Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Renesas Starter Kit

RSKH8/38347 User's Manual RENESAS SINGLE-CHIP MICROCOMPUTER H8 FAMILY - H8/300L Super Low Power Series

Table of Contents

Chapter 1. Preface	3
Chapter 2. Purpose	4
Chapter 3. Power Supply	5
3.1. Requirements	5
3.2. Power – Up Behaviour	5
Chapter 4. Board Layout	6
4.1. Component Layout	6
4.2. Board Dimensions	7
Chapter 5. Block Diagram	8
Chapter 6. User Circuitry	9
6.1. Switches	9
6.2. LEDs	9
6.3. Potentiometer	9
6.4. Serial port	9
6.5. Debug LCD Module	10
6.6. Option Links	11
6.7. Oscillator Sources	13
6.8. Reset Circuit	13
6.9. LCD Controller Interface	13
Chapter 7. Modes	14
7.1. Boot mode	14
7.2. User mode	14
Chapter 8. Programming Methods	15
Chapter 9. Headers	16
9.1. Microcontroller Headers	16
9.2. Application Headers	18
Chapter 10. Code Development	21
10.1. Overview	21
10.2. Mode Support	21
10.3. Breakpoint Support	21
10.4. Memory Map	22
Chapter 11. Component Placement	23
Chanter 12 Additional Information	24

Chapter 1. Preface

Cautions

This document may be, wholly or partially, subject to change without notice.

All rights reserved. Duplication of this document, either in whole or part is prohibited without the written permission of Renesas Technology Europe Limited.

Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or organisations.

Copyright

- © Renesas Technology Europe Ltd. 2007. All rights reserved.
- © Renesas Technology Corporation. 2007. All rights reserved.
- © Renesas Solutions Corporation. 2007 All rights reserved.

Website: http://www.renesas.eu

Glossary

CPU	Central Processing Unit	RTE	Renesas Technology Europe Ltd.
HEW	High-performance Embedded Workshop	RS0	Renesas Solutions Organisation.
LED	Light Emitting Diode	RSK	Renesas Starter Kit
PC	Program Counter		

Chapter 2. Purpose

This RSK is an evaluation tool for Renesas microcontrollers.

Features include:

- Renesas Microcontroller Programming.
- User Code Debugging.
- User Circuitry such as Switches, LEDs and potentiometer(s).
- User or Example Application.
- Sample peripheral device initialisation code.

The RSK board contains all the circuitry required for microcontroller operation.

Chapter 3. Power Supply

3.1. Requirements

This RSK operates from a 5V power supply.

A diode provides reverse polarity protection only if a current limiting power supply is used.

All RSK boards are supplied with an E8a debugger. This product is able to power the RSK board with up to 300mA. When the RSK is connected to another system than that system should supply power to the RSK.

All RSK boards have an optional centre positive supply connector using a 2.1mm barrel power jack.

Warning

The RSK is neither under nor over voltage protected. Use a centre positive supply for this board.

3.2. Power – Up Behaviour

When the RSK is purchased the RSK board has the 'Release' or stand alone code from the example tutorial code pre-programmed into the Renesas microcontroller. On powering up the board the user LEDs will start to flash. After 200 flashes, or after pressing a switch the LEDs will flash at a rate controlled by the potentiometer.

Chapter 4. Board Layout

4.1. Component Layout

The following diagram shows top layer component layout of the board.

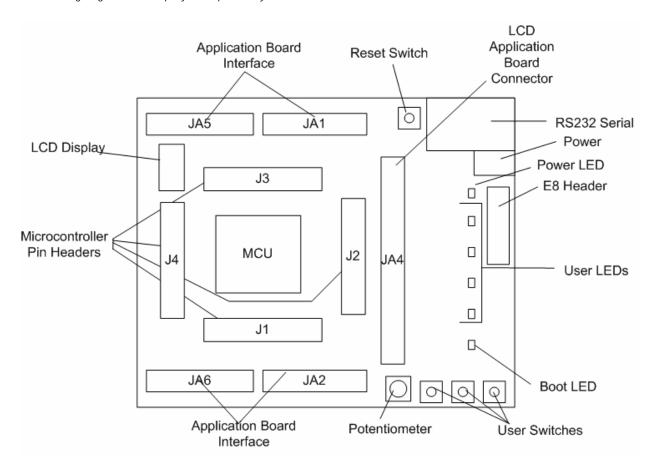


Figure 4-1: Board Layout

4.2. Board Dimensions

The following diagram gives the board dimensions and connector positions. All through hole connectors are on a common 0.1" grid for easy interfacing.

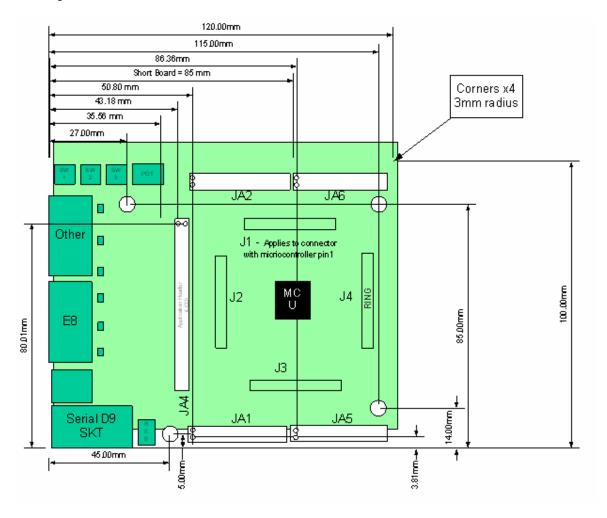


Figure 4-2: Board Dimensions

Chapter 5. Block Diagram

Figure 5-1 shows the CPU board components and their connectivity.

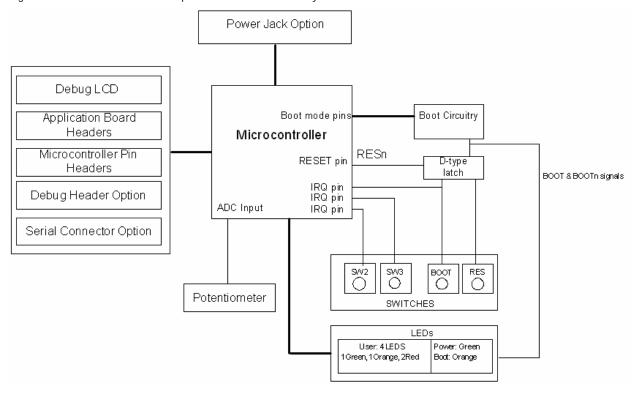


Figure 5-1: Block Diagram

Figure 5-2 shows the connections to the RSK.

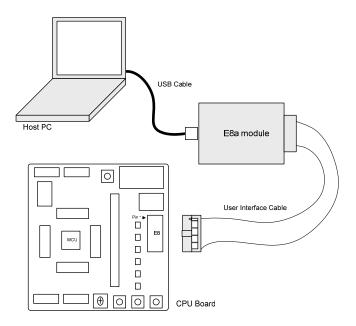


Figure 5-2: RSK Connections

Chapter 6. User Circuitry

6.1. Switches

There are four switches located on the CPU board. The function of each switch and its connection are shown in Table 6-1.

Switch	Function	Microcontroller
RES	When pressed, the RSK microcontroller is reset.	RESn, Pin15
SW1/BOOT*	Connects to an IRQ input for user controls.	IRQ0n, Pin 86
	The switch is also used in conjunction with the RES switch to place the device in	(Port 4, pin 3)
	BOOT mode when not using the E8a debugger.	
SW2*	Connects to an IRQ line for user controls.	IRQ1n, Pin 6
		(Port 1, pin 5)
SW3*	Connects to the ADC trigger input. Option link allows connection to IRQ line.	IRQ4n_ADTRG,
	The option is a pair of 0R links. For more details on option links, please refer to	Pin 5 (Port 1, pin 4)
	Sec 6.6.	

Table 6-1: Switch Functions

6.2. LEDs

There are six LEDs on the RSK board. The green 'POWER' LED lights when the board is powered. The orange BOOT LED indicates the device is in BOOT mode when lit. The four user LEDs are connected to an IO port and will light when their corresponding port pin is set low.

Table 6-2, below, shows the LED pin references and their corresponding microcontroller port pin connections.

LED Reference (As	Colour	Microcontroller Port Pin	Microcontroller
shown on silkscreen)		function	Pin Number
LED0	Green	Port 1.0	1
LED1	Orange	Port 1.1	2
LED2	Red	Port 1.6	7
LED3	Red	Port 3.1	25

Table 6-2: LED Port

6.3. Potentiometer

A single turn potentiometer is connected to AN8 (PC.0) of the microcontroller. This may be used to vary the input analogue voltage value to this pin between AVCC and Ground.

6.4. Serial port

The on-chip emulator port is connected to the E8a connector. Serial port SCI3_2 can optionally be connected to the E8 connector by fitting option resistors. The connections to be fitted are listed in the table 6-3.

^{*}Refer to schematic for detailed connectivity information.

Description	Function	Fit For E8a	Remove for	Fit for RS232	Remove for
			E8a		RS232
TxD1	Programming Serial Port	R29	R14	R14	R29
RxD1	Programming Serial Port	R36	R19	R19	R36
CLK1	Programming Serial Port	R24	NA	NA	NA

Table 6-3: Serial Port settings

Secondary and tertiary microcontroller serial ports are connected to the application headers.

6.5. Debug LCD Module

A debug LCD module is supplied to be connected to the connector J10. This should be fitted so that the debug LCD module lies over J3. Care should be taken to ensure the pins are inserted correctly into J10. The debug LCD module uses a 4 bit interface to reduce the pin allocation. No contrast control is provided; this is set by a resistor on the supplied display module. The module supplied with the RSK only supports 5V operation.

Table 6-4 shows the pin allocation and signal names used on this connector.

	J10				
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device
		Pin			Pin
1	Ground	=	2	5V Only	-
3	No Connection	-	4	DLCDRS	26
5	R/W (Wired to Write only)	=	6	DLCDE	27
7	No Connection	-	8	No connection	-
9	No Connection	-	10	No connection	-
11	DLCD4	28	12	DLCD5	29
13	DLCD6	30	14	DLCD7	31

Table 6-4 Debug LCD Module Connections

6.6. Option Links

Table 6-5 below describes the function of the option links contained on this RSK board.

	Option Link Settings			
Reference	Function	Fitted	Alternative (Removed)	Related To
R1	Power Supply	Connects CON_3V3	CON_3V disconnected from	R2
	(External 3V3)	(external 3.3V) to Board_VCC	Board_VCC	
R2	Power Supply	Connects CON_5V	CON_5V disconnected from	R1
	(External 5V)	(external 5V) to Board_VCC	Board_VCC	
R4	Serial Connector	Connects Alternate serial (CH2) to	Disconnects Alternate serial	R5, R7, R12
		D connector	from D connector.	
R5	Serial Connector	Connects Alternate serial (CH2) to	Disconnects Alternate serial	R4, R7, R12
		D connector	from D connector.	
R7	Alternate Serial	Connects Alternate Serial (CH2 -	Should be removed if SCIb not	R4, R5, R12
		SCIb) to RS232 Transceiver	used for RS232.	
R9	RS232 Serial	Disables RS232 Serial	Enables RS232 Serial	
		Transceiver	Transceiver	
R11	Power Supply	Connects J5 to Board_VCC	J5 disconnected from Board_VCC	
R12	Alternate Serial	Connects Alternate Serial (CH2 -	Should be removed if SCIb not	R4, R5, R7
		SCIb) to RS232 Transceiver	used for RS232.	
R14	RS232 Serial on	Connects Serial Channel 0 to	MUST be removed if R15 or R17	R15, R17, R18
	SCIa CH0	RS232 Transceiver	fitted.	R19, R20
R15	RS232 Serial on	Connects Application Header to	MUST be removed if R14 or R17	R14, R17, R18
	Application Header	RS232 Transceiver	fitted.	R19, R20
R17	Programming	Connects RS232 port to	MUST be removed if R36, R19	R14, R15, R18
	Serial Port	Programming SCI port	or R20 fitted.	R19, R20
R18	Programming	Connects RS232 port to	MUST be removed if R29, R14	R14, R15, R17
	Serial Port	Programming SCI port	or R15 fitted.	R19, R20
R19	RS232 Serial on	Connects Serial Channel 0 to	MUST be removed if R18 or R20	R14, R15, R17,
	SCIa CH0	RS232 Transceiver	fitted.	R18, R20
R20	RS232 Serial on	Connects Application Header to	MUST be removed if R18 or R19	R14, R15, R17
	Application Header	RS232 Transceiver	fitted.	R18, R19
R23	E8	Connects PTCK pin to Ground	Disconnects PTCK pin from	R24
			Ground.	
R24	Programming	Connects E8a to Programming	Should be removed if R23 fitted.	R23
	Serial Port	Serial port.		
R28	MCU Power	Supply to MCU	Fit Low ohm resistor to measure	
	Supply		current	
R29	Programming	Connects E8a to Programming	Should be removed if R17 fitted.	R17, R14, R15
	Serial Port	Serial port.		

	Option Link Settings				
Reference	Function	Fitted	Alternative (Removed)	Related To	
R36	Programming	Connects E8a to Programming	Should be removed if R18 fitted.	R18, R19, R20	
	Serial Port	Serial port.			
R40	E8	Enables E8a			
R41	LCD Panel	Connects V2 to V3	Disconnects V2 from V3.		
R42	E8	Enables E8a			
R43	Oscillator	Connects external clock to MCU	Connects X2 to MCU	R44, R50, R51	
R44	Oscillator	Connects external clock to MCU	Connects X2 to MCU	R43, R50, R51	
R45	Application	Use DLCD5 of application board	Use SCIbTX of application board	R53	
	Board Interface	interface	interface		
R46	Oscillator	Connects X1 to MCU	Connects external clock to MCU	R48, R62, R63	
R47	Oscillator	Load register connected	Load register disconnected		
R48	Oscillator	Connects X1 to MCU	Connects external clock to MCU	R46, R62, R63	
R50	Oscillator	Connects X2 to MCU	Connects external clock to MCU	R43, R44, R51	
R51	Oscillator	Connects X2 to MCU	Connects external clock to MCU	R43, R44, R50	
R52	Power Supply	Connects CVCC pin to	Disconnects CVCC pin to		
		microcontroller supply pin	microcontroller supply pin		
		UC_VCC.	UC_VCC.		
R53	Application	Use SCIbTX of application board	Use DLCD5 of application board	R45	
	Board Interface	interface	interface		
R55	Application	Use SCIbRX of application board	Use DLCD4 of application board	R56	
	Board Interface	interface	interface		
R56	Application	Use DLCD4 of application board	Use SCIbRX of application board	R55	
	Board Interface	interface	interface		
R57	Application	Use SCIbCK of application board	Use DLCDE of application	R59	
	Board Interface	interface	board interface		
R59	Application	Use DLCDE of application	Use SCIbCK of application board	R57	
	Board Interface	board interface	interface		
R61	Power Supply	Connects AVCC to Board_VCC	Disconnects AVCC from		
			Board_VCC		
R62	Oscillator	Connects external clock to MCU	Connects X1 to MCU	R46, R48, R63	
R63	Oscillator	Connects external clock to MCU	Connects X1 to MCU	R46, R48, R62	
R65	Power Supply	Connects AVSS to Ground	Disconnects AVSS from Ground		
R66	External Analog	Connects AVCC to external	Disconnects AVCC from		
	voltage supply	AVCC pin CON_AVCC	external AVCC pin CON_AVCC		
R69	Application	Use IRQ4n of application board	Use ADTRG of application	R71	
	Board Interface	interface	board interface		

	Option Link Settings				
Reference	Function	Fitted	Alternative (Removed)	Related To	
R71	Application	Use ADTRG of application	Use IRQ4n of application board	R69	
	Board Interface	board interface	interface		

Table 6-5: Option Links

6.7. Oscillator Sources

A crystal oscillator is fitted on the RSK and used to supply the main clock input to the Renesas microcontroller. Table 6-6 details the oscillators that are fitted and alternative footprints provided on this RSK:

Component		
Crystal (X1)	Fitted	32.768 KHz (90SMX package)
Crystal (X2)	Fitted	16 MHz (HC49/4H package)

Table 6-6: Oscillators / Resonators

6.8. Reset Circuit

The CPU Board includes a simple latch circuit that links the mode selection and reset circuit. This provides an easy method for swapping the device between Boot Mode and User mode. This circuit is not required on customer's boards as it is intended for providing easy evaluation of the operating modes of the device on the RSK. Please refer to the hardware manual for more information on the requirements of the reset circuit.

The Reset circuit operates by latching the state of the boot switch on pressing the reset button. This control is subsequently used to modify the port pin P24 states as required.

The port pin P24 must change state only while the reset signal is active to avoid possible device damage.

The reset is held in the active state for a fixed period by a pair of resistors and a capacitor. Please check the reset requirements carefully to ensure the reset circuit on the user's board meets all the reset timing requirements.

6.9. LCD Controller Interface

This RSK should be soldered on top of the LCD application board in JA1, JA2, JA5, JA6 and JA4 positions. These application headers are detailed in section 9.2 in this user manual.

For more details on LCD application board please refer to LCD application board user manual.

Chapter 7. Modes

This RSK supports Boot mode and User mode.

Details of programming the FLASH memory is described in the H8/38347 Group Hardware Manual.

7.1. Boot mode

The boot mode settings for this RSK are shown in Table 7-1: Boot Mode pin settings below:

P24	P26	LSI State after Reset End
Low	High	Boot Mode

Table 7-1: Boot Mode pin settings

The software supplied with this RSK supports Boot mode using an E8a and HEW only. However, hardware exists to enter boot mode manually, do not connect the E8a in this case. Press and hold the SW1/BOOT. The port pin P24 is held in its boot state while reset is pressed and released. Release the boot button. The BOOT LED will be illuminated to indicate that the microcontroller is in boot mode.

When neither the E8a is connected nor the board is placed in boot mode as above, the port pin P24 is pulled high by a 100k resistor.

When an E8a is used the port pin P24 and P26 are controlled by the E8a.

7.2. User mode

Because the port pin P24 is pulled high, this RSK will always boot in User mode when the E8a is not connected and the boot switch is not depressed. Refer to H8/38347 Group Hardware Manual for details of User mode. The user mode settings for this RSK are shown in Table 7-1: Boot Mode pin settings below:

P24	P26	LSI State after Reset End
High	X	User Mode

X: Don't care

Table 7-2: User Mode pin settings

Chapter 8. Programming Methods

The board is intended for use with HEW and the supplied E8a debugger. Refer to H8/38347 Group Hardware Manual for details of programming the microcontroller without using these tools.

Chapter 9. Headers

9.1. Microcontroller Headers

Table 9-1 to Table 9-4 show the microcontroller pin headers and their corresponding microcontroller connections. The header pins connect directly to the microcontroller pin unless otherwise stated.

	J1									
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device					
		Pin			Pin					
1	LED0	1	2	LED1	2					
3	TMR0	3	4	TRIGb	4					
5	IRQ4n_ADTRG*	5	6	IRQ1n	6					
7	LED2_IRQ2n	7	8	TRIGa	8					
9	CON_X1	9	10	CON_X2	10					
11	GROUND	11	12	CON_OSC2	12					
13	CON_OSC1	13	14	TEST	14					
15	RESn	15	16	SCIcCk	16					
17	SCIcRX	17	18	SCIcTX	18					
19	10_0	19	20	E8_P24	20					
21	PTCK	21	22	PTRX	22					
23	PTTX	23	24	TMR1	24					

Table 9-1: J1

	J2									
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device					
		Pin			Pin					
1	LED3	25	2	DLCDRS	26					
3	DLCDE_SCIbCK*	27	4	DLCD4_SCIbRX*	28					
5	DLCD5_SCIbTX*	29	6	DLCD6	30					
7	DLCD7	31	8	CVCC	32					
9	GROUND	33	10	V3	34					
11	V2	35	12	V1	36					
13	V0	37	14	UC_VCC	38					
15	COM4	39	16	COM3	40					
17	COM2	41	18	COM1	42					
19	SEG1	43	20	SEG2	44					
21	SEG3	45	22	SEG4	46					
23	SEG5	47	24	SEG6	48					
25	SEG7	49	26	SEG8	50					

Table 9-2: J2

	J3										
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device						
		Pin			Pin						
1	SEG9	51	2	SEG10	52						
3	SEG11	53	4	SEG12	54						
5	SEG13	55	6	SEG14	56						
7	SEG15	57	8	SEG16	58						
9	SEG17	59	10	SEG18	60						
11	SEG19	61	12	SEG20	62						
13	SEG21	63	14	SEG22	64						
15	SEG23	65	16	SEG24	66						
17	SEG25	67	18	SEG26	68						
19	SEG27	69	20	SEG28	70						
21	SEG29	71	22	SEG30	72						
23	SEG31	73	24	SEG32	74						

Table 9-3: J3

	J4									
Pin	Circuit Net Name	Device	Pin	Circuit Net Name	Device					
		Pin			Pin					
1	SEG33	75	2	SEG34	76					
3	SEG35	77	4	SEG36	78					
5	SEG37	79	6	SEG38	80					
7	SEG39	81	8	SEG40	82					
9	SCIaCK	83	10	SCIaRX	84					
11	SCIaTX	85	12	IRQ0N	86					
13	CON_AVCC	87	14	AD0	88					
15	AD1	89	16	AD2	90					
17	AD3	91	18	AD4	92					
19	AD5	93	20	AD6	94					
21	AD7	95	22	AD_POT	96					
23	PIN97	97	24	PIN98	98					
25	PIN99	99	26	AVss	100					

Table 9-4: J4

9.2. Application Headers

Table 9-5 and Table 9-6 below show the standard application header connections.

	JA1										
Pin	Generic Hea	der Name	CPU board	Device	Pin	Header N	lame	CPU board	Device		
			Signal Name	Pin				Signal Name	Pin		
1	Regulated Su	ipply 1	5V	-	2	Regulated Supp	oly 1	GROUND	-		
3	Regulated Su	ipply 2	3V3	-	4	Regulated Supp	oly 2	GROUND	-		
5	Analogue Su	oply	AVcc	87	6	Analogue Supp	ly	AVss	-		
7	Analogue Re	ference	AVref	-	8	ADTRG		ADTRG*	5		
9	ADC0	10	AD0	88	10	ADC1	I1	AD1	89		
11	ADC2	12	AD2	90	12	ADC3	13	AD3	91		
13	DAC0		DAC0	-	14	DAC1		DAC1	-		
15	IOPort		IO_0	19	16	IOPort		10_1	-		
17	IOPort		10_2	-	18	IOPort		10_3	-		
19	IOPort		IO_4	-	20	IOPort		10_5	-		
21	IOPort		10_6	-	22	IOPort		10_7	-		
23	Open drain	IRQAEC	IRQ3	7	24	I ² C Bus - (3rd pin)		IIC_EX	-		
25	I ² C Bus	•	IIC_SDA	-	26	I ² C Bus	-	IIC_SCL	-		

Table 9-5: JA1 Standard Generic Header

	JA2										
Pin	Generic Heade	er Name	CPU board	Device	Pin	Header Name	CPU board	Device			
			Signal Name	Pin			Signal Name	Pin			
1	Open drain		RESn	15	2	External Clock Input	EXTAL	13			
3	Open drain		NMIn	-	4	Regulated Supply 1	GND	-			
5	Open drain outp	out	WDT_OVF	-	6	Serial Port	SCIaTX*	85			
7	Open drain WUP		IRQ0	86	8	Serial Port	SCIaRX*	84			
9	Open drain		IRQ1	6	10	Serial Port	SCIaCK	83			
11	Up/down		MO_UD	-	12	Serial Port Handshake	CTS/RTS	-			
13	Motor control		MO_Up	-	14	Motor control	MO_Un	-			
15	Motor control		MO_Vp	-	16	Motor control	MO_Vn	-			
17	Motor control		MO_Wp	-	18	Motor control	MO_Wn	-			
19	Output		TMR0	3	20	Output	TMR1	24			
21	Input		TRIGa	8	22	Input	TRIGb	4			
23	Open drain		IRQ2*	5	24	Tristate Control	TRSTn	-			
25	SPARE		-	-	26	SPARE	-	-			

Table 9-6: JA2 Standard Generic Header

Table 9-7 below show the LCD application header connections. The LCD application board need to be mounted on RSKH838347 board in order to make use of the LCD panel. The following header (i.e. header JA4) will be connected to JA4B header on LCD application board.

	JA4									
Pin	Generic Header Name	CPU board	Device	Pin	Header Name	CPU board	Device			
		Signal Name	Pin			Signal Name	Pin			
1	V0	V0	37	2	V1	V1	36			
3	V2	V2	35	4	V3	V3	34			
5	GROUND	GROUND	-	6	GROUND	GROUND	-			
7	COM1	COM1	42	8	COM2	COM2	41			
9	COM3	COM3	40	10	COM4	COM4	39			
11	SEG1	SEG1	43	12	SEG2	SEG2	44			
13	SEG3	SEG3	45	14	SEG4	SEG4	46			
15	SEG5	SEG5	47	16	SEG6	SEG6	48			
17	SEG7	SEG7	49	18	SEG8	SEG8	50			
19	SEG9	SEG9	51	20	SEG10	SEG10	52			
21	SEG11	SEG11	53	22	SEG12	SEG12	54			
23	SEG13	SEG13	55	24	SEG14	SEG14	56			
25	SEG15	SEG15	57	26	SEG16	SEG16	58			
27	SEG17	SEG17	59	28	SEG18	SEG18	60			
29	SEG19	SEG19	61	30	SEG20	SEG20	62			
31	SEG21	SEG21	63	32	SEG22	SEG22	64			
33	SEG23	SEG23	65	34	SEG24	SEG24	66			
35	SEG25	SEG25	67	36	SEG26	SEG26	68			
37	SEG27	SEG27	69	38	SEG28	SEG28	70			
39	SEG29	SEG29	71	40	SEG30	SEG30	72			
41	SEG31	SEG31	73	42	SEG32	SEG32	74			
43	SEG33	SEG33	75	44	SEG34	SEG34	76			
45	SEG35	SEG35	77	46	SEG36	SEG36	78			
47	SEG37	SEG37	79	48	SEG38	SEG38	80			
49	SEG39	SEG39	81	50	SEG40	SEG40	82			

Table 9-7: JA4 Optional Generic Header

Table 9-8 and Table 9-9 below show the optional generic header connections.

	JA5												
Pin	Generic He	eader Name	CPU board	Device	Pin	Heade	r Name	CPU board	Device				
			Signal Name	Pin				Signal Name	Pin				
1	ADC4	14	AD4	92	2	ADC5	I5	AD5	93				
3	ADC6	16	AD6	94	4	ADC7	17	AD7	95				
5	CAN		CAN1TX		6	CAN		CAN1RX					
7	CAN		CAN2TX		8	CAN		CAN2RX					
9	Reserved				10	Reserved							
11	Reserved				12	Reserved							
13	Reserved				14	Reserved							
15	Reserved				16	Reserved							
17	Reserved				18	Reserved							
19	Reserved				20	Reserved							
21	Reserved				22	Reserved							
23	Reserved				24	Reserved							

Table 9-8: JA5 Optional Generic Header

	JA6											
Pin	Generic	Header Name	CPU board	Device	Pin	Head	er Name	CPU board	Device			
			Signal	Pin				Signal Name	Pin			
			Name									
1	DMA		DREQ		2	DMA		DACK				
3	DMA		TEND		4	Standby (Ope	en drain)	STBYn				
5	Host Serial	SCIdTX	RS232TX		6	Host Serial	SCIdRX	RS232RX				
7	Serial Port		SCIbRX	28	8	Serial Port		SCIbTX*	29			
9	Serial Port	Synchronous	SCIcTX	18	10	Serial Port		SCIbCK*	27			
11	Serial Port	Synchronous	SCIcCK	16	12	Serial Port	Synchronous	SClcRX*	17			
13	Reserved				14	Reserved						
15	Reserved				16	Reserved						
17	Reserved				18	Reserved						
19	Reserved				20	Reserved						
21	Reserved				22	Reserved						
23	Reserved				24	Reserved						
25	Reserved				26	Reserved						

Table 9-9: JA6 Optional Generic Header

^{*} Marked pins are affected by option links.

Chapter 10. Code Development

10.1. Overview

Note: For all code debugging using Renesas software tools, the RSK board must be connected to a PC USB port via an E8a. An E8a is supplied with the RSK product.

10.2. Mode Support

HEW connects to the Microcontroller and programs it via the E8a. Mode support is handled transparently to the user.

10.3. Breakpoint Support

HEW supports breakpoints on the user code, both in RAM and ROM.

Double clicking in the breakpoint column in the code sets the breakpoint. Breakpoints will remain unless they are double clicked to remove them.

10.4. Memory Map

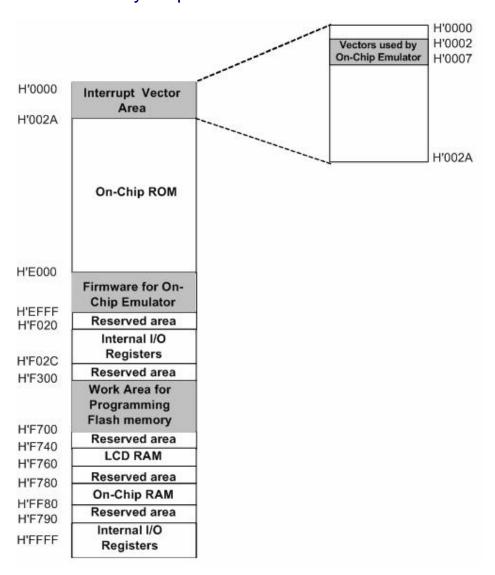


Figure 10-1: Memory Map

Chapter 11.Component Placement

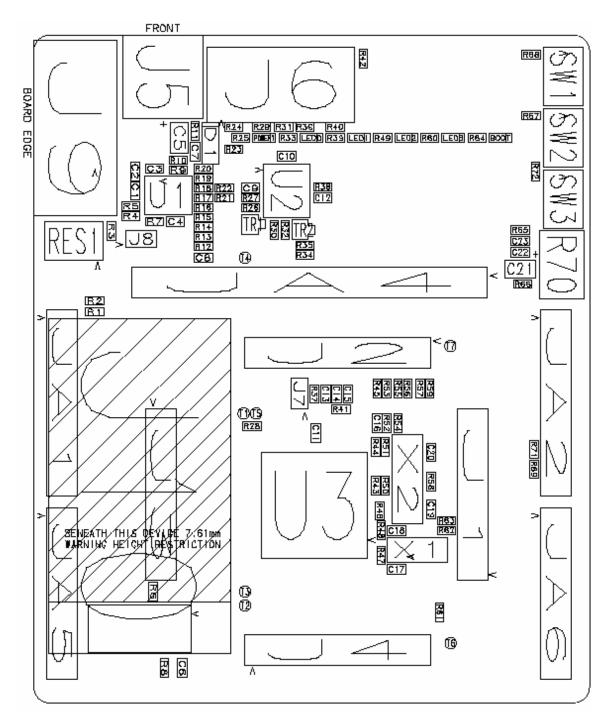


Figure 11-1: Component Placement

Chapter 12. Additional Information

For details on how to use High-performance Embedded Workshop (HEW, refer to the HEW manual available on the CD or from the web site.

For information about the H8/38347 series microcontrollers refer to the H8/3847R Group, H8/3847S Group, H8/38347 Group, H8/38447 Group hardware manual.

For information about the H8/38347 assembly language, refer to the H8/300L Series Software Manual. Online technical support and information is available at: http://www.renesas.com/renesas_starter_kits

Technical Contact Details

America: <u>techsupport.rta@renesas.com</u>

Europe: <u>tools.support.eu@renesas.com</u>

Japan: csc@renesas.com

General information on Renesas Microcontrollers can be found on the Renesas website at: http://www.renesas.com/

Renesas Starter Kit for H8/38347

User's Manual

Publication Date Rev.2.00 15.OCT.2006

Published by: Renesas Technology Europe Ltd.

Duke's Meadow, Millboard Road, Bourne End Buckinghamshire SL8 5FH, United Kingdom

©2007 Renesas Technology Europe and Renesas Solutions Corp., All Rights Reserved.

Renesas Starter Kit for H8/38347 User's Manual

