Chip Monolithic Ceramic Capacitors

muRata

Capacitor Arrays

Features

- 1. High density mounting due to mounting space saving
- 2. Mounting cost saving

Applications

8

General electronic equipment

GNM1M2/212		GNM21		
- L				
Part Number		Dimensio	ons (mm)	
Part Number	L	W	Т	Р
GNM1M2	1.37 ±0.15	1.0 ±0.15	0.6 ±0.1	0.64 ±0.05
GNM212	2.0 ±0.15	1.25 +0.15	0.85 ±0.1	1.0 ±0.1
GNM214	2.0 ±0.15	1.25 ±0.15	0.6 ±0.1	0.5 ±0.05
GNM314	3.2 ±0.15	1.6 +0.15	0.8 ±0.1	0.8 ±0.1
GIVINI314	J.Z ±0.15	1.0 ±0.15	1.0 ±0.1	0.0 ±0.1

Temperature Compensating Type

Part Number		GNM31			
LxW	3.2x1.6				
тс	C0G (5C)				
Rated Volt.	100 (2A)	50 (1H)			
Capacitance (Capacitance par	t numbering code) and T (mm) Dimensio	n (T Dimension part numbering code)			
10pF(100)	0.8(4)	0.8(4)			
11pF(110)	0.8(4)	0.8(4)			
12pF(120)	0.8(4)	0.8(4)			
13pF(130)	0.8(4)	0.8(4)			
15pF(150)	0.8(4)	0.8(4)			
16pF(160)	0.8(4)	0.8(4)			
18pF(180)	0.8(4)	0.8(4)			
20pF(200)	0.8(4)	0.8(4)			
22pF(220)	0.8(4)	0.8(4)			
24pF(240)	0.8(4)	0.8(4)			
27pF(270)	0.8(4)	0.8(4)			
30pF(300)	0.8(4)	0.8(4)			
33pF(330)	0.8(4)	0.8(4)			
36pF(360)	0.8(4)	0.8(4)			
39pF(390)	0.8(4)	0.8(4)			
43pF(430)	0.8(4)	0.8(4)			
47pF(470)	0.8(4)	0.8(4)			
51pF(510)	0.8(4)	0.8(4)			
56pF(560)	0.8(4)	0.8(4)			
62pF(620)	0.8(4)	0.8(4)			
68pF(680)	0.8(4)	0.8(4)			
75pF(750)	0.8(4)	0.8(4)			
82pF(820)	0.8(4)	0.8(4)			
91pF(910)	0.8(4)	0.8(4)			
100pF(101)	0.8(4)	0.8(4)			
110pF(111)	0.8(4)	0.8(4)			
120pF(121)	0.8(4)	0.8(4)			
130pF(131)	0.8(4)	0.8(4)			
150pF(151)	0.8(4)	0.8(4)			
160pF(161)		0.8(4)			
180pF(181)		0.8(4)			

Note Please read rating and &CAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc.
 This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering.

C02E10.pdf 04.1.20

Continued from the preceding page.

Part Number	GNM31					
L x W	3.2x1.6					
тс	C0G (5C)					
Rated Volt.	100 (2A)	50 (1H)				
Capacitance (Ca	pacitance part numbering code) and T (mm) Dimension (T Dimen	sion part numbering code)				
200pF(201)		0.8(4)				
220pF(221)		0.8(4)				
240pF(241)		0.8(4)				
270pF(271)		0.8(4)				
300pF(301)		0.8(4)				
330pF(331)		0.8(4)				
360pF(361)		0.8(4)				

The part numbering code is shown in each (). The (4) code in T(mm) means number of elements (four). Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type GNM1 Series

Part Number	GNM1M				
L x W	1.37	x1.00			
тс	X7R (R7)				
Rated Volt.	16 (1C)	10 (1A)			
Capacitance (Ca	pacitance part numbering code) and T (mm) Dimension (T Dimen	sion part numbering code)			
22000pF(223)	0.6(2)				
47000pF(473)	0.6(2)				
0.10μF(104)		0.6(2)			

The part numbering code is shown in each (). The (2) code in T(mm) means number of elements (two). Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type GNM2 Series

Part Number	GNM21
L x W	2.0x1.25
тс	X7R (R7)
Rated Volt.	50 (1H)
Capacitance (Ca	pacitance part numbering code) and T (mm) Dimension (T Dimension part numbering code)
1000pF(102)	0.6(4)
10000pF(103)	0.6(4)

The part numbering code is shown in each (). The (4) code in T(mm) means number of elements (four). Dimensions are shown in mm and Rated Voltage in Vdc.

High Dielectric Constant Type GNM3 Series

Part Number				GNM31			
L x W				3.2x1.6			
тс			7R ?7)			Y5V (F5)	
Rated Volt.	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	16 (1C)
Capacitance (Ca	pacitance part nur	nbering code) and	T (mm) Dimension	(T Dimension part	numbering code)		
220pF(221)	0.8 (4)						

Continued on the following page. $\boxed{}$

Note Please read rating and
 CAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc.
 This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering.

Continued from the preceding page.

Part Number				GNM31					
L x W	3.2x1.6								
тс	X7R (R7)					Y5V (F5)			
Rated Volt.	100 (2A)	50 (1H)	25 (1E)	16 (1C)	100 (2A)	50 (1H)	16 (1C)		
Capacitance (Capa	citance part nur	mbering code) and	T (mm) Dimension	(T Dimension part	numbering code)				
270pF(271)	0.8 (4)								
330pF(331)	0.8(4)								
390pF(391)	0.8 (4)	0.8(4)							
470pF(471)	0.8 (4)	0.8(4)							
560pF(561)	0.8(4)	0.8(4)							
680pF(681)	0.8(4)	0.8(4)							
820pF(821)	0.8(4)	0.8(4)							
1000pF(102)	0.8(4)	0.8(4)							
1200pF(122)	0.8 (4)	0.8(4)							
1500pF(152)	0.8 (4)	0.8(4)							
1800pF(182)	0.8 (4)	0.8(4)							
2200pF(222)	0.8 (4)	0.8(4)			0.8(4)				
2700pF(272)	0.8 (4)	0.8(4)							
3300pF(332)	0.8 (4)	0.8(4)			0.8(4)				
3900pF(392)	0.8 (4)	0.8(4)							
4700pF(472)	0.8 (4)	0.8(4)			0.8(4)				
5600pF(562)		0.8(4)							
6800pF(682)		0.8(4)							
8200pF(822)		0.8(4)							
10000pF(103)		0.8(4)							
12000pF(123)		0.8(4)							
15000pF(153)		0.8(4)							
18000pF(183)			0.8(4)						
22000pF(223)				0.8(4)		0.8(4)			
27000pF(273)				0.8(4)					
33000pF(333)				0.8(4)		0.8(4)			
39000pF(393)				0.8(4)					
47000pF(473)				1.0(4)		0.8(4)			
68000pF(683)				1.0(4)			0.8(4)		
0.10μF(104)				1.0(4)			0.8(4)		
0.15µF(154)							0.8(4)		

The part numbering code is shown in each (). The (4) code in T(mm) means number of elements (four). Dimensions are shown in mm and Rated Voltage in Vdc.

44

Specifications and Test Methods

			5	Specifications				
No.	lte	em	Temperature Compensating Type	High Dielectric Type		Test Method		
1	Operating Temperatu	ure Range	5C : −55℃ to +125℃	R7 :				
2	Rated Vo	Itage	See the previous pages.		The rated voltage is defined as the maximum voltage whi may be applied continuously to the capacitor. When AC voltage is superimposed on DC voltage, V ^{P-P} or whichever is larger, should be maintained within the rated age range.			
3	Appearar	nce	No defects or abnormaliti	es	Visual inspection			
4	Dimensio	n	Within the specified dime	nsions	Using calipers			
5 Dielectric Strength No defects or abnormalities No failure should be observed when 300% of the (5C) or 250% of the rated voltage (R7, F5) is all the terminations for 1 to 5 seconds, provided the charge current is less than 50mA.				i) is applied between				
6	Insulation I	Resistance	More than 10,000M Ω or (Whichever is smaller)	500Ω • F	The insulation resistance should be measured with a Do age not exceeding the rated voltage at 25°C and 75%RH and within 2 minutes of charging.			
7	Capacita	nce	Within the specified tolera	ance	The capacitance/Q/D.I		red at 25℃ at the fre-	
			30pF min. : Q≧1000		quency and voltage sh			
8	Q/Dissipat	tion Factor	30pF max. : Q≧400+20C	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max. 0.035 max.	Item Char.		R7, F5	
U	(D.F.)		C : Nominal Capacitance	F5 0.05 max. 0.07 max	Frequency Voltage	1±0.1MHz 0.5 to 5Vr.m.s.	1±0.1kHz 1.0±0.2Vr.m.s.	
			(pF)			0.5 to 5vr.m.s.	1.0±0.2 VI.III.S.	
		Capacitance Within the specified tolerance (Table A)		Char. Temp. Range Reference Temp. Cap. Change R7 -55 to +125°C F5 -30 to +85°C 25°C Within ±15% Within ±22 %	The capacitance change should be measured after 5 min. a each specified temperature stage. (1) Temperature Compensating Type The temperature coefficient is determined using the capacitance measured in step 3 as a reference.			
	Capacitance	Temperature Coefficient	Within the specified tolerance (Table A)			acitance should be we mperature coefficien ift is calculated by d in the maximum and	within the specified nt and capacitance	
9	Temperature Characteristics				Step	Temperat		
	onalaotonstios				1	25±		
		Capacitance	Within $\pm 0.2\%$ or ± 0.05 pF		2	-55±3 (for 5C/ R7)), -30±3 (for F5)	
		Drift	(Whichever is larger)		3	25±	-2	
					4	125±3 (for 5C/R	R7), 85±3 (F5)	
					5	25±	-2	
					(2) High Dielectric Con The ranges of capa above 25℃ value o table should be with	acitance change cor ver the temperature	e ranges shown in the	
			No removal of the termina	ations or other defect should occur.	Solder the capacitor to	the test jig (glass e	epoxy board) shown in	
10		dhesive Strength f Termination			Fig. 1 using a eutectic with the test jig for 10- The soldering should b reflow method and sho soldering is uniform ar Type GNM1M GNM21	solder. Then apply E1 sec. be done either with build be conducted v	5N force in parallel an iron or using the with care so that the	
				Solder resist		Fig. 1	(in mm)	

Continued on the following page.

Specifications and Test Methods

Continued from the preceding page.

\square	Continued fr	om the prec	eding page.						
				Specifications					
No.	Ite	m	Temperature Compensating Type	High Dielectric Type	Test Method Solder the capacitor to the test jig (glass epoxy board) in the same manner and under the same conditions as (10).				
		Appearance No defects or abnormalities		es					
11	Vibration Resistance	Capacitance Q/D.F.	Within the specified tolera 30pF min. : Q≧1000 30pF max. : Q≧400+20C C : Nominal Capacitance (pF)	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max. F5 0.05 max. 0.07 max. -	same manner and under the same conditions as (10). The capacitor should be subjected to a simple harmonic motion having a total amplitude of 1.5mm, the frequency being varied uniformly between the approximate limits of 10 and 55Hz. The frequency range, from 10 to 55Hz and return to 10Hz, should be traversed in approximately 1 minute. This motion should be applied for a period of 2 hours in each of 3 mutually perpendicular directions (total of 6 hours).				
			No cracking or marking d	efects should occur.	Solder the capacitor on the test jig (glass epoxy board) shown				
12	2 Deflection		•GNM 4 •GNM 2 •GNM 4 •GNM 2 •GNM 3 •GNM 3		in Fig. 2 using a eutectic solder. Then apply a force in the direction shown in Fig. 3 for 5±1 sec. The soldering should be done either with an iron or using the reflow method and should be conducted with care so that the soldering is uniform and free of defects such as heat shock. $\begin{array}{c} 20 & 50 \\ \text{pressurizing} \\ \text{speed} : 1.0\text{mm/sec.} \\ \text{pressurize} \\ \text{Gapacitance meter} \\ 45 & 45 \\ \text{Fig. 3} \end{array}$				
				(in mm)	t=0.8mm (GNM21), 1.6mm (GNM31)				
13	Fig. 2 3 Solderability of Termination 75% of the terminations are to be soldered continuously.				Immerse the capacitor in a solution of ethanol (JIS-K-8101) and rosin (JIS-K-5902) (25% rosin in weight proportion). Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in eutectic solder solution for 2±0.5 seconds at 230±5°C.				
		The measured and observed characteristics should satisfy the specifications in the following table.							
		Appearance	No marking defects		Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the				
		Capacitance Change	Within $\pm 2.5\%$ or ± 0.25 pF (Whichever is larger)	R7 : Within ±7.5% F5 : Within ±20%	capacitor in a eutectic solder solution at 270±5℃ for 10±0.5 seconds. Let sit at room temperature for 24±2 hours (tempera- ture compensating type) or 48±4 hours (high dielectric constant				
14	Resistance to Soldering Heat	Q/D.F.	30pF min. : Q≧1000 30pF max. : Q≧400+20C C : Nominal Capacitance (pF)	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max. F5 0.05 max. 0.07 max. -	 type), then measure. Initial measurement for high dielectric constant type Perform a heat treatment at 150⁺⁰/₁₀ °C for one hour and then let sit for 48±4 hours at room temperature. Perform the initial 				
		I.R.	More than 10,000MΩ or	$500\Omega \bullet F$ (Whichever is smaller)	measurement.				
		Dielectric Strength	No failure						
			The measured and obser specifications in the follow	ved characteristics should satisfy the ving table.	Fix the capacitor to the supporting jig in the same manner and under the same conditions as (10). Perform the five cycles				
		Appearance	No marking defects		according to the four heat treatments listed in the following				
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	R7 : Within ±7.5% F5 : Within ±20%	table. Let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room tempera- ture, then measure				
15	Temperature Cycle	Q/D.F.	30pF min. : Q≥1000 30pF max. : Q≥400+20C C : Nominal Capacitance	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max. F5 0.05 max. 0.07 max. -	Step 1 2 3 4 Temp. (°C) Min. Operating Temp. ±3 Room Temp. ±3 Max. Operating Temp. ±3 Room Temp. ±3 Time (min.) 30±3 2 to 3 30±3 2 to 3				
			(pF)		Initial measurement for high dielectric constant type				
		I.R. Dielectric Strength	More than 10,000MΩ or s	500Ω • F (Whichever is smaller)	Perform a heat treatment at $150^{+0.5}_{-0.5}$ C for one hour and then let sit for 48 ± 4 hours at room temperature. Perform the initial measurement.				

Continued on the following page.

46

Note Please read rating and
 CAUTION (for storage, operating, rating, soldering, mounting and handling) in this PDF catalog to prevent smoking and/or burning, etc.
 This catalog has only typical specifications. Therefore, you are requested to approve our product specifications or to transact the approval sheet for product specifications before ordering.

8

Specifications and Test Methods

Continued from the preceding page.

L	Continued fr	on the prec	eulity page.			
				Specifications		
No	Ite	em	Temperature Compensating Type	High Dielectric Type	Test Method	
		The measured and observed characteristics should specifications in the following table.				
		Appearance	No marking defects			
		Capacitance Change	Within ±5% or ±0.5pF (Whichever is larger)	R7 : Within ±12.5% F5 : Within ±30%	Let the capacitor sit at 40 $\pm2^{\circ}$ and 90 to 95% humidity for	
16	Humidity Steady State	Q/D.F.	30pF and over : Q≥350 10pF and over, 30pF and below : Q≥275+5C/2 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max. F5 0.05 max. 0.07 max. -	South the support of at 4522 of and so to 5000 humany for 500±12 hours. Remove and let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room tem- perature, then measure.	
		I.R.	More than 1,000M Ω or 50	$\Omega\Omega \bullet F$ (Whichever is smaller)		
		Dielectric Strength	No failure			
			The measured and obser specifications in the follow	ved characteristics should satisfy the ving table.		
		Appearance	No marking defects			
		Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	R7 : Within ±12.5% F5 : Within ±30%		
17	Humidity Load	Q/D.F.	30pF and over : Q≥200 30pF and below : Q≥100+10C/3 C : Nominal Capacitance (pF)	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max. F5 0.05 max. 0.07 max. -	Apply the rated voltage at 40±2℃ and 90 to 95% humidity for 500±12 hours. Remove and let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure. The charge/discharge current is less than 50mA.	
		I.R.	More than 500M Ω or 25 Ω	2 • F (Whichever is smaller)		
		Dielectric Strength	No failure			
		The measured and observed characteristics should satisfy the specifications in the following table.				
		Appearance	No marking defects			
		Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	R7 : Within ±12.5% F5 : Within ±30%	Apply 200% of the rated voltage for 1000±12 hours at the	
18	High Temperature Load	Q/D.F.	30pF and over : Q≥350 10pF and over, 30pF and below : Q≥275+5C/2 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	Char. 25V min. 16V 10V R7 0.025 max. 0.035 max. 0.035 max. F5 0.05 max. 0.07 max. -	 maximum operating temperature ±3°C. Let sit for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room temperature, then measure. The charge/discharge current is less than 50mA. Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage for one hour at the maximum operating temperature ±3°C. Remove and let sit for 48±4 hours at room temperature. Perform initial measurement. 	
		I.R.		ΩΩ • F (Whichever is smaller)	4	
		Dielectric Strength	No failure			

Table A

Char.	N		Capacitance Change from 25℃ (%)				
	Nominal Values (ppm/℃) Note 1	_	55	-30		-10	
	(ppm/c) Note i	Max.	Min.	Max.	Min.	Max.	Min.
5C	0±30	0.58	-0.24	0.40	-0.17	0.25	-0.11

Note 1 : Nominal values denote the temperature coefficient within a range of 25°C to 125°C.

Downloaded from **Elcodis.com** electronic components distributor

