			± 20	$\mu \mathrm{A}$
Device Characteristics						
V_{IK}	Input Clamp Voltage	$\mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$	-1.5			V
$\mathrm{I}_{\text {PU/PD }}$	Output Power-Up/Power-Down High Z Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to 1.5 V			± 10	$\mu \mathrm{A}$
$\mathrm{C}_{\text {IN }}$	Input Capacitance			4.5		pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance			4.5		pF
I_{CC}	Power Supply Current	No Load, All Drivers Enabled			35	mA
		$\mathrm{R}_{\mathrm{L}}=75 \Omega$, All Drivers Enabled			35	mA
		$\mathrm{R}_{\mathrm{L}}=75 \Omega$, All Drivers Enabled			35	mA

Note 2: This part will only function with datasheet specification when a resistive load is applied to the driver outputs.
Note 3: All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and with $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.

Required Specifications

1. When the true and complement LVDS outputs (having a 75Ω connected between outputs) are connected to $3.75 \mathrm{k} \Omega$ resistors and the common point of those 3.75 $\mathrm{k} \Omega$ resistors are connected to a voltage source that sweeps from 0 to 2.4 V , the $D C V_{O D}$ and $\Delta \mathrm{V}_{\mathrm{OD}}$ are still maintained (see Figure 1).
2. When the true and complement LVDS outputs (having a 5 pF capacitor attached between outputs) are connected with 37.5Ω resistors each to common point, then the common point does not vary by more than 150 mV under all process, temperature and voltage conditions when the outputs switch either from LOW-toHIGH or from HIGH-to-LOW (see Figure 2).
3. Pull-down resistors are required on Enable ($E N_{0}$ and $\left.\mathrm{EN}_{1}\right)$ and select $\left(\mathrm{SEL}_{0}\right.$ and $\left.\mathrm{SEL}_{1}\right)$ inputs.
4. Fail safe protection on the outputs that draw less than $20 \mu \mathrm{~A}$ of current (worst case) on the LVDS inputs. In this condition, if the input is in fail safe selected to $\mathrm{OUT}_{0+} / \mathrm{OUT}_{0-}$ (say) and the outputs are Enabled then $\mathrm{OUT}_{0+}=$ HIGH and $\mathrm{OUT}_{0-}=$ LOW. This prevents noise from being amplified when the connection is broken.
5. In the disabled state the outputs can go beyond V_{CC} but there should be no appreciable leakage (see I OzD and $\mathrm{I}_{\text {OFF }}$ specifications)

FIGURE 1. Common Mode Supply Test Circuit

FIGURE 2. Dynamic V_{OS} Test Circuit and Waveforms

Required Specifications (Continued)

FIGURE 7. LVTTL Input to LVDS Output AC Waveforms

Note A: All input pulses have frequency $=10 \mathrm{MHz}, \mathrm{t}_{\mathrm{B}}$ or $\mathrm{t}_{\mathrm{F}}<=1 \mathrm{~ns}$. Note B: C_{L} includes all probe and jig capacitances. FIGURE 8. Differential Driver Enable and Disable Test Circuits

FIGURE 9. Enable and Disable AC Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted

