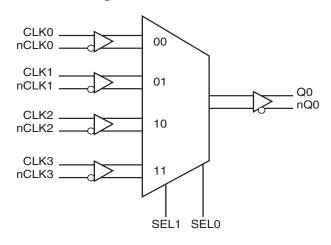
DATA SHEET


General Description

The ICS85357I-01 is a 4:1 or 2:1 Differential-to-3.3V LVPECL / ECL clock multiplexer which can operate up to 750MHz. The ICS85357I-01 has 4 selectable clock inputs. The CLK, nCLK pair can accept most standard differential input levels. The device can operate using a 3.3V LVPECL (V_{EE} = 0V, V_{CC} = 3.135V to 3.465V) or 3.3V ECL (V_{CC} = 0V, $V_{EE} = -3.135V$ to -3.465V). The fully differential architecture and low propagation delay make it ideal for use in clock distribution circuits. The select pins have internal pulldown resistors. Leaving one input unconnected (pulled to logic low by the internal resistor) will transform the device into a 2:1 multiplexer. The SEL1 pin is the most significant bit and the binary number applied to the select pins will select the same numbered data input (i.e., 00 selects CLK0, nCLK0).

Features

- High speed differential multiplexer. The device can be configured as either a 4:1 or 2:1 multiplexer
- One differential 3.3V LVPECL output
- Four selectable CLK, nCLK inputs
- CLK, nCLK pair can accept the following differential input levels: LVDS, LVPECL, LVHSTL, SSTL, HCSL
- Maximum output frequency: 750MHz
- Translates any single ended input signal to 3.3V LVPECL levels with resistor bias on nCLKx input
- Part-to-part skew: 415ps (maximum)
- Propagation delay: 1.5ns (maximum)
- LVPECL mode operating voltage supply range: $V_{CC} = 3.135V \text{ to } 3.465V, V_{EE} = 0V$
- ECL mode operating voltage supply range: V_{CC} = 0V, V_{EE} = -3.135V to -3.465V
- -40°C to 85°C ambient operating temperature
- Available in both standard (RoHS 5) and lead-free (RoHS 6) packages

Block Diagram

Pin Assignment

Vcc□	1	20	□Vcc
CLK0□	2	19	SEL1
nCLK0□	3	18	SEL0
CLK1□	4	17	□Vcc
nCLK1□	5	16	□ Q0
CLK2□	6	15	nQ0
nCLK2□	7	14	□Vcc
CLK3□	8	13	□nc
nCLK3□	9	12	□nc
V _{EE} □	10	11	☐ VEE

ICS85357I-01

20 Lead TSSOP

4.40mm x 6.50mm x 0.90mm body package

G Package

Top View

Table 1. Pin Descriptions

Number	Name	Т	уре	Description
1, 14, 17, 20	V _{CC}	Power		Positive supply pins.
2	CLK0	Input	Pulldown	Non-inverting differential clock input.
3	nCLK0	Input	Pullup	Inverting differential clock input.
4	CLK1	Input	Pulldown	Non-inverting differential clock input.
5	nCLK1	Input	Pullup	Inverting differential clock input.
6	CLK2	Input	Pulldown	Non-inverting differential clock input.
7	nCLK2	Input	Pullup	Inverting differential clock input.
8	CLK3	Input	Pulldown	Non-inverting differential clock input.
9	nCLK3	Input	Pullup	Inverting differential clock input.
10, 11	V_{EE}	Power		Negative supply pins.
12, 13	nc	Unused		No connect.
15, 16	nQ0, Q0	Output		Differential output pairs. LVPECL interface levels.
18	SEL0	Input	Pulldown	Clock select input. LVCMOS /LVTTL interface levels.
19	SEL1	Input	Pulldown	Clock select input. LVCMOS /LVTTL interface levels.

NOTE: Pullup and Pulldown refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ

Function Table

Table 3. Control Input Function Table

Inputs		Clock Out
SEL1	SEL0	CLK[0:3], nCLK[0:3]
0	0	CLK0, nCLK0
0	1	CLK1, nCLK1
1	0	CLK2, nCLK2
1	1	CLK3, nCLK3

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{CC}	4.6V
Inputs, V _I	-0.5V to V _{CC} + 0.5V
Outputs, I _O Continuous Current Surge Current	50mA 100mA
Package Thermal Impedance, θ_{JA}	73.2°C/W (0 lfpm)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{CC}	Positive Supply Voltage		3.135	3.3	3.465	V
I _{EE}	Power Supply Current				35	mA

Table 4B. LVCMOS/LVTTL DC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Voltage			2		V _{CC} + 0.3	V
V _{IL}	Input Low Voltage			-0.3		0.8	V
I _{IH}	Input High Current	SEL0, SEL1	$V_{CC} = V_{IN} = 3.465V$			150	μΑ
I _{IL}	Input Low Current	SEL0, SEL1	$V_{CC} = 3.465V, V_{IN} = 0V$	-5			μΑ

Table 4C. Differential DC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
	Innut High Current	CLK0, CLK1, CLK2, CLK3	V _{CC} = V _{IN} = 3.465V			150	μΑ
Iн	Input High Current	nCLK0, nCLK1, nCLK2, nCLK3	V _{CC} = V _{IN} = 3.465V			5	μΑ
	Input Low Current	CLK0, CLK1, CLK2, CLK3	V _{CC} = 3.465V, V _{IN} = 0V	-5			μΑ
I _{IL}	Input Low Current	nCLK0, nCLK1, nCLK2, nCLK3	V _{CC} = 3.465V, V _{IN} = 0V	-150			μΑ
V _{PP}	Peak to Peak Voltag	ge; NOTE 1		0.15		1.3	V
V _{CMR}	Common Mode Inpu NOTE 1, 2	ut Voltage;		V _{EE} + 0.5		V _{CC} - 0.85	V

NOTE 1: V_{IL} should not be less than -0.3V.

NOTE 2: Common Mode input voltage is defined as VIH.

Table 4D. LVPECL DC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

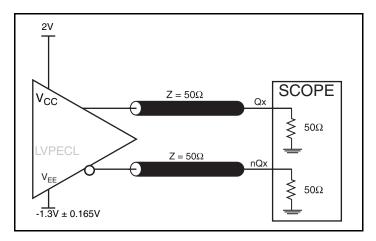
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{OH}	Output High Voltage; NOTE 1		V _{CC} - 1.4		V _{CC} - 0.9	V
V _{OL}	Output Low Voltage; NOTE 1		V _{CC} - 2.0		V _{CC} - 1.7	V
V _{SWING}	Peak-to-Peak Output Voltage Swing		0.6		1.0	V

NOTE 1: Outputs terminated with 50 $\!\Omega$ to V $_{\text{CC}}$ - 2V.

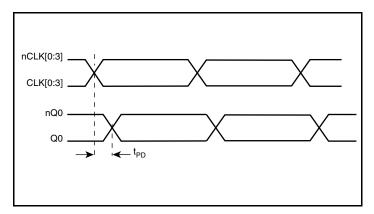
AC Electrical Characteristics

Table 5. AC Characteristics, $V_{CC} = 3.3V \pm 5\%$, $V_{EE} = 0V$, $T_A = -40^{\circ}C$ to 85°

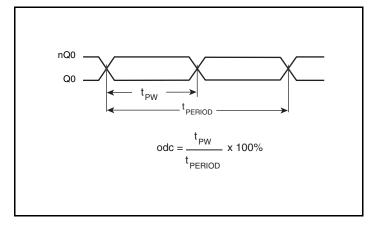
Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
f _{MAX}	Maximum Output Frequency				750	MHz
t _{PD}	Propagation Delay; NOTE 1		1		1.5	ns
tsk(pp)	Part-to-Part Skew; NOTE 2, 3				415	ps
t_R / t_F	Output Rise/Fall Time	20% to 80%	200		700	ps
odc	Output Duty Cycle		46		54	%

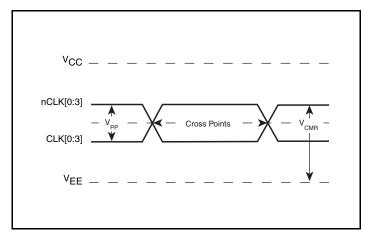

NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions.

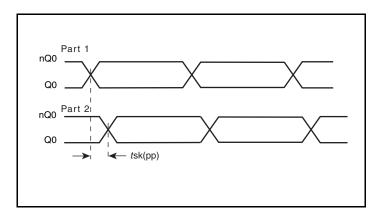
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.

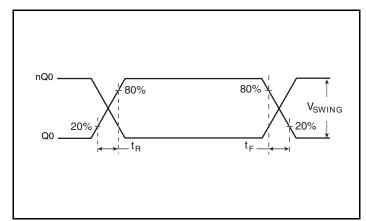

NOTE 2: Defined as skew between outputs on different devices operating at the same supply voltage, same temperature, same frequency and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at the differential cross points.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.


Parameter Measurement Information


3.3V LVPECL Output Load AC Test Circuit


Propagation Delay


Output Duty Cycle/Pulse Width/Period

Differential Input Level

Part-to-Part Skew

Output Rise/Fall Time

Application Information

Recommendations for Unused Input Pins

Inputs:

LVCMOS Control Pins

All control pins have internal pullups or pulldowns; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

CLK/nCLK Inputs

For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from CLK to ground.

Wiring the Differential Input to Accept Single-Ended Levels

Figure 1 shows how a differential input can be wired to accept single ended levels. The reference voltage $V_{REF} = V_{CC}/2$ is generated by the bias resistors R1 and R2. The bypass capacitor (C1) is used to help filter noise on the DC bias. This bias circuit should be located as close to the input pin as possible. The ratio of R1 and R2 might need to be adjusted to position the V_{REF} in the center of the input voltage swing. For example, if the input clock swing is 2.5V and $V_{CC} = 3.3V$, R1 and R2 value should be adjusted to set V_{REF} at 1.25V. The values below are for when both the single ended swing and V_{CC} are at the same voltage. This configuration requires that the sum of the output impedance of the driver (Ro) and the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the input will attenuate the signal in half. This can be done in one of two ways. First, R3 and R4 in parallel should equal the transmission

line impedance. For most 50Ω applications, R3 and R4 can be 100Ω . The values of the resistors can be increased to reduce the loading for slower and weaker LVCMOS driver. When using single-ended signaling, the noise rejection benefits of differential signaling are reduced. Even though the differential input can handle full rail LVCMOS signaling, it is recommended that the amplitude be reduced. The datasheet specifies a lower differential amplitude, however this only applies to differential signals. For single-ended applications, the swing can be larger, however $V_{\rm IL}$ cannot be less than -0.3V and $V_{\rm IH}$ cannot be more than $V_{\rm CC}$ + 0.3V. Though some of the recommended components might not be used, the pads should be placed in the layout. They can be utilized for debugging purposes. The datasheet specifications are characterized and guaranteed by using a differential signal.

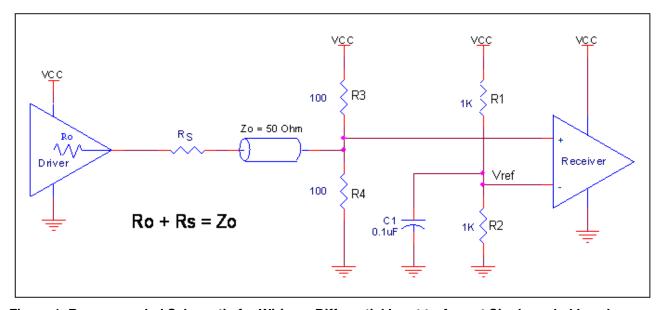


Figure 1. Recommended Schematic for Wiring a Differential Input to Accept Single-ended Levels

Differential Clock Input Interface

The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both V_{SWING} and V_{OH} must meet the V_{PP} and V_{CMR} input requirements. *Figures 2A to 2F* show interface examples for the CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only.

Figure 2A. CLK/nCLK Input

Driven by an IDT Open Emitter

HiPerClockS LVHSTL Driver

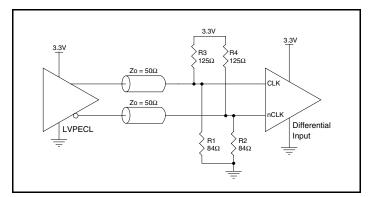


Figure 2C. CLK/nCLK Input
Driven by a 3.3V LVPECL Driver

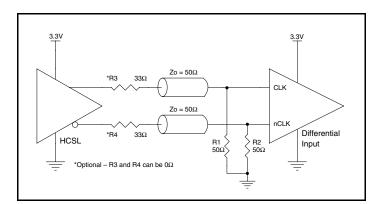


Figure 2E. CLK/nCLK Input
Driven by a 3.3V HCSL Driver

Please consult with the vendor of the driver component to confirm the driver termination requirements. For example, in Figure 2A, the input termination applies for IDT open emitter LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation.

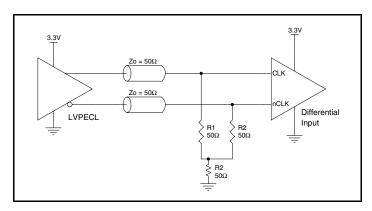


Figure 2B. CLK/nCLK Input
Driven by a 3.3V LVPECL Driver

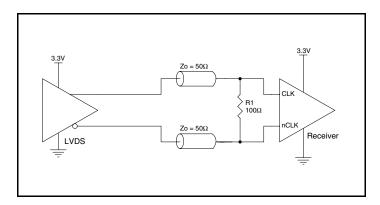


Figure 2D. CLK/nCLK Input
Driven by a 3.3V LVDS Driver

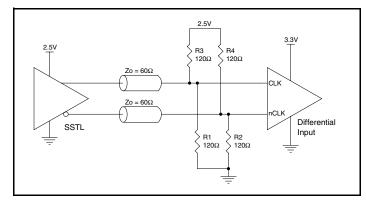


Figure 2F. CLK/nCLK Input
Driven by a 2.5V SSTL Driver

Termination for 3.3V LVPECL Outputs

The clock layout topology shown below is a typical termination for LVPECL outputs. The two different layouts mentioned are recommended only as guidelines.

The differential outputs are low impedance follower outputs that generate ECL/LVPECL compatible outputs. Therefore, terminating resistors (DC current path to ground) or current sources must be used for functionality. These outputs are designed to drive 50Ω

3.3V $Z_{o} = 50\Omega$ R1 50Ω R1 $S0\Omega$ $S0\Omega$

Figure 3A. 3.3V LVPECL Output Termination

transmission lines. Matched impedance techniques should be used to maximize operating frequency and minimize signal distortion. *Figures 3A and 3B* show two different layouts which are recommended only as guidelines. Other suitable clock layouts may exist and it would be recommended that the board designers simulate to guarantee compatibility across all printed circuit and clock component process variations.

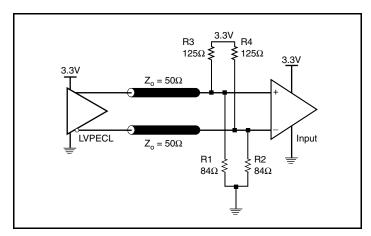


Figure 3B. 3.3V LVPECL Output Termination

Power Considerations

This section provides information on power dissipation and junction temperature for the ICS85357I-01. Equations and example calculations are also provided.

1. Power Dissipation.

The total power dissipation for the ICS85357I-01 is the sum of the core power plus the power dissipated in the load(s).

The following is the power dissipation for $V_{CC} = 3.3V + 5\% = 3.465V$, which gives worst case results.

NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.

- Power (core)_{MAX} = V_{CC MAX} * I_{EE MAX} = 3.465V * 35mA = 121.3mW
- Power (outputs)_{MAX} = 30mW/Loaded Output pair

Total Power_MAX (3.465V, with all outputs switching) = 121.3mW + 30mW = 151.3mW

2. Junction Temperature.

Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond wire and bond pad temperature remains below 125°C.

The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A

Tj = Junction Temperature

 θ_{JA} = Junction-to-Ambient Thermal Resistance

Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)

T_A = Ambient Temperature

In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming a moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6° C/W per Table 6 below.

Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:

 $85^{\circ}\text{C} + 0.151\text{W} * 66.6^{\circ}\text{C/W} = 95.05^{\circ}\text{C}$. This is below the limit of 125°C .

This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of board (multi-layer).

Table 6. Thermal Resistance θ_{JA} for 20 Lead TSSOP, Forced Convection

θ_{JA} by Velocity					
Linear Feet per Minute	0	200	500		
Single-Layer PCB, JEDEC Standard Test Boards	114.5°C/W	98.0°C/W	88.0°C/W		
Multi-Layer PCB, JEDEC Standard Test Boards	73.2°C/W	66.6°C/W	63.5°C/W		
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.					

3. Calculations and Equations.

The purpose of this section is to calculate the power dissipation for the LVPECL output pair.

LVPECL output driver circuit and termination are shown in Figure 4.

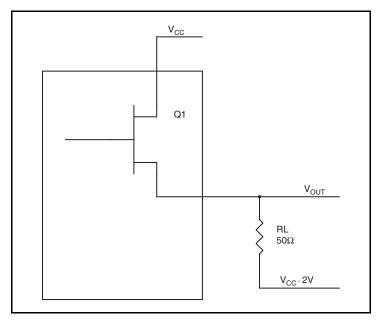


Figure 4. LVPECL Driver Circuit and Termination

To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination voltage of V_{CC} – 2V.

- For logic high, $V_{OUT} = V_{OH_MAX} = V_{CC_MAX} 0.9V$ $(V_{CC_MAX} V_{OH_MAX}) = 0.9V$
- For logic low, $V_{OUT} = V_{OL_MAX} = V_{CC_MAX} 1.7V$ $(V_{CC_MAX} V_{OL_MAX}) = 1.7V$

Pd_H is power dissipation when the output drives high.

Pd_L is the power dissipation when the output drives low.

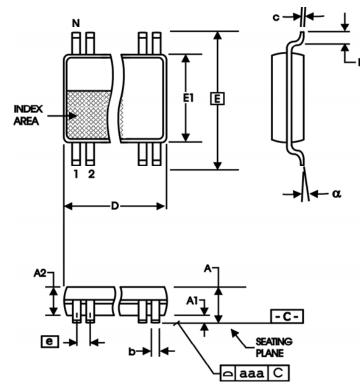
$$Pd_H = [(V_{OH_MAX} - (V_{CC_MAX} - 2V))/R_L] * (V_{CC_MAX} - V_{OH_MAX}) = [(2V - (V_{CC_MAX} - V_{OH_MAX}))/R_L] * (V_{CC_MAX} - V_{OH_MAX}) = [(2V - 0.9V)/50\Omega] * 0.9V = \textbf{19.8mW}$$

$$Pd_L = [(V_{OL_MAX} - (V_{CC_MAX} - 2V))/R_L] * (V_{CC_MAX} - V_{OL_MAX}) = [(2V - (V_{CC_MAX} - V_{OL_MAX}))/R_L] * (V_{CC_MAX} - V_{OL_MAX}) = [(2V - 1.7V)/50\Omega] * 1.7V = \textbf{10.2mW}$$

Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW

Reliability Information

Table 7. θ_{JA} vs. Air Flow Table for a 20 Lead TSSOP


θ_{JA} by Velocity					
Linear Feet per Minute	0	200	500		
Single-Layer PCB, JEDEC Standard Test Boards	114.5°C/W	98.0°C/W	88.0°C/W		
Multi-Layer PCB, JEDEC Standard Test Boards	73.2°C/W	66.6°C/W	63.5°C/W		
NOTE: Most modern PCB designs use multi-layered bo	ards. The data in the second	d row pertains to most design	S.		

Transistor Count

The transistor count for ICS85357I-01 is: 400

Package Outline and Package Dimensions

Package Outline - G Suffix for 20 Lead TSSOP

Table 8. Package Dimensions

All Dimensions in Millimeters					
Symbol	Minimum Maximum				
N	20				
Α		1.20			
A 1	0.05	0.15			
A2	0.80	1.05			
b	0.19	0.30			
С	0.09	0.20			
D	6.40	6.60			
E	6.40 Basic				
E1	4.30	4.50			
е	0.65 Basic				
L	0.45	0.75			
α	0°	8°			
aaa		0.10			

Reference Document: JEDEC Publication 95, MO-153

Ordering Information

Table 9. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
85357AGI-01	ICS85357AI01	20 Lead TSSOP	Tube	-40°C to 85°C
85357AGI-01T	ICS85357AI01	20 Lead TSSOP	2500 Tape & Reel	-40°C to 85°C
85357AGI-01LF	ICS5357AI01L	"Lead-Free" 20 Lead TSSOP	Tube	-40°C to 85°C
85357AGI-01LFT	ICS5357AI01L	"Lead-Free" 20 Lead TSSOP	2500 Tape & Reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History Sheet

Rev	Table	Page	Description of Change	Date	
	T9		Updated datasheet's header/footer with IDT from ICS.		
Α		12	Removed ICS prefix from Part/Order Number column.	7/29/10	
		14	Added Contact Page.		
Т	T4C	3	Differential DC Characteristics Table - updated notes.		
	T5	4	AC Characteristics Table - added thermal note.		
A		6	Updated Wiring the Differential Input to Accept Single-ended Levels.	0/4/40	
		7	Updated Differential Clock Input Interface.	9/1/10	
	Т9	12	Ordering Information Table - added LF marking.		
			Converted datasheet format.		

We've Got Your Timing Solution

6024 Silver Creek Valley Road San Jose, California 95138 **Sales**

800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775

www.IDT.com/go/contactIDT

Technical Support netcom@idt.com

netcom@idt.cor +480-763-2056

DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.

Copyright 2010. All rights reserved.