Low Skew, 1-to-8 Differential/LVCMOS-to-LVCMOS Fanout Buffer **DATA SHEET** ### GENERAL DESCRIPTION The ICS8308I is a low-skew, 1-to-8 Fanout Buffer and a member of the HiPerClockS™ family of High Performance Clock Solutions from IDT. The ICS8308I has two selectable clock inputs. The CLK, nCLK pair can accept most differential input levels. The LVCMOS_CLK can accept LVCMOS or LVTTL input levels. The low impedance LVCMOS/LVTTL outputs are designed to drive 50Ω series or parallel terminated transmission lines. The effective fanout can be increased from 8 to 16 by utilizing the ability of the outputs to drive two series terminated transmission lines. The ICS8308I is characterized for 3.3V core/3.3V output, 3.3V core/2.5V output or 2.5V core/2.5V output operation. Guaranteed output and part-part skew characteristics make the 8308l ideal for those clock distribution applications requiring well defined performance and repeatability. ### **FEATURES** - Eight LVCMOS/LVTTL outputs, (7 Ω typical output impedance) - Selectable LVCMOS_CLK or differential CLK, nCLK inputs - . CLK, nCLK pair can accept the following differential input levels: LVPECL, LVDS, LVHSTL, SSTL, HCSL - Maximum Output Frequency: 350MHz - Output Skew: (3.3V± 5%): 100ps (maximum) - Part to Part Skew: (3.3V± 5%): 1ns (maximum) - Supply Voltage Modes: (Core/Output) 3.3V/3.3V 3.3V/2.5V 2.5V/2.5V - -40°C to 85°C ambient operating temperature - Available in both standard (RoHS 5) and lead-free (RoHS 6) packages ### **BLOCK DIAGRAM** ### PIN ASSIGNMENT ### ICS83081 24-Lead, 173-MIL TSSOP 4.4mm x 7.8mm x 0.925mm body package **G** Package Top View TABLE 1. PIN DESCRIPTIONS | Number | Name | Т | уре | Description | |----------------------------------|----------------------------------|--------|----------|---| | 1, 11, 13, 15,
17, 19, 21, 23 | Q0, Q1, Q7, Q6,
Q5, Q4,Q3, Q2 | Output | | Clock outputs. LVCMOS / LVTTL interface levels. | | 2, 10, 14, 18, 22 | GND | Power | | Power supply ground. | | 3 | CLK_SEL | Input | Pullup | Clock select input. Selects LVCMOS clock input when HIGH. Selects CLK, nCLK inputs when LOW. See Table 3A. LVCMOS / LVTTL interface levels. | | 4 | LVCMOS_CLK | Input | Pullup | Clock input. LVCMOS / LVTTL interface levels. | | 5 | CLK | Input | Pullup | Non-inverting differential clock input. | | 6 | nCLK | Input | Pulldown | Inverting differential clock input. | | 7 | CLK_EN | Input | Pullup | Clock enable. LVCMOS / LVTTL interface levels. | | 8 | OE | Input | Pullup | Output enable. LVCMOS / LVTTL interface levels. See Table 3B. | | 9 | $V_{_{\mathrm{DD}}}$ | Power | | Core supply pin. | | 12, 16, 20, 24 | $V_{_{\mathrm{DDO}}}$ | Power | | Output supply pins. | NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values. TABLE 2. PIN CHARACTERISTICS | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------------|--|-----------------|---------|---------|---------|-------| | C _{IN} | Input Capacitance | | | 4 | | pF | | C _{PD} | Power Dissipation Capacitance (per output) | | | 12 | | pF | | R _{PULLUP} | Input Pullup Resistor | | | 51 | | kΩ | | R _{PULLDOWN} | Input Pulldown Resistor | | | 51 | | kΩ | | R _{out} | Output Impedance | | 5 | 7 | 12 | Ω | TABLE 3A. CLOCK SELECT FUNCTION TABLE | Control Input | Clock Input | | | | |---------------|------------------------|--|--|--| | CLK_SEL | Clock Input | | | | | 0 | CLK, nCLK is selected | | | | | 1 | LVCMOS_CLK is selected | | | | TABLE 3B. OE SELECT FUNCTION TABLE | Control Input | Output Operation | |---------------|--------------------------------------| | OE | Output Operation | | 0 | Outputs Q0:Q7 are in Hi-Z (disabled) | | 1 | Outputs Q0:Q7 are active (enabled) | TABLE 3C. CLOCK INPUT FUNCTION TABLE | | | Inputs | | Outputs | Innut to Output Made | Delevity | |---------|------------|----------------|----------------|---------|------------------------------|---------------| | CLK_SEL | LVCMOS_CLK | CLK | nCLK | Q0:Q7 | Input to Output Mode | Polarity | | 0 | _ | 0 | 1 | LOW | Differential to Single Ended | Non Inverting | | 0 | _ | 1 | 0 | HIGH | Differential to Single Ended | Non Inverting | | 0 | _ | 0 | Biased; NOTE 1 | LOW | Single Ended to Single Ended | Non Inverting | | 0 | _ | 1 | Biased; NOTE 1 | HIGH | Single Ended to Single Ended | Non Inverting | | 0 | _ | Biased; NOTE 1 | 0 | HIGH | Single Ended to Single Ended | Inverting | | 0 | _ | Biased; NOTE 1 | 1 | LOW | Single Ended to Single Ended | Inverting | | 1 | 0 | _ | _ | LOW | Single Ended to Single Ended | Non Inverting | | 1 | 1 | _ | _ | HIGH | Single Ended to Single Ended | Non Inverting | NOTE 1: Please refer to the Application Information section, "Wiring the Differential Input to Accept Single Ended Levels". ### ABSOLUTE MAXIMUM RATINGS Supply Voltage, V_{DD} 4.6V Inputs, V_{IDD} -0.5 V to V_{DD} + 0.5 V Outputs, V_{O} -0.5V to $V_{DDO} + 0.5V$ Package Thermal Impedance, θ_{JA} 70°C/W (0 Ifpm) Storage Temperature, T_{STG} -65°C to 150°C NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. Table 4A. Power Supply DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, Ta = -40° to 85° | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-----------------------|-----------------|---------|---------|---------|-------| | V _{DD} | Core Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | V_{DDO} | Output Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | I _{DD} | Power Supply Current | | | | 46 | mA | | I _{DDO} | Output Supply Current | | | | 11 | mA | Table 4B. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, Ta = -40° to 85° | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-----------------------|-----------------|---------|---------|---------|-------| | V _{DD} | Core Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | V _{DDO} | Output Supply Voltage | | 2.375 | 2.5 | 2.625 | V | | I _{DD} | Power Supply Current | | | | 46 | mA | | I _{DDO} | Output Supply Current | | | | 10 | mA | Table 4C. Power Supply DC Characteristics, V_{DD} , $V_{DDO} = 2.5V \pm 5\%$, $T_A = -40^{\circ}$ to 85° | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-----------------------|-----------------|---------|---------|---------|-------| | V _{DD} | Core Supply Voltage | | 2.375 | 2.5 | 2.625 | V | | V _{DDO} | Output Supply Voltage | | 2.375 | 2.5 | 2.625 | V | | I _{DD} | Power Supply Current | | | | 43 | mA | | I _{DDO} | Output Supply Current | | | | 10 | mA | Table 4D. DC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, Ta = -40° to 85° | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|---|------------|-------------------------------------|-----------|---------|------------------------|-------| | V _{IH} | Input High Voltage | LVCMOS | | 2 | | V _{DD} + 0.3 | V | | \/ | Input Low Voltage | LVCMOS_CLK | | -0.3 | | 1.3 | V | | V _{IL} | Input Low Voltage | CLK_EN, OE | | | | 0.8 | V | | I _{IN} | Input Current | | $V_{IN} = V_{DD}$ or $V_{IN} = GND$ | | | 300 | μA | | V _{OH} | Output High Voltage; NOTE 1 | | I _{OH} = -24mA | 2.4 | | | V | | \/ | Output Low Voltage; NOTE 1 | | I _{OL} = 24mA | | | 0.55 | V | | V _{OL} | Output Low Voltage, NOTE 1 | | I _{OL} = 12mA | | | 0.30 | V | | V _{PP} | Peak-to-Peak Input Voltage | CLK, nCLK | | 0.15 | | 1.3 | V | | V _{CMR} | Input Common Mode Voltage;
NOTE 2, 3 | CLK, nCLK | | GND + 0.5 | | V _{DD} - 0.85 | V | NOTE 1: Outputs capable of driving 50Ω transmission lines terminated with 50Ω to $V_{DDO}/2$. See Parameter Measurement section, "3.3V Output Load AC Test Circuit". NOTE 2: For single ended applications, the maximum input voltage for CLK, nCLK is $V_{\tiny DD}$ + 0.3V. NOTE 3: Common mode voltage is defined as V_{IH}. Table 4E. DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, Ta = -40° to 85° | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|---|------------|-------------------------------------|-----------|---------|------------------------|-------| | V _{IH} | Input High Voltage | LVCMOS | | 2 | | V _{DD} + 0.3 | V | | V | Input I ou Voltage | LVCMOS_CLK | | -0.3 | | 1.3 | V | | V _{IL} | Input Low Voltage | CLK_EN, OE | | | | 0.8 | ٧ | | I _{IN} | Input Current | | $V_{IN} = V_{DD}$ or $V_{IN} = GND$ | | | 300 | μΑ | | V _{OH} | Output High Voltage; NOTE 1 | | I _{OH} = -15mA | 1.8 | | | V | | V _{OL} | Output Low Voltage; NOTE 1 | | I _{OL} = 15mA | | | 0.6 | V | | V _{PP} | Peak-to-Peak Input Voltage | CLK, nCLK | | 0.15 | | 1.3 | V | | V _{CMR} | Input Common Mode Voltage;
NOTE 2, 3 | CLK, nCLK | | GND + 0.5 | | V _{DD} - 0.85 | V | NOTE 1: Outputs capable of driving 50Ω transmission lines terminated with 50Ω to $V_{ppo}/2$. See Parameter Measurement section, "3.3V Output Load AC Test Circuit". NOTE 2: For single ended applications, the maximum input voltage for CLK, nCLK is V_{DD} + 0.3V. NOTE 3: Common mode voltage is defined as $V_{\mbox{\tiny IH}}$. Table 4F. DC Characteristics, V_{DD} , $V_{DDO} = 2.5V \pm 5\%$, Ta = -40° to 85° | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|---|------------|-------------------------------------|-----------|---------|------------------------|-------| | V _{IH} | Input High Voltage | LVCMOS | | 1.7 | | $V_{DD} + 0.3$ | V | | V | Input Low Voltage | LVCMOS_CLK | | -0.3 | | 0.7 | V | | V _{IL} | Input Low Voltage | CLK_EN, OE | | | | 0.7 | V | | I _{IN} | Input Current | | $V_{IN} = V_{DD}$ or $V_{IN} = GND$ | | | 300 | μΑ | | V _{OH} | Output High Voltage; NOTE 1 | | I _{OH} = -15mA | 1.8 | | | V | | V _{OL} | Output Low Voltage; NOTE 1 | | $I_{OL} = 15mA$ | | | 0.6 | V | | V _{PP} | Peak-to-Peak Input Voltage | CLK, nCLK | | 0.15 | | 1.3 | V | | V _{CMR} | Input Common Mode Voltage;
NOTE 2, 3 | CLK, nCLK | | GND + 0.5 | | V _{DD} - 0.85 | V | NOTE 1: Outputs capable of driving 50Ω transmission lines terminated with 50Ω to $V_{ppo}/2$. See Parameter Measurement section, "3.3V Output Load AC Test Circuit". NOTE 2: For single ended applications, the maximum input voltage for CLK, nCLK is V_{nn} + 0.3V. NOTE 3: Common mode voltage is defined as $V_{\text{\tiny III}}$. Table 5A. AC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, Ta = -40° to 85° | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |-------------------------------------|-----------------------------|-------------------------|--|---------|---------|---------|-------| | f _{MAX} | Output Frequency | | | | | 350 | MHz | | | Propagation
Delay; | CLK, nCLK;
NOTE 1 | <i>f</i> ≤ 350MHz | 2 | | 4 | ns | | t _{PD} | Delay, | LVCMOS_CLK;
NOTE 2 | <i>f</i> ≤ 350MHz | 2 | | 4 | ns | | tsk(o) | Output Skew; NOTI | E 3, 7 | Measured on rising edge @V _{DDO} /2 | | | 100 | ps | | tsk(pp) | Part-to-Part Skew; | NOTE 4, 7 | Measured on rising edge @V _{DDO} /2 | | | 1 | ns | | t_R/t_F | Output Rise/Fall Tir | me | 0.8V to 2V | 0.2 | | 1 | ns | | odc | Output Duty Cycle | | $f \le 150$ MHz, Ref = CLK, nCLK | 45 | | 55 | % | | t _{PZL} , t _{PZH} | Output Enable Time | e; NOTE 5 | | | | 5 | ns | | t_{PLZ}, t_{PHZ} | Output Disable Tim | e; NOTE 5 | | | | 5 | ns | | | Clock Enable
Setup Time; | CLK_EN to
CLK, nCLK | | 1 | | | ns | | t _s | NOTE 6 | CLK_EN to
LVCMOS_CLK | | 0 | | | ns | | | Clock Enable
Hold Time; | CLK, nCLK to CLK_EN | | 0 | | | ns | | t _H | NOTE 6 | LVCMOS_CLK
to CLK_EN | | 1 | | | ns | NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. NOTE 1: Measured from the differential input crossing point to $V_{\text{DDO}}/2$ of the output. NOTE 2: Measured from $V_{DD}/2$ of the input to $V_{DDO}/2$ of the output. NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDO}/2. NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at V_{nnd}/2. NOTE 5: These parameters are guaranteed by characterization. Not tested in production. NOTE 6: Setup and Hold times are relative to the rising edge of the input clock. NOTE 7: This parameter is defined in accordance with JEDEC Standard 65. Table 5B. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 2.5V \pm 5\%$, Ta = -40° to 85° | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |-------------------------------------|--------------------------------------|-------------------------|--|---------|---------|---------|-------| | f _{MAX} | Output Frequency | | | | | 350 | MHz | | t _{PD} | Propagation
Delay; | CLK, nCLK;
NOTE 1 | <i>f</i> ≤ 350MHz | 2 | | 4 | ns | | | | LVCMOS_CLK;
NOTE 2 | <i>f</i> ≤ 350MHz | 2 | | 4 | ns | | tsk(o) | Output Skew; NOTE 3, 7 | | Measured on rising edge @V _{DDO} /2 | | | 100 | ps | | tsk(pp) | Part-to-Part Skew; NOTE 4, 7 | | Measured on rising edge @V _{DDO} /2 | | | 1 | ns | | $t_{\rm R}/t_{\rm F}$ | Output Rise/Fall Time | | 0.6V to 1.8V | 0.2 | | 1.0 | ns | | odc | Output Duty Cycle | | $f \le 150$ MHz, Ref = CLK, nCLK | 45 | | 55 | % | | t_{PZL}, t_{PZH} | Output Enable Time; NOTE 5 | | | | | 5 | ns | | t _{PLZ} , t _{PHZ} | Output Disable Time; NOTE 5 | | | | | 5 | ns | | | Clock Enable | CLK_EN to
CLK, nCLK | | 1 | | | ns | | t _s | Setup Time;
NOTE 6 | CLK_EN to
LVCMOS_CLK | | 0 | | | ns | | t _H | Clock Enable
Hold Time;
NOTE 6 | CLK, nCLK to
CLK_EN | | 0 | | | ns | | | | LVCMOS_CLK
to CLK_EN | | 1 | | | ns | NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. NOTE 1: Measured from the differential input crossing point to $V_{\text{DDO}}/2$ of the output. NOTE 2: Measured from $V_{DD}/2$ of the input to $V_{DDO}/2$ of the output. NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDO}/2. NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{ppq}/2$. NOTE 5: These parameters are guaranteed by characterization. Not tested in production. NOTE 6: Setup and Hold times are relative to the rising edge of the input clock. NOTE 7: This parameter is defined in accordance with JEDEC Standard 65. Table 5C. AC Characteristics, $V_{DD} = V_{DDO} = 2.5V \pm 5\%$, Ta = -40° to 85° | Symbol | Parameter | | Test Conditions | Minimum | Typical | Maximum | Units | |-------------------------------------|---------------------------------------|-------------------------|--|---------|---------|---------|-------| | f _{MAX} | Output Frequency | | | | | 350 | MHz | | t _{PD} | Propagation
Delay; | CLK, nCLK;
NOTE 1 | <i>f</i> ≤ 350MHz | 1.5 | | 4.2 | ns | | | | LVCMOS_CLK;
NOTE 2 | <i>f</i> ≤ 350MHz | 1.7 | | 4.4 | ns | | tsk(o) | Output Skew; NOTE 3, 7 | | Measured on rising edge @V _{DDO} /2 | | | 160 | ps | | tsk(pp) | Part-to-Part Skew; NOTE 4, 7 | | Measured on rising edge @V _{DDO} /2 | | | 2 | ns | | t_R/t_F | Output Rise/Fall Time | | 0.6V to 1.8V | 0.2 | | 1.0 | ns | | odc | Output Duty Cycle | | $f \le 150$ MHz, Ref = CLK, nCLK | 40 | | 60 | % | | t_{PZL}, t_{PZH} | Output Enable Time; NOTE 5 | | | | | 5 | ns | | t _{PLZ} , t _{PHZ} | Output Disable Time; NOTE 5 | | | | | 5 | ns | | t _s | Clock Enable
Setup Time;
NOTE 6 | CLK_EN to
CLK, nCLK | | 1 | | | ns | | | | CLK_EN to
LVCMOS_CLK | | 0 | | | ns | | t _H | Clock Enable
Hold Time;
NOTE 6 | CLK, nCLK to CLK_EN | | 0 | | | ns | | | | LVCMOS_CLK to CLK_EN | | 1 | | | ns | NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium has been reached under these conditions. NOTE 1: Measured from the differential input crossing point to $V_{\text{DDO}}/2$ of the output. NOTE 2: Measured from $V_{DD}/2$ of the input to $V_{DDO}/2$ of the output. NOTE 3: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDO}/2. NOTE 4: Defined as skew between outputs on different devices operating at the same supply voltages and with equal load conditions. Using the same type of inputs on each device, the outputs are measured at $V_{ppq}/2$. NOTE 5: These parameters are guaranteed by characterization. Not tested in production. NOTE 6: Setup and Hold times are relative to the rising edge of the input clock. NOTE 7: This parameter is defined in accordance with JEDEC Standard 65. # PARAMETER MEASUREMENT INFORMATION ### 3.3V Core/3.3V OUTPUT LOAD ACTEST CIRCUIT ### 3.3V Core/2.5V OUTPUT LOAD AC TEST CIRCUIT ### 2.5V CORE/2.5V OUTPUT LOAD AC TEST CIRCUIT ### DIFFERENTIAL INPUT LEVEL ### **OUTPUT SKEW** ### PART-TO-PART SKEW # PARAMETER MEASUREMENT INFORMATION, CONTINUED ### OUTPUT RISE/FALL TIME # Q0:Q7 $\frac{V_{DDO}}{t_{PERIOD}}$ $odc = \frac{t_{PW}}{t_{PERIOD}} \times 100\%$ ### OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD ### PROPAGATION DELAY ### APPLICATION INFORMATION ### WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_REF = V_D/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to position the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{\tiny DD}$ = 3.3V, V_REF should be 1.25V and R2/R1 = 0.609. FIGURE 1. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT ### RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS ### INPUTS: ### **CLK INPUT** For applications not requiring the use of the test clock, it can be left floating. Though not required, but for additional protection, a $1 \text{k}\Omega$ resistor can be tied from the CLK input to ground. ### **CLK/nCLK INPUTS** For applications not requiring the use of the differential input, both CLK and nCLK can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from CLK to ground. ### LVCMOS CONTROL PINS All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used. ### **OUTPUTS:** ### LVCMOS OUTPUTS All unused LVCMOS output can be left floating. There should be no trace attached. ### DIFFERENTIAL CLOCK INPUT INTERFACE The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL and other differential signals. Both $V_{\mbox{\tiny SWING}}$ and $V_{\mbox{\tiny OH}}$ must meet the $V_{\mbox{\tiny PP}}$ and $V_{\mbox{\tiny CMR}}$ input requirements. Figures 2A to 2E show interface examples for the HiPerClockS CLK/nCLK input driven by the most common driver types. The input interfaces suggested here are examples only. Please consult with the vendor of the driver component to confirm the driver termination requirements. For example in *Figure 2A*, the input termination applies for ICS HiPerClockS LVHSTL drivers. If you are using an LVHSTL driver from another vendor, use their termination recommendation. FIGURE 2A. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY ICS HIPERCLOCKS LVHSTL DRIVER FIGURE 2B. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER FIGURE 2C. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER FIGURE 2D. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY 3.3V LVDS DRIVER FIGURE 2E. HIPERCLOCKS CLK/nCLK INPUT DRIVEN BY 3.3V LVPECL DRIVER WITH AC COUPLE ### SCHEMATIC EXAMPLE Figure 3 shows a schematic example of the ICS8308I. In this example, the LVCMOS_CLK input is selected. The decoupling capacitors should be physically located near the power pin. FIGURE 3. ICS8308I LVPECL BUFFER SCHEMATIC EXAMPLE ## RELIABILITY INFORMATION Table 6. $\theta_{_{,IA}} \text{vs. Air Flow Table for 24 Lead TSSOP}$ ### **TRANSISTOR COUNT** The transistor count for ICS8308I is: 1040 ### PACKAGE OUTLINE - G SUFFIX FOR 24 LEAD TSSOP TABLE 7. PACKAGE DIMENSIONS | SYMBOL | Millimeters | | | |---------|-------------|---------|--| | STWIBOL | Minimum | Maximum | | | N | 2 | 4 | | | A | | 1.20 | | | A1 | 0.05 | 0.15 | | | A2 | 0.80 | 1.05 | | | b | 0.19 | 0.30 | | | С | 0.09 | 0.20 | | | D | 7.70 | 7.90 | | | E | 6.40 BASIC | | | | E1 | 4.30 | 4.50 | | | е | 0.65 BASIC | | | | L | 0.45 | 0.75 | | | α | 0° | 8° | | | aaa | | 0.10 | | REFERENCE DOCUMENT: JEDEC Publication 95, MO-153 TABLE 8. ORDERING INFORMATION | Part/Order Number | Marking | Package | Shipping Packaging | Temperature | |-------------------|--------------|---------------------------|--------------------|---------------| | 8308AGI | ICS8308AGI | 24 Lead TSSOP | tube | -40°C to 85°C | | 8308AGIT | ICS8308AGI | 24 Lead TSSOP | tape & reel | -40°C to 85°C | | 8308AGILF | ICS8308AGILF | 24 Lead "Lead-Free" TSSOP | tube | -40°C to 85°C | | 8308AGILFT | ICS8308AGILF | 24 Lead "Lead-Free" TSSOP | tape & reel | -40°C to 85°C | NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant. While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments. | REVISION HISTORY SHEET | | | | | | |------------------------|-----------|------|---|----------|--| | Rev | Table | Page | Description of Change | Date | | | Α | | 11 | Added Schematic Layout | 4/16/04 | | | | | 1 | Features section - added mix supply voltage bullet. | | | | | T4B | 3 | Added Mix Power Supply Table. | | | | В | T4E | 4 | Added Mix DC Characteristics Table. | 10/20/04 | | | | T5B | 6 | Added Mix AC Characteristics Table. | | | | | | 8 | Added Mix Output Load AC Test Circuit Diagram. | | | | В | T8 | 14 | Ordering Information Table - added "Lead-Free" part number. | 1/12/05 | | | | | 1 | Corrected Block Diagram, added CLK_SEL. | | | | В | | 10 | Added "Recommendations for Unused Input and Output Pins". | 7/25/05 | | | | T8 | 14 | Ordering Information Table - added Lead-Free note. | | | | В | | 1 | Pin Assignment - corrected package information from 300-MIL to 173-MIL. | 8/4/06 | | | В | T3B | 2 | Added OE Select Function Table. | 10/16/07 | | | | T4F | 5 | DC Characteristics - corrected VIH min. from 2V to 1.7V; VIL max. from 1.3V | | | | | | | to 0.7V. | | | | С | T5A - T5C | 5 -7 | AC Characteristics - added thermal note. | 7/16/09 | | | | T8 | 14 | Ordering Information Table - deleted ICS prefix from Part/Order Number | | | | | | | column. | | | 6024 Silver Creek Valley Road San Jose, CA 95138 **Sales** 800-345-7015 (inside USA) +408-284-8200 (outside USA) Fax: 408-284-2775 www.IDT.com/go/contactIDT Techical Support netcom@idt.com +480-763-2056 DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion. All information in this document, including descriptions of product features and performace, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitablity of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties. IDT's products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT. Integrated Device Techology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners. Copyright 2009. All rights reserved.