

10 Watt MMDS Packaged Amplifier

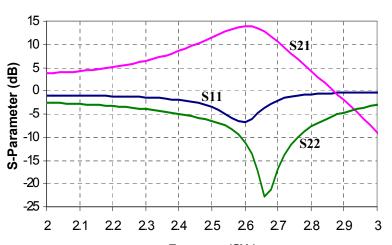
Product Description

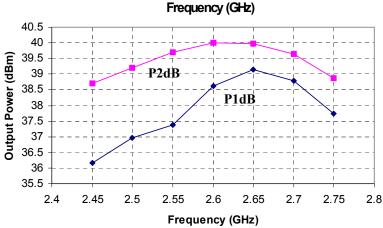
The TGA2924-SG HPA provides 12 dB of gain, 10 W of output power at 2.6 GHz and 2.5% EVM at 30 dBm output power. The device is ideally suited for high linearity, high power wireless data applications such as MMDS Point-to-Point or Point-to-Multi-Point radios. The package has a high thermal conductivity copper alloy base. Internal partial matching simplifies system board layout by requiring a minimum of external components.

Lead-Free & RoHS compliant.

Evaluation Boards are available.

Key Features


- 2. 6 GHz Application Frequency Range
- 12 dB Nominal Gain
- 40 dBm Nominal Psat
- 2.5% EVM at 30 dBm output power
- Internally Partially Matched
- IMD3 -45 dBc @ 28 dBm SCL, Typical
- Bias Conditions: 8 V @ 1.2 A (Quiescent)
- 0.5 μm HFET Technology
- 2 lead Cu-alloy base package


Primary Applications

- MMDS Pt-Pt and Pt-Multi Pt Radio
- S-Band Power Amplifiers

Fixtured Measured Performance

Bias Conditions: Vd = 8 V, Idq =1.2 A
Performance data taken in a 2.6 GHz application circuit

Datasheet subject to change without notice

TABLE I MAXIMUM RATINGS 1/

Symbol	Parameter	Value	Notes
Vd	Drain Supply Voltage	10 V	<u>2</u> /
Vg	Gate Supply Voltage Range	0 V to -5 V	
ldq	Drain Supply Current (Quiescent)	4 A	<u>2</u> /
lg	Gate Current	39 mA	
P _{IN}	Input Continuous Wave Power	39 dBm	<u>2</u> /
P_{D}	Power Dissipation	14.4 W	<u>2</u> /, <u>3</u> /
T _{CH}	Operating Channel Temperature	200 °C	4/
	Mounting Temperature (30 Seconds)	260 °C	
T _{STG}	Storage Temperature	-65 to 150 °C	

- 1/ These ratings represent the maximum operable values for this device.
- $\underline{2}$ / Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D .
- 3/ When operated at this bias condition with a base plate temperature of 85 °C, the median life is 7.5E5 hours.
- 4/ Junction operating temperature will directly affect the device median time to failure (Tm). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.

TABLE II RF CHARACTERIZATION TABLE

 $(T_A = 25^{\circ}C, Nominal)$ (Vd = 8 V, Idq = 1.2 A)

SYMBOL	PARAMETER	TEST CONDITION	TYPICAL	UNITS
Gain	Small Signal Gain	f = 2.6 GHz	12	dB
IRL	Input Return Loss	f = 2.6 GHz	6	dB
ORL	Output Return Loss	f = 2.6 GHz	10	dB
Psat	Saturated Output Power		40	dBm

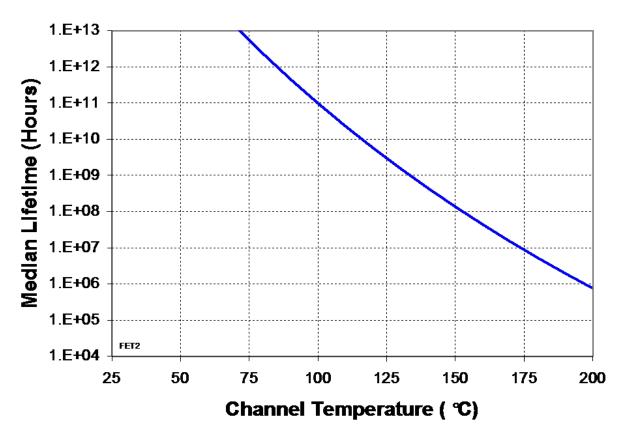
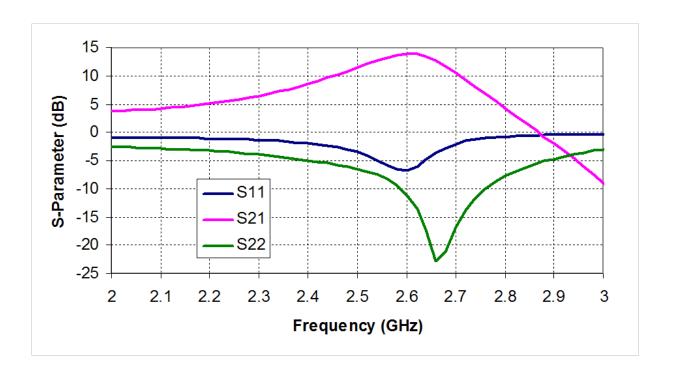
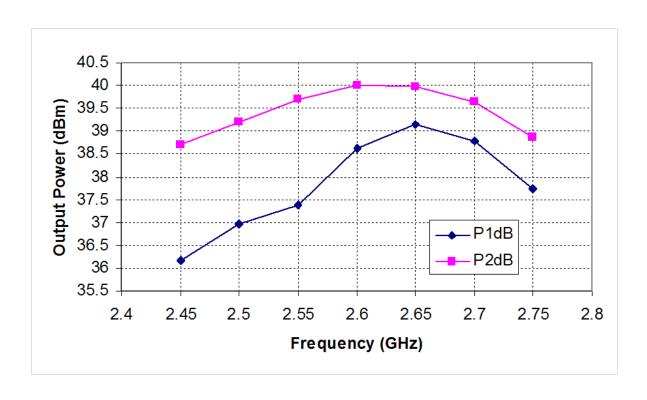
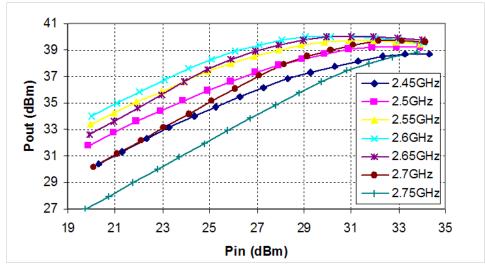


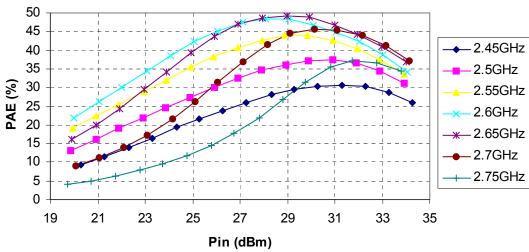
TABLE III
THERMAL INFORMATION

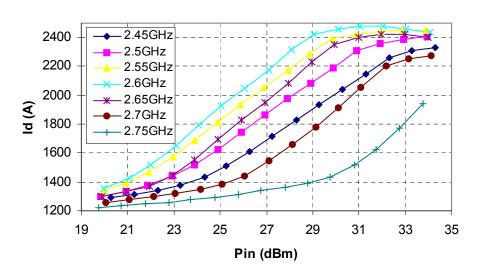

Parameter	Test Conditions	T _{CH} (°C)	θ _{JC} (°C/W)	Tm (HRS)
θ _{JC} Thermal Resistance (channel to backside of package)	Vd = 8 V $I_D = 1.2 A$ Pdiss = 9.6 W	162	8	3.5 E+7

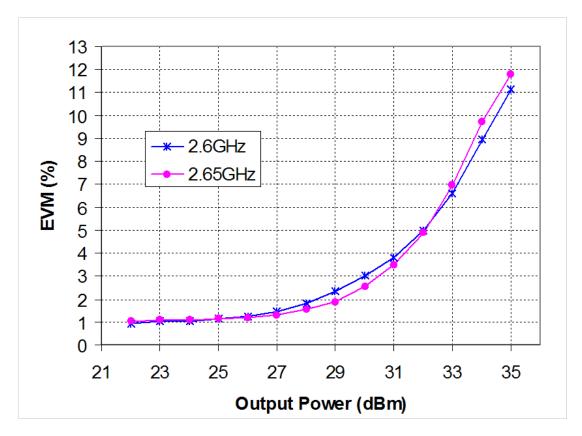

Note: Package backside SnPb soldered to carrier at 85 °C baseplate temperature. At saturated output power, the DC power consumption is 20W with 10W RF power delivered to the load and 10W dissipated. Adding the 1W RF input power results in 11W total power dissipation and a maximum channel temperature of 173 °C at 85 °C baseplate temperature.

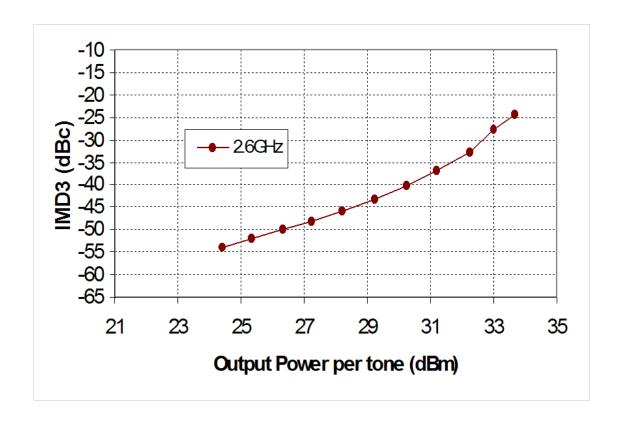
Median Lifetime (Tm) vs. Channel Temperature

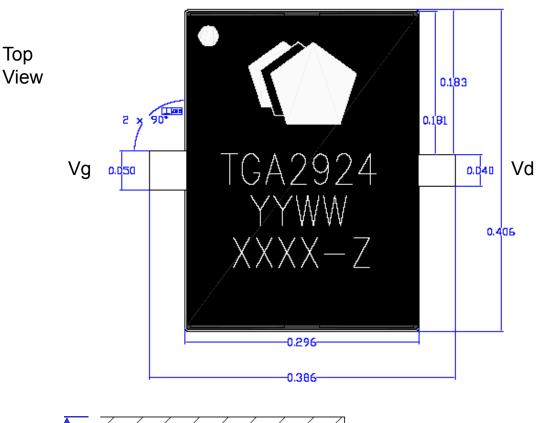


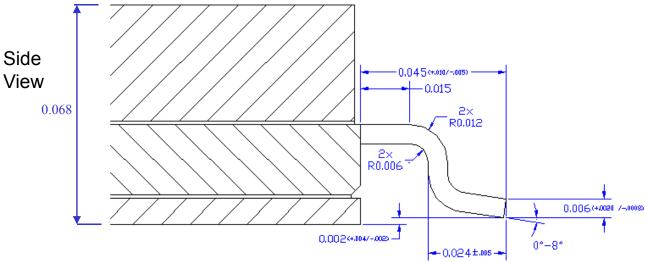




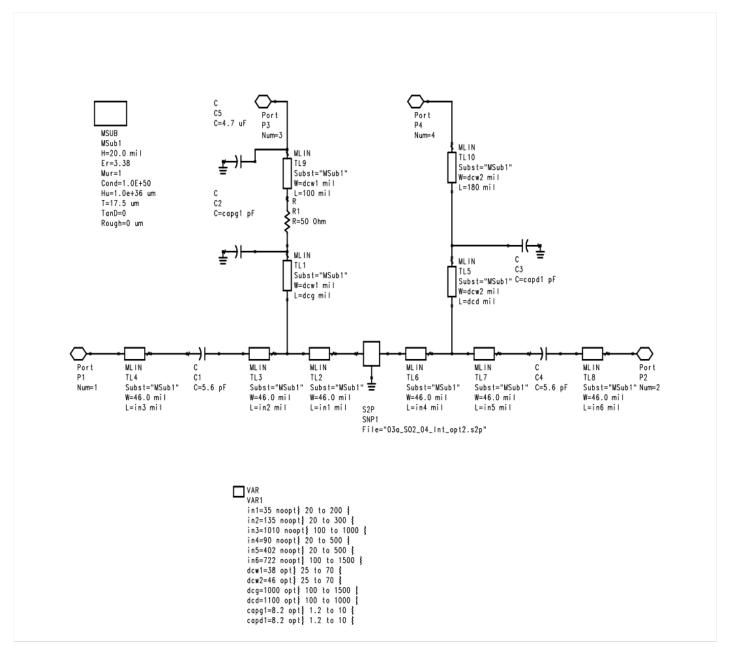






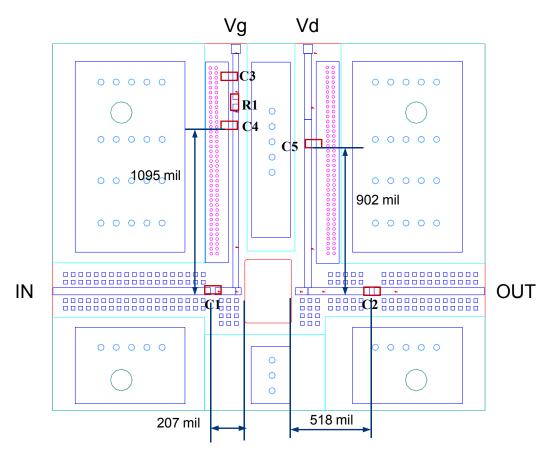


Mechanical Drawing


Note: All dimensions are in inches with ±5 mil tolerance

Bias Procedure

- 1. Ensure no RF power is applied to the device.
- 2. Pinch off device by setting Vg to –3V.
- 3. Increase Vd to 8.0V while monitoring drain current.
- 4. Increase Vg until drain current reaches 1.2A
- 5. Apply RF power.


2.6 GHz Application Circuit Schematic

PCB is 20 mil thick Rogers 4003 substrate

Typical Evaluation Board Layout *

^{*}The layout is a general purpose drawing that needs to be tuned for the specific application. PCB is RO4003 20 mil thickness, 0.5 oz standard copper cladding, with ε_r = 3.38.

External Component Listing

Part Type	Reference	Description
Capacitor	C1	AVX 06035J5R6BBT, 5.6 pF
Capacitor	C2	AVX 06035J5R6BBT, 5.6 pF
Capacitor	C3	4.7uF
Capacitor	C4	AVX 06035J8R2BBT, 8.2 pF
Capacitor	C5	AVX 06035J8R2BBT, 8.2 pF
Resistor	R1	0805, 10 Ω

Contact TriQuint Applications Engineering for additional info

Recommended Surface Mount Package Assembly

Proper ESD precautions must be followed while handling packages.

Clean the board with acetone. Rinse with alcohol. Allow the circuit to fully dry.

TriQuint recommends using a conductive solder paste for attachment. Follow solder paste and reflow oven vendors' recommendations when developing a solder reflow profile. Typical solder reflow profiles are listed in the table below.

Hand soldering is not recommended. Solder paste can be applied using a stencil printer or dot placement. The volume of solder paste depends on PCB and component layout and should be well controlled to ensure consistent mechanical and electrical performance.

Clean the assembly with alcohol.

Typical Solder Reflow Profiles

Reflow Profile	SnPb	Pb Free	
Ramp-up Rate	3 °C/sec	3 °C/sec	
Activation Time and Temperature	60 – 120 sec @ 140 – 160 °C	60 – 180 sec @ 150 – 200 °C	
Time above Melting Point	60 – 150 sec	60 – 150 sec	
Max Peak Temperature	240 °C	260 °C	
Time within 5 °C of Peak Temperature	10 – 20 sec	10 – 20 sec	
Ramp-down Rate	4 – 6 °C/sec	4 – 6 °C/sec	

Ordering Information

Part	Package Style
TGA2924-SG	Gullwing Leads