BGA622

Silicon Germanium Wide Band Low Noise Amplifier with 2 kV ESD Protection

Small Signal Discretes

Never stop thinking

Edition 2008-04-14

Published by Infineon Technologies AG, 81726 München, Germany © Infineon Technologies AG 2008. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

BGA622, Silicon Germanium Wide Band Low Noise Amplifier with 2 kV ESD Protection

Revision History: 2008-04-14, Rev. 2.2

Previous Version: 2005-11-16					
Page	Subjects (major changes since last revision)				
All	Document layout change				

Trademarks

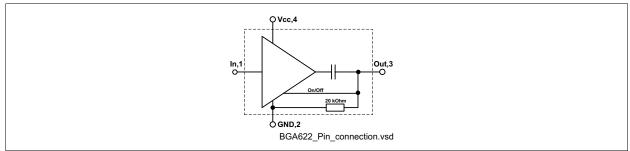
SIEGET[®] is a registered trademark of Infineon Technologies AG.

Silicon Germanium Wide Band Low Noise Amplifier with 2 kV ESD Protection

SOT343

Silicon Germanium Wide Band Low Noise Amplifier with 2 kV ESD Protection

Feature


1

- High gain
 - $|S_{21}|^2$ = 15.0 dB at 1.575 GHz
 - $|S_{21}|^2 = 14.2 \text{ dB at } 1.9 \text{ GHz}$
 - $|S_{21}|^2$ = 13.6 dB at 2.14 GHz
- Low noise figure, NF = 1.0 dB at 1.575 GHz
- Operating frequency range 0.5 6 GHz
- Typical supply voltage: 2.75 V
- On/Off-Switch
- Output-match on chip, input pre-matched
- Low part count
- 70 GHz $f_{\rm T}$ Silicon Germanium technology
- 2 kV HBM ESD protection (Pin-to-Pin)
- Pb-free (RoHS compliant) package

Applications

· LNA for GSM, GPS, DCS, PCS, UMTS, Bluethooth, ISM and WLAN

Description

The BGA622 is a wide band low noise amplifier, based on Infineon Technologies' Silicon Germanium Technology B7HF. In order to provide the LNA in a small package the out-pin is simultaneously used for RF out and On/Off switch. This functionality can be accessed using a RF-Choke at the Out pin, where a DC level of 0 V or an open switches the device on and a DC level of V_{CC} switches the device off. While the device is switched off, it provides an insertion loss of 24 dB together with a high IIP_3 up to 20 dBm.

Туре	Package	Marking
BGA622	SOT343	BXs

Note: **ESD:** Electrostatic discharge sensitive device, observe handling precaution

Downloaded from Elcodis.com electronic components distributor

Silicon Germanium Wide Band Low Noise Amplifier with 2 kV ESD Protection

Maximum Ratings

Table 1 Maximum ratings

Parameter	Symbol	Limit Value	Unit	
Voltage at pin $V_{\rm CC}$	V _{CC}	3.5	V	
Voltage at pin Out	V _{out}	4	V	
Current into pin In	I _{in}	0.1	mA	
Current into pin Out	I _{out}	1	mA	
Current into pin V _{CC}	I _{Vcc}	10	mA	
RF input power	P _{in}	6	dBm	
Total power dissipation, $T_{\rm S}$ < 139 °C ¹⁾	P _{tot}	35	mW	
Junction temperature	TJ	150	°C	
Ambient temperature range	T _A	-65 150	°C	
Storage temperature range	T _{STG}	-65 150	°C	
ESD capability all pins (HBM: JESD22-A114)	V _{ESD}	2000	V	
(A) T is reasoning a state even of least state could be	dia a la stat	1	1	

1) $T_{\rm S}$ is measured on the ground lead at the soldering point

Note: All Voltages refer to GND-Node

Thermal resistance

Table 2Thermal resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R _{thJS}	300	K/W

1) For calculation of $R_{\rm thJA}$ please refer to Application Note Thermal Resistance

2 Electrical Characteristics

2.1 Electrical characteristics at T_A = 25 °C (measured according to Figure 2) V_{CC} = 2.75 V, Frequency = 1.575 GHz, unless otherwise specified

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Insertion power gain	$ S_{21} ^2$		15.0		dB	
Insertion power gain (Off-State)	$ S_{21} ^2$		-27		dB	
Input return loss (On-State)	<i>RL</i> _{in}		5		dB	
Output return loss (On-State)	<i>RL</i> _{out}		12		dB	
Noise figure ($Z_{\rm S}$ = 50 Ω)	$F_{50\Omega}$		1.00		dB	<i>f</i> = 0.1 GHz
Input third order intercept point ¹⁾ (On-State)	IIP ₃		0		dBm	Δf = 1 MHz, P_{IN} = -28 dBm
Input third order intercept point ¹⁾ (Off - State)	IIP ₃		20		dBm	Δf = 1 MHz, P_{IN} = -8 dBm
Input power at 1 dB gain compression	$P_{\text{-1dB}}$		-16.5		dBm	
Total device off current	I _{tot-off}	130	260	420	μA	$V_{\rm CC}$ = 2.75 V, $V_{\rm out}$ = $V_{\rm CC}$
Total device on current	$I_{\rm tot-on}$	4.0	5.8	7.8	mA	V _{CC} = 2.75 V
On / Off switch control voltage	V _{on}	0		0.8	V	$V_{\rm CC}$ = 2.75 V ON-Mode: $V_{\rm out}$ = $V_{\rm on}$
	V _{off}	2.0		3.5	V	$V_{\rm CC}$ = 2.75 V OFF-Mode: $V_{\rm out}$ = $V_{\rm off}$

Table 3 Electrical Characteristics

1) IP_3 values depends on termination of all intermodulation frequency components. Termination used for this measurement is 50 Ω from 0.1 to 6 GHz

2.2 Electrical characteristics at T_A = 25 °C (measured according to Figure 2) V_{CC} = 2.75 V, Frequency = 2.14 GHz, unless otherwise specified

Table 4	Electrical	Characteristics

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Insertion power gain	$ S_{21} ^2$		13.6		dB	
Insertion power gain (Off-State)	$ S_{21} ^2$		-24		dB	
Input return loss (On-State)	<i>RL</i> _{in}		7		dB	
Output return loss (On-State)	RL _{out}		10		dB	
Noise figure ($Z_{\rm S}$ = 50 Ω)	$F_{50\Omega}$		1.05		dB	
Input third order intercept Point ¹⁾ (On-State)	IIP ₃		3		dBm	Δf = 1 MHz, P_{IN} = -28 dBm
Input third order intercept point ¹⁾ (Off-State)	IIP ₃		20		dBm	Δf = 1 MHz, P_{IN} = -8 dBm
Input power at 1 dB gain compression	$P_{\text{-1dB}}$		-13		dBm	

1) IP_3 values depends on termination of all intermodulation frequency components. Termination used for this measurement is 50 Ω from 0.1 to 6 GHz

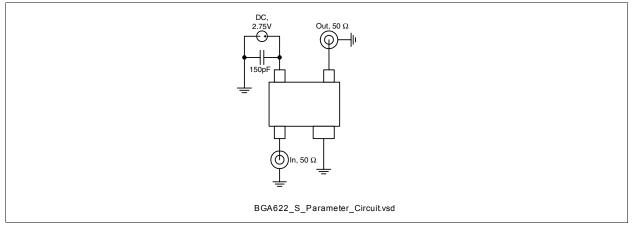
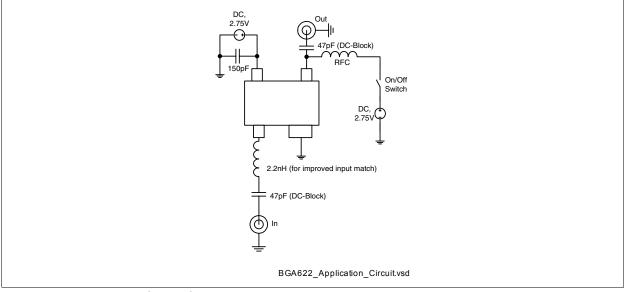
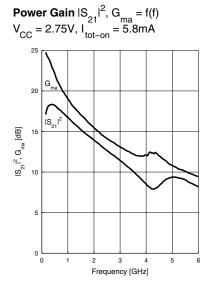
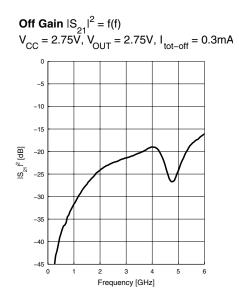


Figure 2 S-Parameter Test Circuit (loss-free microstrip test-fixture)

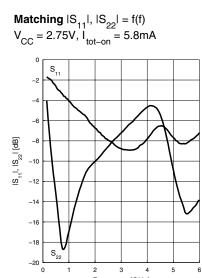
Electrical Characteristics



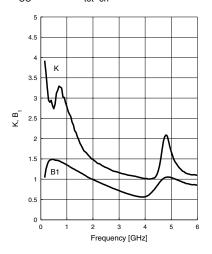

Figure 3 Application Circuit for 1800 - 2500 MHz

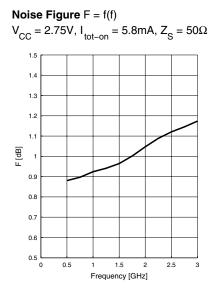



BGA622

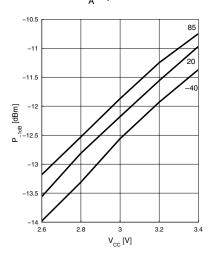

Measured Parameters

3 Measured Parameters

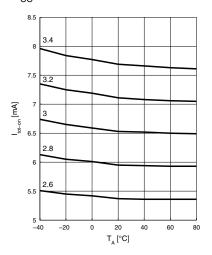



Frequency [GHz]

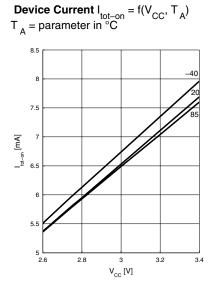
Data Sheet

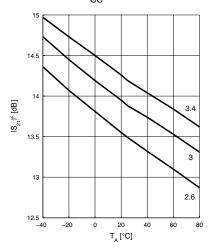


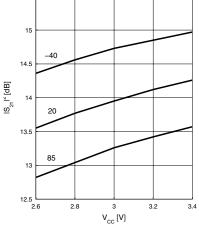
Stability K, $B_1 = f(f)$ V_{CC} = 2.75V, $I_{tot-on} = 5.8mA$



Input Compression Point P $_{-1dB} = f(V_{CC})$ f = 2.14GHz, T $_A$ = parameter in °C

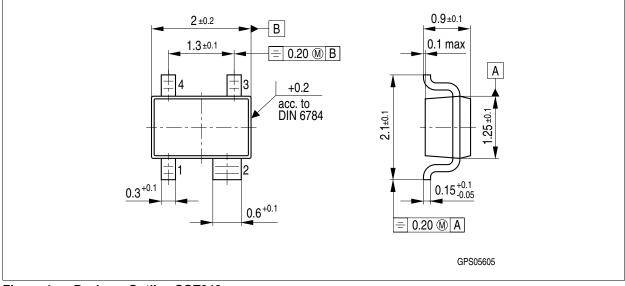

Device Current I $_{tot-on}$ = f(T $_{A},$ V $_{CC})$ V $_{CC}$ = parameter in V


Downloaded from Elcodis.com electronic components distributor


Measured Parameters

Power Gain $|S_{21}|^2 = f(T_A, V_{CC})$ f = 2.14GHz, V_{CC} = parameter in V

Power Gain $|S_{21}|^2 = f(V_{CC}, T_A)$ f = 2.14GHz, T_A = parameter in °C



BGA622

Package Information

4 Package Information

Figure 4 Package Outline SOT343

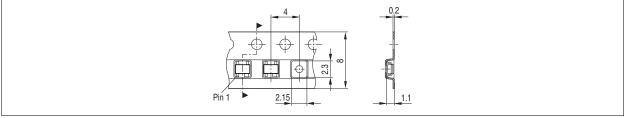


Figure 5 Tape for SOT343