2.5V LVDS, 1:2 CLOCK BUFFER TERABUFFER ${ }^{\text {TM }}$ II

General Description

The IDT5T9302 2.5V differential clock buffer is a user-selectable differential input to two LVDS outputs. The fanout from a differential input to two LVDS outputs reduces loading on the preceding driver and provides an efficient clock distribution network. The IDT5T9302 can act as a translator from a differential HSTL, eHSTL, LVEPECL (2.5V), LVPECL (3.3V), CML, or LVDS input to LVDS outputs. A single-ended $3.3 \mathrm{~V} / 2.5 \mathrm{~V}$ LVTTL input can also be used to translate to LVDS outputs. The redundant input capability allows for an asynchronous change-over from a primary clock source to a secondary clock source. Selectable reference inputs are controlled by SEL.
The IDT5T9302 outputs can be asynchronously enabled/disabled. When disabled, the outputs will drive to the value selected by the GL pin. Multiple power and grounds reduce noise.

Features

- Guaranteed low skew: 5ps (typical)
- Very low duty cycle distortion: 20ps (typical)
- High speed propagation delay: 1.35 ns (typical)
- Up to 450 MHz operation
- Selectable inputs
- Hot insertable and over-voltage tolerant inputs
- 3.3V/2.5V LVTTL, HSTL eHSTL, LVEPECL (2.5V), LVPECL (3.3V), CML or LVDS input interface
- Selectable differential inputs to two LVDS outputs
- Power-down mode
- 2.5 V VD
- $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ ambient operating temperature
- Available in TSSOP package

Applications

- Clock distribution

Pin Assignment

GND 1	20	$\square A 2$
$\overline{\mathrm{PD}} \square 2$	19	$\square \overline{\mathrm{A} 2}$
nc $\square 3$	18	$\square \mathrm{GND}$
$\mathrm{V}_{\mathrm{DD}} \square 4$	17	$\square \mathrm{V}_{\mathrm{DD}}$
Q1 $\square 5$	16	$\square \overline{\mathrm{Q} 2}$
Q1 $\square 6$	15	\square Q2
$\mathrm{V}_{\mathrm{DD}} \square 7$	14	$\square \mathrm{V}_{\mathrm{DD}}$
SEL 8	13	$\square \mathrm{GL}$
$\overline{\mathrm{G}} \square 9$	12	$\square \overline{\mathrm{A} 1}$
GND 10	11	$\square \mathrm{A} 1$

20-Lead TSSOP

$4.4 \mathrm{~mm} \times 6.5 \mathrm{~mm} \times 1.0 \mathrm{~mm}$ package body
G Package
Top View

[^0]
Block Diagram

Table 1. Pin Descriptions

Name	Type		Description
A[1:2]	Input	Adjustable ${ }^{(1,4)}$	Clock input. A[1:2] is the "true" side of the differential clock input.
$\overline{\mathrm{A}}$ [1:2]	Input	Adjustable ${ }^{(1,4)}$	Complementary clock inputs. $\overline{A[1: 2]}$ is the complementary side of $A[1: 2]$. For LVTTL single-ended operation, $\overline{\mathrm{A}[1: 2]}$ should be set to the desired toggle voltage for A [1:2]: 3.3V LVTTL VREF $=1650 \mathrm{mV}$ 2.5V LVTTL VREF $=1250 \mathrm{mV}$
$\overline{\mathrm{G}}$	Input	LVTTL	Gate control for differential outputs Q1, $\overline{\text { Q1 }}$ and Q2, $\overline{\text { Q2 }}$. When $\overline{\mathrm{G}}$ is LOW, the differential outputs are active. When $\overline{\mathrm{G}}$ is HIGH, the differential outputs are asynchronously driven to the level designated by GL ${ }^{(2)}$. See Table 3A.
GL	Input	LVTTL	Specifies output disable level. If HIGH, "true" outputs disable HIGH and "complementary" outputs disable LOW. If LOW, "true" outputs disable LOW and "complementary" outputs disable HIGH. See Table 3A.
Q[1:2]	Output	LVDS	Clock outputs.
$\overline{\mathrm{Q}\{1: 2\}}$	Output	LVDS	Complementary clock outputs.
SEL	Input	LVTTL	Reference clock select. When LOW, selects A2 and $\overline{\text { A2 }}$. When HIGH, selects A1 and $\overline{\mathrm{A} 1}$. See Table 3B.
$\overline{P D}$	Input	LVTTL	Power-down control. Shuts off entire chip. If LOW, the device goes into low power mode. Inputs and outputs are disabled. Both "true" and "complementary" outputs will pull to VDD. Set HIGH for normal operation. ${ }^{(3)}$
$V_{\text {DD }}$		Power	Power supply for the device core and inputs.
GND		Power	Power supply return for all power.
nc			No connect; recommended to connect to GND.

NOTES:

1. Inputs are capable of translating the following interface standards:

Single-ended 3.3V and 2.5V LVTTL levels
Differential HSTL and eHSTL levels
Differential LVEPECL (2.5V) and LVPECL (3.3V) levels
Differential LVDS levels
Differential CML levels
2. Because the gate controls are asynchronous, runt pulses are possible. It is the user's responsibility to either time the gate control signals to minimize the possibility of runt pulses or be able to tolerate them in down stream circuitry.
3. It is recommended that the outputs be disabled before entering power-down mode. It is also recommended that the outputs remain disabled until the device completes power-up after asserting PD.
4. The user must take precautions with any differential input interface standard being used in order to prevent instability when there is no input signal.

Table 2. Pin Characteristics ($\mathrm{TA}=+\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{F}=\mathbf{1 . 0 \mathrm { MHz } \text {) }) ~}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C_{IN}	Input Capacitance				3	pF

NOTE: This parameter is measured at characterization but not tested.

Function Tables

Table 3A. Gate Control Output Table

Control Output		Outputs	
GL	$\overline{\mathbf{G}}$	Q[1:2]	$\overline{\text { Q[1:2] }}$
0	0	Toggling	Toggling
0	1	LOW	HIGH
1	0	Toggling	Toggling
1	1	HIGH	LOW

Table 3B. Input Selection Table

Selection SEL pin	Inputs
0	$\mathrm{~A} 2 / \overline{\mathrm{A} 2}$
1	$\mathrm{~A} 1 / \overline{\mathrm{A} 1}$

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Power Supply Voltage, V_{DD}	-0.5 V to +3.6 V
Input Voltage, V_{I}	-0.5 V to +3.6 V
Output Voltage, V_{O} Not to exceed 3.6V	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Storage Temperature, $\mathrm{T}_{\text {STG }}$	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Junction Temperature, T_{J}	$150^{\circ} \mathrm{C}$

Recommended Operating Range

Symbol	Description	Minimum	Typical	Maximum	Units
TA^{V}	Ambient Operating Temperature	-40	+25	+85	${ }^{\circ} \mathrm{C}$
VDD	Internal Power Supply Voltage	2.3	2.5	2.7	V

DC Electrical Characteristics

Table 4A. LVDS Power Supply DC Characteristics ${ }^{(1)}$, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical ${ }^{(2)}$	Maximum	Units
$\mathrm{I}_{\mathrm{DDQ}}$	Quiescent V_{DD} Power Supply Current	$\overline{V_{D D}}=\text { Max., }$ All Input Clocks = LOW ${ }^{(2)}$; Outputs enabled		190		mA
${ }^{\text {TOT }}$	Total Power V ${ }_{\text {DD }}$ Supply Current	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V} ; \\ \mathrm{F}_{\text {REFERENCE }} \text { Clock }=450 \mathrm{MHz} \end{gathered}$		190		mA
$\mathrm{I}_{\text {PD }}$	Total Power Down Supply Current	$\overline{\mathrm{PD}}=$ LOW		2		mA

NOTE 1: These power consumption characteristics are for all the valid input interfaces and cover the worst case conditions.
NOTE 2: The true input is held LOW and the complementary input is held HIGH.
Table 4B. LVCMOS/LVTTL DC Characteristics ${ }^{(1)}$, $T_{A}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical ${ }^{(2)}$	Maximum	Units
I_{H}	Input High Current	$\mathrm{V}_{\mathrm{DD}}==2.7 \mathrm{~V}$			± 5	$\mu \mathrm{~A}$
I_{IL}	Input Low Current	$\mathrm{V}_{\mathrm{DD}}==2.7 \mathrm{~V}$			± 5	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{IK}}$	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$		-0.7	-1.2	V
$\mathrm{~V}_{\mathrm{IN}}$	DC Input Voltage		-0.3		3.6	V
$\mathrm{~V}_{\mathrm{IH}}$	DC Input High Voltage		1.7			V
$\mathrm{~V}_{\mathrm{IL}}$	DC Input Low Voltage				0.7	V
$\mathrm{~V}_{\mathrm{THI}}$	DC Input Threshold Crossing Voltage			$\mathrm{V}_{\mathrm{DD}} / 2$		V
$\mathrm{~V}_{\text {REF }}$	Single-Ended Reference Voltage ${ }^{(3)}$	3.3 V LVTTL		1.65		V
		2.5 V LVTTL		1.25		V

NOTE 1: See Recommended Operating Range table.
NOTE 2: Typical values are at $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
NOTE 3: For $\mathrm{A}[1: 2]$ single-ended operation, $\overline{\mathrm{A}}[1: 2]$ is tied to a DC reference voltage.

Table 4C. Differential DC Characteristics ${ }^{(1)}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical ${ }^{(2)}$	Maximum
Units					
I_{IH}	Input High Current	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$			± 5
I_{IL}	Input Low Current	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$			$\pm \mathrm{A}$
V_{IK}	Clamp Diode Voltage	$\mathrm{V}_{\mathrm{DD}}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$		-0.7	-1.2
$\mathrm{~V}_{\mathrm{IN}}$	DC Input Voltage		-0.3		V
$\mathrm{~V}_{\mathrm{DIF}}$	DC Differential Voltage ${ }^{(3)}$		0.1		3.6
$\mathrm{~V}_{\mathrm{CM}}$	DC Common Mode Input Voltage		0.05	V	

NOTE 1: See Recommended Operating Range table.
NOTE 2: Typical values are at $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
NOTE 3: VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.
NOTE 4: Vсм specifies the maximum allowable range of (VTR + VCP) /2.

Table 4D. LVDS DC Characteristics ${ }^{(1)}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical ${ }^{(2)}$	Maximum	Units
$\mathrm{V}_{\mathrm{OT}(+)}$	Differential Output Voltage for the True Binary State		247		454	mV
$\mathrm{V}_{\mathrm{OT}(-)}$	Differential Output Voltage for the False Binary State		247		454	mV
$\Delta \mathrm{V}_{\text {OT }}$	Change in V_{OT} Between Complementary Output States				50	mV
V_{OS}	Output Common Mode Voltage (Offset Voltage)		1.125	1.2	1.375	V
$\Delta \mathrm{V}_{\text {OS }}$	Change in V_{OS} Between Complementary Output States				50	mV
los	Outputs Short Circuit Current	$\mathrm{V}_{\text {OUT+ and }} \mathrm{V}_{\text {OUT- }}=0 \mathrm{~V}$		12	24	mA
IOSD	Differential Outputs Short Circuit Current	$\mathrm{V}_{\text {OUT+ }}=\mathrm{V}_{\text {OUT- }}$		6	12	mA

NOTE 1: See Recommended Operating Range table.
NOTE 2: Typical values are at $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.

AC Electrical Characteristics

Table 5A. HSTL Differential Input AC Characteristics, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Value	Units
$\mathrm{V}_{\mathrm{DIF}}$	Input Signal Swing ${ }^{(1)}$	1	V
$\mathrm{~V}_{\mathrm{X}}$	Differential Input Signal Crossing Point ${ }^{(2)}$	750	mV
D_{H}	Duty Cycle	50	$\%$
$\mathrm{~V}_{\mathrm{THI}}$	Input Timing Measurement Reference Level ${ }^{(3)}$	Crossing Point	V
$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	Input Signal Edge Rate ${ }^{(4)}$	2	$\mathrm{~V} / \mathrm{ns}$

NOTE 1.The 1 V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification under actual use conditions.
NOTE 2.A 750 mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Vx specification under actual use conditions.
NOTE 3.In all cases, input waveform timing is marked at the differential cross-point of the input signals.
NOTE 4.The input signal edge rate of $2 \mathrm{~V} / \mathrm{ns}$ or greater is to be maintained in the 20% to 80% range of the input waveform.

Table 5B. eHSTL AC Differential Input Characteristics, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Value	Units
$\mathrm{V}_{\mathrm{DIF}}$	Input Signal Swing ${ }^{(1)}$	1	V
$\mathrm{~V}_{\mathrm{X}}$	Differential Input Signal Crossing Point ${ }^{(2)}$	900	mV
D_{H}	Duty Cycle	50	$\%$
$\mathrm{~V}_{\mathrm{THI}}$	Input Timing Measurement Reference Level ${ }^{(3)}$	Crossing Point	V
$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	Input Signal Edge Rate ${ }^{(4)}$	2	$\mathrm{~V} / \mathrm{ns}$

NOTE 1.The 1 V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification under actual use conditions.
NOTE 2.A 900 mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Vx specification under actual use conditions.
NOTE 3.In all cases, input waveform timing is marked at the differential cross-point of the input signals.
NOTE 4.The input signal edge rate of $2 \mathrm{~V} / \mathrm{ns}$ or greater is to be maintained in the 20% to 80% range of the input waveform.

Table 5C. LVEPECL (2.5V) and LVPECL (3.3V) Differential Input AC Characteristics, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Maximum	Units	
$\mathrm{V}_{\mathrm{DIF}}$	Input Signal Swing ${ }^{(1)}$	732	mV	
V_{X}	Differential Input Cross Point Voltage ${ }^{(2)}$	LVEPECL	1082	mV
		LVPECL	1880	mV
D_{H}	Duty Cycle	50	$\%$	
$\mathrm{~V}_{\mathrm{THI}}$	Input Timing Measurement Reference Level ${ }^{(3)}$	Crossing Point	V	
$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	Input Signal Edge Rate ${ }^{(4)}$	2	$\mathrm{~V} / \mathrm{ns}$	

NOTE 1.The 732 mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification under actual use conditions.
NOTE 2.A 1082 mV LVEPECL (2.5V) and 1880 LVPECL (3.3V) crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Vx specification under actual use conditions.
NOTE 3.In all cases, input waveform timing is marked at the differential cross-point of the input signals.
NOTE 4.The input signal edge rate of $2 \mathrm{~V} / \mathrm{ns}$ or greater is to be maintained in the 20% to 80% range of the input waveform.

Table 5D. LVDS Differential Input AC Characteristics, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Maximum	Units
$\mathrm{V}_{\mathrm{DIF}}$	Input Signal Swing ${ }^{(1)}$	400	mV
V_{X}	Differential Input Cross Point Voltage ${ }^{(2)}$	1.2	V
D_{H}	Duty Cycle	50	$\%$
$\mathrm{~V}_{\mathrm{THI}}$	Input Timing Measurement Reference Level ${ }^{(3)}$	Crossing Point	V
$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	Input Signal Edge Rate ${ }^{(4)}$	2	$\mathrm{~V} / \mathrm{ns}$

NOTE 1.The 400 mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the VDIF (AC) specification under actual use conditions.
NOTE 2.A 1.2 V crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. This device meets the Vx specification under actual use conditions.
NOTE 3.In all cases, input waveform timing is marked at the differential cross-point of the input signals.
NOTE 4.The input signal edge rate of $2 \mathrm{~V} / \mathrm{ns}$ or greater is to be maintained in the 20% to 80% range of the input waveform.

Table 5E. AC Differential Input Characteristics ${ }^{(1)}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Minimum	Typical	Maximum	Units
$\mathrm{V}_{\mathrm{DIF}}$	AC Differential Voltage $^{(2)}$	0.1		3.6	
$\mathrm{~V}_{\mathrm{X}}$	Differential Input Cross Point Voltage	0.05		$\mathrm{~V}_{\mathrm{DD}}$	
V_{CM}	Common Mode Input Voltage Range ${ }^{(3)}$	0.05		V	
$\mathrm{~V}_{\text {IN }}$	Input Voltage	-0.3		$\mathrm{~V}_{\mathrm{DD}}$	V

NOTE 1.The output will not change state until the inputs have crossed and the minimum differential voltage range defined by $\mathrm{V}_{\text {DIF }}$ has been met or exceeded.
NOTE 2. $\mathrm{V}_{\text {DIF }}$ specifies the minimum input voltage $\left(\mathrm{V}_{T R}-\mathrm{V}_{\mathrm{CP}}\right)$ required for switching where $\mathrm{V}_{T R}$ is the "true" input level and V_{CP} is the "complement" input level. The AC differential voltage must be achieved to guarantee switching to a new state.
NOTE 3.IV $\mathrm{CM}_{\mathrm{CM}}$ specified the maximum allowable range of $\left(\mathrm{V}_{\mathrm{TR}}+\mathrm{V}_{\mathrm{CP}}\right) / 2$.

Table 5E. AC Characteristics ${ }^{(1,5)}$, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
tsk(o)	Same Device Output Pin-to-Pin Skew ${ }^{(2)}$			5		ps
tsk(p)	Pulse Skew ${ }^{(3)}$			20		ps
tsk(pp)	Part-to-Part Skew ${ }^{(4)}$			TBD		ps
$\mathrm{tp}_{\mathrm{LH}}$	Propagation Delay, Low-to-High	A Crosspoint to $\mathrm{Qn} / \overline{\mathrm{Qn}}$ Crosspoint		1.35		ns
$\mathrm{tp}_{\mathrm{HL}}$	Propagation Delay, High-to-Low			1.35		ns
fo	Frequency Range ${ }^{(6)}$				450	MHz
$t_{\text {PGE }}$	Output Gate Enable Crossing VTHI-to-Qn/Qn Crosspoint				3.5	ns
$t_{\text {PGD }}$	Output Gate Enable Crossing VTHI-to-Qn/Qn Crosspoint Driven to Designated Level				3.5	ns
$\mathrm{t}_{\text {PWRDN }}$	PD Crossing $\mathrm{V}_{\text {THI- }}$-to-Qn $=\mathrm{V}_{\mathrm{DD}}, \overline{\mathrm{Qn}}=\mathrm{V}_{\mathrm{DD}}$				100	$\mu \mathrm{S}$
$t_{\text {PWRUP }}$	Output Gate Disable Crossing V_{TH} to Qn/Qn Driven to Designated Level				100	$\mu \mathrm{S}$

NOTE 1. AC propagation measurements should not be taken within the first 100 cycles of startup.
NOTE 2. Skew measured between crosspoints of all differential output pairs under identical input and output interfaces, transitions and load conditions on any one device.
NOTE 3. Skew measured is the difference between propagation delay times $\mathrm{tp}_{\mathrm{HL}}$ and $\mathrm{tp}_{\mathrm{LH}}$ of any differential output pair under identical input and output interfaces, transitions and load conditions on any one device.
NOTE 4. Skew measured is the magnitude of the difference in propagation times between any single differential output pair of two devices, given identical transitions and load conditions at identical VDD levels and temperature.
NOTE 5. All parameters are tested with a 50% input duty cycle.
NOTE 6. Guaranteed by design but not production tested.

Differential AC Timing Waveforms

Output Propagation and Skew Waveforms

NOTE 1: Pulse skew is calculated using the following expression:
$t \mathrm{sk}(\mathrm{p})=\left|\mathrm{tp}_{\mathrm{HL}}-\operatorname{tp}_{\mathrm{LH}}\right|$
Note that the $\mathrm{tp}_{\mathrm{HL}}$ and $\mathrm{tp}_{\mathrm{LH}}$ shown above are not valid measurements for this calculation because they are not taken from the same pulse. NOTE 2: AC propagation measurements should not be taken within the first 100 cycles of startup.

Differential Gate Disabled/Enable Showing Runt Pulse Generation

NOTE 1: As shown, it is possible to generate runt pulses on gate disable and enable of the outputs. It is the user's responsibility to time the $\overline{\mathrm{G}}$ signal to avoid this problem.

Power Down Timing

NOTE 1: It is recommended that outputs be disabled before entering power-down mode. It is also recommended that the outputs remain disabled until the device completes power-up after asserting PD.
NOTE 2: The Power Down Timing diagram assumes that GL is HIGH.
NOTE 3: It should be noted that during power-down mode, the outputs are both pulled to V_{DD}. In the Power Down Timing diagram this is shown when $\mathrm{Qn} / \overline{\mathrm{Qn}}$ goes to $\mathrm{V}_{\mathrm{DIF}}=0$.

Test Circuit for Differential Input

Table 6A. Differential Input Test Conditions

Symbol	$\mathrm{V}_{\mathrm{DD}}=\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	Unit
$\mathrm{V}_{\mathrm{THI}}$	Crossing of A and $\overline{\mathrm{A}}$	V

Test Circuit for DC Outputs and Power Down Tests

Test Circuit for Propagation, Skew, and Gate Enable/Disable Timing

Table 6B. Differential Input Test Conditions

Symbol	$\mathbf{V}_{\mathrm{DD}}=\mathbf{2 . 5 V} \mathbf{\mathbf { 0 . 2 V }}$	Unit
C_{L}	$0^{(1)}$	pF
	$8^{(1,2)}$	pF
R_{L}	50	Ω

NOTE 1: Specifications only apply to "Normal Operations" test condition. The $T_{I A} / E_{I A}$ specification load is for reference only. NOTE 2: The scope inputs are assumed to have a $2 p F$ load to ground. $T_{I A} / E_{I A}-644$ specifies $5 p F$ between the output pair. With $C_{L}=8 p F$, this gives the test circuit appropriate $5 p F$ equivalent load.

Ordering Information

Table 7. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
5T9302PGI	IDT5T9302PGI	20 Lead TSSOP	Tray	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
5T9302PGI8	IDT5T9302PGI	20 Lead TSSOP	Tape \& Reel	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
5T9302PGGI	IDT5T9302PGGI	"Lead-Free" 20 Lead TSSOP	Tray	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
5T9302PGGI8	IDT5T9302PGGI	"Lead-Free" 20 Lead TSSOP	Tape \& Reel	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Contact Information:

www.IDT.com

Sales

800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775
www.IDT.com/go/contactIDT

Technical Support
netcom@idt.com
+480-763-2056

Corporate Headquarters
Integrated Device Technology, Inc.
6024 Silver Creek Valley Road
San Jose, CA 95138
United States
800-345-7015 (inside USA)
+408-284-8200 (outside USA)

[^0]: The Preliminary Information presented herein represents a product in pre-production. The noted characteristics are based on initial product characterization and/or qualification Integrated Device Technology, Incorporated (IDT) reserves the right to change any circuitry or specifications without notice.

