

Eight Output Differential Buffer for PCI Express (50-200MHz)

Recommended Application:

DB800 Version 2.0 Yellow Cover part with PCI Express suppor with extended bypass mode frequency range.

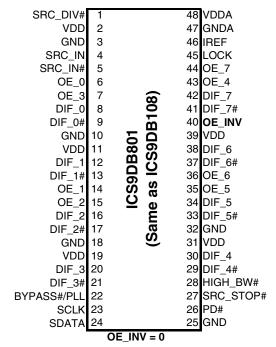
Output Features:

- 8 0.7V current-mode differential output pairs
- Supports zero delay buffer mode and fanout mode
- · Bandwidth programming available

Key Specifications:

- Outputs cycle-cycle jitter < 50ps
- Outputs skew: 50ps
- 50 200MHz operation
- Extended frequency range in bypass mode:

Revision B: up tp 333.33 MHz Revision C: up to 400 MHz


Features/Benefits:

- Spread spectrum modulation tolerant, 0 to -0.5% down spread and +/- 0.25% center spread.
- Supports undriven differential outputs in PD# and SRC_STOP# modes for power management.
- Supports polarity inversion to the output enables, SRC_STOP and PD.

Polarity Inversion Pin List Table

OE_INV				
0	1			
OE_0	OE0#			
OE_3	OE3#			
OE_1	OE1#			
OE_2	OE2#			
PD#	PD			
SRC_STOP#	SRC_STOP			
OE_5	OE5#			
OE_6	OE6#			
OE_4	OE4#			
OE_7	OE7#			
	0 OE_0 OE_3 OE_1 OE_2 PD# SRC_STOP# OE_5 OE_6 OE_4			

Pin Configurations

SRC_DIV#	1		48	VDDA
VDD	2		47	GNDA
GND	3		46	IREF
SRC_IN	4		45	LOCK
SRC_IN#	5		44	OE7#
OE0#	6		43	OE4#
OE3#	7		42	DIF_7
DIF_0	8			DIF_7#
DIF_0#	9		40	OE_INV
GND	10	Ξ		VDD
VDD	11	æ	38	DIF_6
DIF_1	12	<u> </u>	37	DIF_6#
DIF_1#	13	16	36	OE6#
OE1#	14	ICS9DB801	35	OE5#
OE2#	15	<u> </u>	34	DIF_5
DIF_2	16		33	DIF_5#
DIF_2#	17		32	GND
GND	18		31	VDD
VDD	19		30	DIF_4
DIF_3	20			DIF_4#
DIF_3#	21			HIGH_BW#
BYPASS#/PLL	22		27	SRC_STOP
SCLK			-	PD
SDATA	24		25	GND
OE INV = 1				

48-pin SSOP & TSSOP

Pin Desription for OE INV = 0

Pin Desription for OE_INV = 0			
PIN#	PIN NAME	PIN TYPE	DESCRIPTION
			Active low Input for determining SRC output frequency SRC or
1	SRC_DIV#	IN	SRC/2.
			0 = SRC/2, 1= SRC
2	VDD	PWR	Power supply, nominal 3.3V
3	GND	PWR	Ground pin.
4	SRC_IN	IN	0.7 V Differential SRC TRUE input
5	SRC_IN#	IN	0.7 V Differential SRC COMPLEMENTARY input
6	OE 0	IN	Active high input for enabling outputs.
0	OE_U	IIN	0 = tri-state outputs, 1= enable outputs
7	OE_3	IN	Active high input for enabling outputs.
	OE_3	IIN	0 = tri-state outputs, 1= enable outputs
8	DIF_0	OUT	0.7V differential true clock outputs
9	DIF_0#	OUT	0.7V differential complement clock outputs
10	GND	PWR	Ground pin.
11	VDD	PWR	Power supply, nominal 3.3V
12	DIF_1	OUT	0.7V differential true clock outputs
13	DIF_1#	OUT	0.7V differential complement clock outputs
14	OE_1	IN	Active high input for enabling outputs.
14	OE_I	IIN	0 = tri-state outputs, 1= enable outputs
15	OE_2	IN	Active high input for enabling outputs.
13	OL_Z	IIN	0 = tri-state outputs, 1= enable outputs
16	DIF_2	OUT	0.7V differential true clock outputs
17	DIF_2#	OUT	0.7V differential complement clock outputs
18	GND	PWR	Ground pin.
19	VDD	PWR	Power supply, nominal 3.3V
20	DIF_3	OUT	0.7V differential true clock outputs
21	DIF_3#	OUT	0.7V differential complement clock outputs
22	BYPASS#/PLL	IN	Input to select Bypass(fan-out) or PLL (ZDB) mode
		111	0 = Bypass mode, 1= PLL mode
23	SCLK	IN	Clock pin of SMBus circuitry, 5V tolerant.
24	SDATA	I/O	Data pin for SMBus circuitry, 5V tolerant.

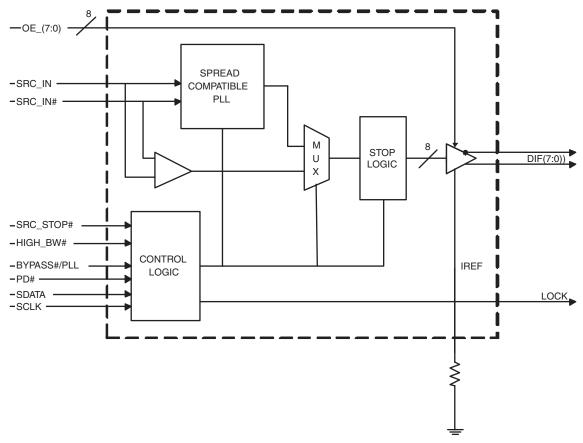
Pin Desription for OE_INV = 0

Pin D	Pin Desription for OE_INV = 0			
PIN#	PIN NAME	PIN TYPE	DESCRIPTION	
25	GND	PWR	Ground pin.	
26	PD#	IN	Asynchronous active low input pin, with 120Kohm internal pull- up resistor, used to power down the device. The internal clocks are disabled and the VCO and the crystal are stopped.	
27	SRC_STOP#	IN	Active low input to stop SRC outputs.	
28	HIGH_BW#	IN	3.3V input for selecting PLL Band Width 0 = High, 1= Low	
29	DIF_4#	OUT	0.7V differential complement clock outputs	
30	DIF_4	OUT	0.7V differential true clock outputs	
31	VDD	PWR	Power supply, nominal 3.3V	
32	GND	PWR	Ground pin.	
33	DIF_5#	OUT	0.7V differential complement clock outputs	
34	DIF_5	OUT	0.7V differential true clock outputs	
35	OE_5	IN	Active high input for enabling outputs. 0 = tri-state outputs, 1= enable outputs	
36	OE_6	IN	Active high input for enabling outputs. 0 = tri-state outputs, 1= enable outputs	
37	DIF_6#	OUT	0.7V differential complement clock outputs	
38	DIF_6	OUT	0.7V differential true clock outputs	
39	VDD	PWR	Power supply, nominal 3.3V	
40	OE_INV	IN	This latched input selects the polarity of the OE pins. 0 = OE pins active high, 1 = OE pins active low (OE#)	
41	DIF_7#	OUT	0.7V differential complement clock outputs	
42	DIF_7	OUT	0.7V differential true clock outputs	
43	OE_4	IN	Active high input for enabling outputs. 0 = tri-state outputs, 1= enable outputs	
44	OE_7	IN	Active high input for enabling outputs. 0 = tri-state outputs, 1= enable outputs	
45	LOCK	OUT	3.3V output indicating PLL Lock Status. This pin goes high when lock is achieved.	
46	IREF	IN	This pin establishes the reference current for the differential current-mode output pairs. This pin requires a fixed precision resistor tied to ground in order to establish the appropriate current. 475 ohms is the standard value.	
47	GNDA	PWR	Ground pin for the PLL core.	
48	VDDA	PWR	3.3V power for the PLL core.	

Pin Desription for OE_INV = 1

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
1	SRC_DIV#	IN	Active low Input for determining SRC output frequency SRC or SRC/2. 0 = SRC/2, 1= SRC
2	VDD	PWR	Power supply, nominal 3.3V
3	GND	PWR	Ground pin.
4	SRC_IN	IN	0.7 V Differential SRC TRUE input
5	SRC_IN#	IN	0.7 V Differential SRC COMPLEMENTARY input
6	OE0#	IN	Active low input for enabling DIF pair 0. 1 = tri-state outputs, 0 = enable outputs
7	OE3#	IN	Active low input for enabling DIF pair 3. 1 = tri-state outputs, 0 = enable outputs
8	DIF_0	OUT	0.7V differential true clock outputs
9	DIF_0#	OUT	0.7V differential complement clock outputs
10	GND	PWR	Ground pin.
11	VDD	PWR	Power supply, nominal 3.3V
12	DIF_1	OUT	0.7V differential true clock outputs
13	DIF_1#	OUT	0.7V differential complement clock outputs
14	OE1#	IN	Active low input for enabling DIF pair 1. 1 = tri-state outputs, 0 = enable outputs
15	OE2#	IN	Active low input for enabling DIF pair 2. 1 = tri-state outputs, 0 = enable outputs
16	DIF_2	OUT	0.7V differential true clock outputs
17	DIF_2#	OUT	0.7V differential complement clock outputs
18	GND	PWR	Ground pin.
19	VDD	PWR	Power supply, nominal 3.3V
20	DIF_3	OUT	0.7V differential true clock outputs
21	DIF_3#	OUT	0.7V differential complement clock outputs
22	BYPASS#/PLL	IN	Input to select Bypass(fan-out) or PLL (ZDB) mode 0 = Bypass mode, 1= PLL mode
23	SCLK	IN	Clock pin of SMBus circuitry, 5V tolerant.
24	SDATA	I/O	Data pin for SMBus circuitry, 5V tolerant.

Pin Desription for OE_INV = 1


PIN#	PIN NAME	PIN TYPE	DESCRIPTION
25	GND	PWR	Ground pin.
26	PD	IN	Asynchronous active high input pin used to power down the device. The internal clocks are disabled and the VCO is stopped.
27	SRC_STOP	IN	Active high input to stop SRC outputs.
28	HIGH_BW#	IN	3.3V input for selecting PLL Band Width 0 = High, 1= Low
29	DIF_4#	OUT	0.7V differential complement clock outputs
30	DIF_4	OUT	0.7V differential true clock outputs
31	VDD	PWR	Power supply, nominal 3.3V
32	GND	PWR	Ground pin.
33	DIF_5#	OUT	0.7V differential complement clock outputs
34	DIF_5	OUT	0.7V differential true clock outputs
35	OE5#	IN	Active low input for enabling DIF pair 5.
- 00	OL3#	IIN	1 = tri-state outputs, 0 = enable outputs
36	OE6#	IN	Active low input for enabling DIF pair 6. 1 = tri-state outputs, 0 = enable outputs
37	DIF 6#	OUT	0.7V differential complement clock outputs
38	DIF 6	OUT	0.7V differential true clock outputs
39	VDD	PWR	Power supply, nominal 3.3V
40	OE_INV	IN	This latched input selects the polarity of the OE pins. 0 = OE pins active high, 1 = OE pins active low (OE#)
41	DIF_7#	OUT	0.7V differential complement clock outputs
42	DIF_7	OUT	0.7V differential true clock outputs
43	OE4#	IN	Active low input for enabling DIF pair 4 1 = tri-state outputs, 0 = enable outputs
44	OE7#	IN	Active low input for enabling DIF pair 7. 1 = tri-state outputs, 0 = enable outputs
45	LOCK	OUT	3.3V output indicating PLL Lock Status. This pin goes high when lock is achieved.
46	IREF	IN	This pin establishes the reference current for the differential current-mode output pairs. This pin requires a fixed precision resistor tied to ground in order to establish the appropriate current. 475 ohms is the standard value.
47	GNDA	PWR	Ground pin for the PLL core.
48	VDDA	PWR	3.3V power for the PLL core.

General Description

The ICS9DB801 follows the Intel DB800 Differential Buffer Specification v2.0. This buffer provides eight PCI-Express SRC clocks. The ICS9DB801 is driven by a differential input pair from a CK409/CK410 main clock generator, such as the ICS952601 or ICS954101. It provides ouputs meeting tight cycle-to-cycle jitter (50ps) and output-to-output skew (50ps) requirements.

Block Diagram

Note: Polarities shown for OE INV = 0.

Absolute Max

Symbol	Parameter	Min	Max	Units
VDD_A	3.3V Core Supply Voltage		4.6	V
VDD_In	3.3V Logic Supply Voltage		4.6	V
V_{IL}	Input Low Voltage	GND-0.5		V
V_{IH}	Input High Voltage		V _{DD} +0.5V	٧
Ts	Storage Temperature	-65	150	Û
Tambient	Ambient Operating Temp	0	70	°C
Tcase	Case Temperature		115	°C
	Input ESD protection			
ESD prot	human body model	2000		V

Electrical Characteristics - Input/Supply/Common Output Parameters

 $T_A = 0 - 70$ °C; Supply Voltage $V_{DD} = 3.3 \text{ V +/-5}\%$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage	V_{IH}	3.3 V +/-5%	2		$V_{DD} + 0.3$	V	
Input Low Voltage	V _{IL}	3.3 V +/-5%	GND - 0.3		0.8	V	
Input High Current	I _{IH}	$V_{IN} = V_{DD}$	-5		5	uA	
	I _{IL1}	V _{IN} = 0 V; Inputs with no pull-up resistors	-5			uA	
Input Low Current	I _{IL2}	V _{IN} = 0 V; Inputs with pull-up resistors	-200			uA	
Operating Supply Current	I _{DD3.3PLL}	Full Active, $C_L = Full load$;		175 160	200 175	mA mA	
	DD3.3ByPass	all diff pairs driven		50	70	mA	
Powerdown Current	DD3.3PD	all differential pairs tri-stated		1	4	mA	
Input Frequency	F _{iPLL}	PLL Mode	50		200	MHz	
Input Frequency	F _{iBypass}	Bypass Mode (Revision B/REV ID = 1H)	0		333.33	MHz	
Input Frequency	F _{iBypass}	Bypass Mode (Revision C/REV ID = 2H)	0		400	MHz	
Pin Inductance ¹	L_{pin}				7	nΗ	1
1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	C _{IN}	Logic Inputs	1.5		4	pF	1
Input Capacitance ¹	C _{OUT}	Output pin capacitance			4	pF	1
PLL Bandwidth	BW	PLL Bandwidth when PLL_BW=0	2.4	3	3.4	MHz	1
T LE Bandwidth	DW	PLL Bandwidth when PLL_BW=1	0.7	1	1.4	MHz	1
Clk Stabilization ^{1,2}	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or deassertion of PD# to 1st clock		0.5	1	ms	1,2
Modulation Frequency	fMOD	Triangular Modulation	30		33	kHz	1
Tdrive_SRC_STOP#		DIF output enable after SRC_Stop# de-assertion		10	15	ns	1,3
Tdrive_PD#		DIF output enable after PD# de-assertion			300	us	1,3
Tfall		Fall time of PD# and SRC_STOP#			5	ns	1
Trise		Rise time of PD# and SRC_STOP#			5	ns	2

¹Guaranteed by design and characterization, not 100% tested in production.

 $^{^2\}mbox{See}$ timing diagrams for timing requirements.

³Time from deassertion until outputs are >200 mV

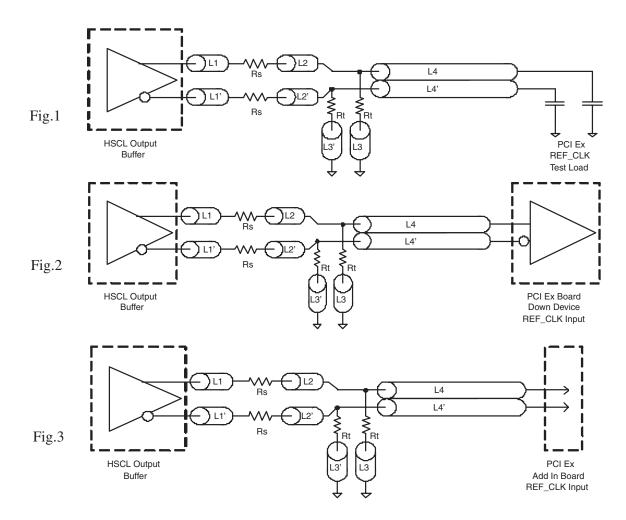
Electrical Characteristics - DIF 0.7V Current Mode Differential Pair

$T_A = 0 - 70$ °C; $V_{DD} = 3.3 \text{ V +/-5\%}$; $C_L = 2\text{pF}$, $R_S = 33.2\Omega$, $R_P = 49.9\Omega$, $I_{REF} = 475\Omega$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Current Source Output Impedance	Zo ¹	$V_O = V_x$	3000			Ω	1
Voltage High	VHigh	Statistical measurement on single ended signal using oscilloscope	660		850	mV	1,3
Voltage Low	VLow	math function.	-150		150	IIIV	1,3
Max Voltage	Vovs	Measurement on single ended			1150	mV	1
Min Voltage	Vuds	signal using absolute value.	-300			IIIV	1
Crossing Voltage (abs)	Vcross(abs)		250		550	mV	1
Crossing Voltage (var)	d-Vcross	Variation of crossing over all edges			140	mV	1
Long Accuracy	ppm	see Tperiod min-max values			0	ppm	1,2
Rise Time	t _r	$V_{OL} = 0.175V, V_{OH} = 0.525V$	175		700	ps	1
Fall Time	t _f	$V_{OH} = 0.525 V V_{OL} = 0.175 V$	175		700	ps	1
Rise Time Variation	d-t _r				125	ps	1
Fall Time Variation	d-t _f				125	ps	1
Duty Cycle	d _{t3}	Measurement from differential wavefrom	45		55	%	1
Skew	t _{sk3}	V _T = 50%			50	ps	1
Jitter, Cycle to cycle	t _{jcyc-cyc}	PLL mode, Measurement from differential wavefrom PVDASS made as additive litter			50	ps	1
		BYPASS mode as additive jitter			50	ps	1

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy and Clock Period specifications are guaranteed with the assumption that the input clock complies with CK409/CK410 accuracy requirements


 $^{^{3}}I_{REF} = V_{DD}/(3xR_{R})$. For $R_{R} = 475\Omega$ (1%), $I_{REF} = 2.32$ mA. $I_{OH} = 6$ x I_{REF} and $V_{OH} = 0.7$ V @ $Z_{O} = 50\Omega$.

SRC Reference Clock						
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure			
L1 length, Route as non -coupled 50 ohm trace.	0.5 max	inch	2, 3			
L2 length, Route as non -coupled 50 ohm trace.	0.2 max	inch	2, 3			
L3 length, Route as non -coupled 50 ohm trace.	0.2 max	inch	2, 3			
Rs	33	ohm	2, 3			
Rt	49.9	ohm	2, 3			

Down Device Differential Routing	Dimension or Value	Unit	Figure
L4 length, Route as coupled microstrip 100 ohm	2 min to 16 max	inch	2
differential trace.			
L4 length, Route as coup led stripline 100 ohm	1.8 min to 14.4 max	inch	2
differential trace.			

Differential Routing to PCI Express Connector	Dimension or Value	Unit	Figure
L4 length, Route as coupled microstrip 100 ohm	0.25 to 14 max	inch	3
differential trace.			
L4 length, Rout e as coupled stripline 100 ohm	0.225 min to 12.6	inch	3
differential trace.	max		

General SMBus serial interface information for the ICS9DB801

How to Write:

- · Controller (host) sends a start bit.
- Controller (host) sends the write address DC (H)
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) sends the data byte count = X
- ICS clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1 (see Note 2)
- ICS clock will acknowledge each byte one at a time
- · Controller (host) sends a Stop bit

Ind	ex Block W	e Operation			
Cor	ntroller (Host)		ICS (Slave/Receiver)		
T	starT bit				
Slave	e Address DC _(H)				
WR	WRite				
		ACK			
Begi	nning Byte = N				
		ACK			
Data	Byte Count = X				
			ACK		
Begin	ning Byte N				
			ACK		
	\Diamond	Byte			
	\Diamond		\Diamond		
	\Q	×	\Diamond		
		\Diamond			
Byte	e N + X - 1				
			ACK		
Р	stoP bit	•			

How to Read:

- Controller (host) will send start bit.
- Controller (host) sends the write address DC
- ICS clock will acknowledge
- Controller (host) sends the begining byte location = N
- ICS clock will acknowledge
- Controller (host) will send a separate start bit.
- Controller (host) sends the read address DD (H)
- ICS clock will acknowledge
- ICS clock will send the data byte count = X
- ICS clock sends Byte N + X -1
- ICS clock sends Byte 0 through byte X (if X_(H) was written to byte 8).
- Controller (host) will need to acknowledge each byte
- Controllor (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Ind	ex Block Rea	ad	Operation	
Con	troller (Host)	IC	S (Slave/Receiver)	
Т	starT bit			
Slave	Address DC _(H)			
WR	WRite			
			ACK	
Begir	nning Byte = N			
			ACK	
RT	Repeat starT			
Slave	Address DD _(H)			
RD	ReaD			
			ACK	
		Data Byte Count = X		
	ACK			
			Beginning Byte N	
	ACK			
		X Byte	0	
	0	B	0	
	0	^	0	
0				
			Byte N + X - 1	
N	Not acknowledge			
Р	stoP bit			

SMBus Table: Frequency Select Register, READ/WRITE ADDRESS (DC/DD)

Byt	Byte 0 Pin #		Name	Control Function	Type	0	1	PWD
Bit 7		-	PD_Mode	PD# drive mode	RW	driven	Hi-Z	0
Bit 6		-	STOP_Mode	SRC_Stop# drive mode	RW	driven	Hi-Z	0
Bit 5		-	Reserved	Reserved	RW	Reserved		Χ
Bit 4			Reserved	Reserved	RW	Res	erved	Χ
Bit 3		-	Reserved	Reserved	RW	Res	erved	Χ
Bit 2		-	PLL_BW#	Select PLL BW	RW	High BW	Low BW	1
Bit 1		-	BYPASS#	BYPASS#/PLL	RW	fan-out	ZDB	1
Bit 0		-	SRC_DIV#	SRC Divide by 2 Select	RW	x/2	1x	1

SMBus Table: Output Control Register

			at control							
By	te 1	Pin#	Name	ļ	Control	Function	Туре	0	1	PWD
Bit 7	42,	,41	DIF_7	'	Outpu	t Control	RW	Disable	Enable	1
Bit 6	38,	,37	DIF_6	i	Outpu	t Control	RW	Disable	Enable	1
Bit 5	34,	,33	DIF_5	i	Outpu	t Control	RW	Disable	Enable	1
Bit 4	30,	,29	DIF_4		Outpu	t Control	RW	Disable	Enable	1
Bit 3	20,	,21	DIF_3	,	Outpu	t Control	RW	Disable	Enable	1
Bit 2	16,	,17	DIF_2		Outpu	t Control	RW	Disable	Enable	1
Bit 1	12,	,13	DIF_1		Outpu	t Control	RW	Disable	Enable	1
Bit 0	8,	,9	DIF_0	١	Outpu	t Control	RW	Disable	Enable	1

SMBus Table: Output Control Register

Byt	te 2	Pin#	Name	Control Function	Туре	0	1	PWD
Bit 7	42,4	41	DIF_7	Output Control	RW	Free-run	Stoppable	0
Bit 6	38,3	37	DIF_6	Output Control	RW	Free-run	Stoppable	0
Bit 5	34,3	33	DIF_5	Output Control	RW	Free-run	Stoppable	0
Bit 4	30,2	29	DIF_4	Output Control	RW	Free-run	Stoppable	0
Bit 3	20,2	21	DIF_3	Output Control	RW	Free-run	Stoppable	0
Bit 2	16,1	17	DIF_2	Output Control	RW	Free-run	Stoppable	0
Bit 1	12,1	13	DIF_1	Output Control	RW	Free-run	Stoppable	0
Bit 0	8,8	9	DIF_0	Output Control	RW	Free-run	Stoppable	0

SMBus Table: Output Control Register

Byte 3 Pin #		Name	Control Function	Туре	0	1	PWD	
Bit 7	Bit 7		Reserved	RW	RW Reserved		Х	
Bit 6				Reserved	RW	Reserved		Х
Bit 5	5			Reserved	RW	Res	erved	Х
Bit 4	Bit 4			Reserved	RW	Res	erved	Х
Bit 3				Reserved	Reserved RW			Х
Bit 2	Bit 2			Reserved	RW	Res	erved	Х
Bit 1				Reserved	RW	Res	erved	Х
Bit 0				Reserved	RW	Res	erved	Х

SMBus Table: Vendor & Revision ID Register

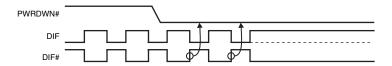
Byt	te 4	Pin #	Name	Control Function	Type	0	1	PWD			
Bit 7		-	RID3	REVISION ID	R	-	-	Х			
Bit 6		-	RID2		R	-	-	Χ			
Bit 5		-	RID1		R	-	-	Х			
Bit 4		-	RID0		R	-	-	Х			
Bit 3		-	VID3		R	-	-	0			
Bit 2		-	VID2	VENDOBID	R	-	-	0			
Bit 1		-	VID1	VENDOR ID	R	-	-	0			
Bit 0		-	VID0		R	-	-	1			

SMBus Table: DEVICE ID

Byt	e 5	Pin #	Name	Control Function	Туре	0	1	PWD
Bit 7	-	-	Dev	rice ID 7 (MSB)	R	Reserved		1
Bit 6	-	-		Device ID 6	R	Rese	erved	0
Bit 5	-	-		Device ID 5	R	Res	erved	0
Bit 4	ı	-		Device ID 4	R	Reserved		0
Bit 3	-	-		Device ID 3 R Reserve		erved	0	
Bit 2	-	-		Device ID 2	R	Reserved		0
Bit 1	-	-		Device ID 1	R Reserved		0	
Bit 0	-			Device ID 0	R	Rese	erved	1

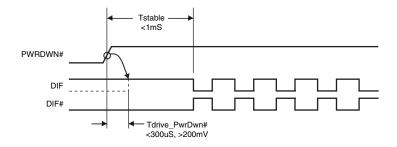
SMBus Table: Byte Count Register

Ombus Table. Byte Count Neglater									
Byte	e 6 Pin	# Name	Control Function	Туре	0	1	PWD		
Bit 7	-	BC7		RW	-	-	0		
Bit 6	-	BC6		RW	-	-	0		
Bit 5	-	BC5	Writing to this register	RW	-	-	0		
Bit 4	-	BC4	Writing to this register	RW	-	-	0		
Bit 3	-	BC3	configures how many bytes will be read back.	RW	-	-	0		
Bit 2	-	BC2	bytes will be read back.	RW	-	-	1		
Bit 1	-	BC1		RW	-	-	1		
Bit 0	-	BC0		RW	-	-	1		


Note: Polarities in timing diagrams are shown OE_INV = 0. They are similar to OE_INV = 1.

PD#, Power Down

The PD# pin cleanly shuts off all clocks and places the device into a power saving mode. PD# must be asserted before shutting off the input clock or power to insure an orderly shutdown. PD is asynchronous active-low input for both powering down the device and powering up the device. When PD# is asserted, all clocks will be driven high, or tri-stated (depending on the PD# drive mode and Output control bits) before the PLL is shut down.


PD# Assertion

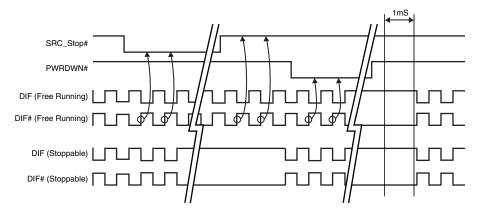
When PD# is sampled low by two consecutive rising edges of DIF#, all DIF outputs must be held High, or tri-stated (depending on the PD# drive mode and Output control bits) on the next High-Low transition of the DIF# outputs. When the PD# drive mode bit is set to '0', all clock outputs will be held with DIF driven High with 2 x I_{REF} and DIF# tri-stated. If the PD# drive mode bit is set to '1', both DIF and DIF# are tri-stated.

PD# De-assertion

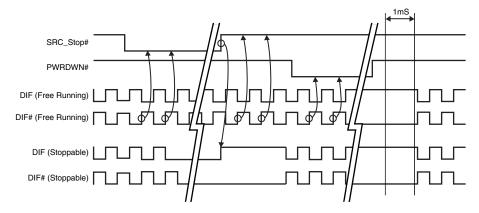
Power-up latency is less than 1 ms. This is the time from de-assertion of the PD# pin, or VDD reaching 3.3V, or the time from valid SRC_IN clocks until the time that stable clocks are output from the device (PLL Locked). If the PD# drive mode bit is set to '1', all the DIF outputs must driven to a voltage of >200 mV within 300 us of PD# de-assertion.

SRC_STOP#

The SRC_STOP# signal is an active-low asynchronous input that cleanly stops and starts the DIF outputs. A valid clock must be present on SRC_IN for this input to work properly. The SRC_STOP# signal is de-bounced and must remain stable for two consecutive rising edges of DIF# to be recognized as a valid assertion or de-assertion.

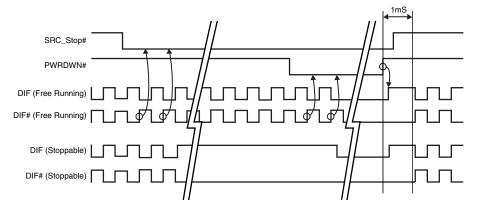

SRC STOP# - Assertion

Asserting SRC_STOP# causes all DIF outputs to stop after their next transition (if the control register settings allow the output to stop). When the SRC_STOP# drive bit is '0', the final state of all stopped DIF outputs is DIF = High and DIF# = Low. There is no change in output drive current. DIF is driven with 6xI_{REF} DIF# is not driven, but pulled low by the termination. When the SRC_STOP# drive bit is '1', the final state of all DIF output pins is Low. Both DIF and DIF# are not driven.

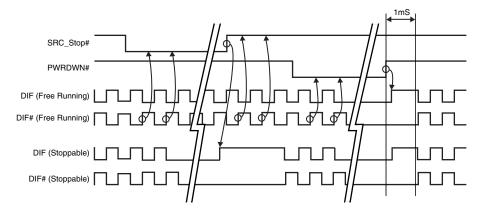

SRC_STOP# - De-assertion (transition from '0' to '1')

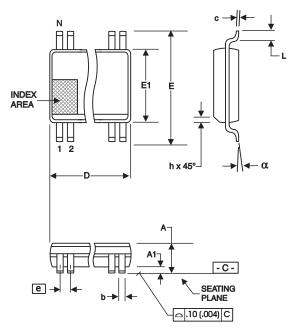
All stopped differential outputs resume normal operation in a glitch-free manner. The de-assertion latency to active outputs is 2-6 DIF clock periods, with all DIF outputs resuming simultaneously. If the SRC_STOP# drive control bit is '1' (tri-state), all stopped DIF outputs must be driven High (>200 mV) within 10 ns of de-assertion.

SRC_STOP_1 (SRC_Stop = Driven, PD = Driven)



SRC_STOP_2 (SRC_Stop =Tristate, PD = Driven)




SRC_STOP_3 (SRC_Stop = Driven, PD = Tristate)

SRC_STOP_4 (SRC_Stop = Tristate, PD = Tristate)

	In Millir	meters	In Ir	nches	
SYMBOL	COMMON D	IMENSIONS	COMMON DIMENSIONS		
	MIN	MAX	MIN	MAX	
Α	2.41	2.80	.095	.110	
A1	0.20	0.40	.008	.016	
b	0.20	0.34	.008	.0135	
С	0.13	0.25	.005	.010	
D	SEE VAR	IATIONS	SEE VARIATIONS		
Е	10.03	10.68	.395	.420	
E1	7.40	7.60	.291	.299	
е	0.635 I	BASIC	0.025	BASIC	
h	0.38	0.64	.015	.025	
L	0.50	1.02	.020	.040	
N	SEE VARIATIONS		SEE VARIATIONS		
α	0°	8°	0°	8°	

VARIATIONS

N	D m	nm.	D (inch)		
IN	MIN	MAX	MIN	MAX	
48	15.75	16.00	.620	.630	

Reference Doc.: JEDEC Publication 95, MO-118

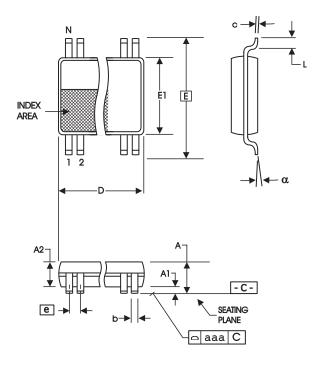
10-0034

Ordering Information

ICS9DB801yFLFT

Example:

ICS XXXX y F LFT


Designation for tape and reel packaging
RoHS Compliant (Optional)

Package Type
F = SSOP

Revision Designator (will not correlate with datasheet revision)

Device Type (consists of 3 to 7 digit numbers)

Prefix
ICS, AV = Standard Device

48-Lead, 6.10 mm. Body, 0.50 mm. Pitch TSSOP (240 mil) (20 mil)

	In Milli	meters	In In	ches
SYMBOL	COMMON D	IMENSIONS	COMMON D	IMENSIONS
	MIN	MAX	MIN	MAX
Α		1.20		.047
A1	0.05	0.15	.002	.006
A2	0.80	1.05	.032	.041
b	0.17	0.27	.007	.011
С	0.09	0.20	.0035	.008
D	SEE VAF	RIATIONS	SEE VAF	RIATIONS
E	8.10 E	BASIC	0.319	BASIC
E1	6.00	6.20	.236	.244
е	0.50 E	BASIC	0.020	BASIC
L	0.45	0.75	.018	.030
N	SEE VARIATIONS		SEE VARIATIONS	
а	0°	8°	0°	8°
aaa		0.10		.004

VARIATIONS

N	D mm.		D (inch)	
N	MIN	MAX	MIN	MAX
48	12.40	12.60	.488	.496

Reference Doc.: JEDEC Publication 95, MO-153

10-0039

Ordering Information

ICS9DB801yGLFT

Revision History

Rev.	Issue Date	Description	Page #
0.10	4/4/0005	Updated Operating Supply Current Spec from Input/Supply/Common Output Parameters table.	7 10 17
0.10	4/4/2005	Updated Ordering Information from "Lead Free" to "Annealed Lead Free". Updated Min/May DW and a lead Free or "Annealed Lead Free".	7,16-17
		 Updated Min/Max BW spec Added 50-200MHz nomenclature to data sheet to indicate B rev limits 	
0.20	4/8/2005	3. Released	1, 7
Α	4/8/2005	Release to Final	
		 Added Polarity Table. Updated Electrical Characteristics. Updated LF Ordering Information from "Annealed Lead Free" to "RoHS 	1, 7,
В	9/7/2006	Compliant".	16-17