

High-Linearity 1700MHz to 2200MHz Down-Conversion Mixer with LO Buffer/Switch

General Description

The MAX9993 high-linearity down-conversion mixer provides 8.5dB of gain, +23.5dBm IIP3, and 9.5dB NF for UMTS, DCS, and PCS base-station applications.

The MAX9993 integrates baluns in the RF and LO ports, a dual-input LO selectable switch, an LO buffer, a double-balanced mixer, and a differential IF output amplifier. The MAX9993 requires a typical LO drive of +3dBm, and supply current is guaranteed to below 230mA.

The MAX9993 is available in a compact 20-pin thin QFN package (5mm \times 5mm) with an exposed pad. Electrical performance is guaranteed over the extended -40°C to +85°C temperature range.

The MAX9993 EV kit is available; contact the factory for more information.

UMTS and 3G Base Stations

PCS1900 Base Stations

Wireless Local Loop Private Mobile Radio Military Systems

DCS1800 and EDGE Base Stations

Point-to-Point Microwave Systems

Applications

_Features

- +23.5dBm Input IIP3
- ♦ 1700MHz to 2200MHz RF Frequency Range
- ♦ 40MHz to 350MHz IF Frequency Range
- ♦ 1400MHz to 2000MHz LO Frequency Range
- 8.5dB Conversion Gain
- ♦ 9.5dB Noise Figure
- Integrated LO Buffer
- Switch-Selectable (SPDT), Two LO Inputs
- Low 0 to +6dBm LO Drive
- 40dB LO1-to-LO2 Isolation

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9993ETP-T	-40°C to 85°C	20 Thin QFN-EP*

Pin Configuration/Functional Diagram

*EP = Exposed pad.

TOP VIEW **IFBIAS** Ж 16 15 L02 V_{CC} GND RF 14 ͶΛΧΙΛΝ 13 GND TAP 3 12 GND GND 4 11 L01 5 GND °°, GND

M/IXI/M

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

THIN QFN

MAX9993

ABSOLUTE MAXIMUM RATINGS

V _{CC}	0.3V to 5.5V
RF (RF is DC shorted to GND throu	ugh balun)50mA
LO1, LO2 to GND	±0.3V
TAP, IF+, IF- to GND	0.3V to (V _{CC} + 0.3V)
LOSEL to GND	0.3V to (V _{CC} (pin 8) + 0.3V)
LOBIAS, IFBIAS, LEXT to GND	0.3V to (V _{CC} + 0.3V)
RF and LO Input Power	+22dBm

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

(*Typical Operating Circuit* as shown, no input RF or LO signals applied. $V_{CC} = 4.75V$ to 5.25V, $T_A = -40^{\circ}C$ to $+85^{\circ}C$. Typical values are at $V_{CC} = 5.0V$ and $T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Supply Voltage	V _{CC}		4.75	5.00	5.25	V
		Total supply current		202	230	
Supply Current	ICC	V _{CC} (pin 8)		87	105	mA
		IF+/IF- (total of both)		103	133	
LOSEL Input High Voltage	VIH		2.0			V
LOSEL Input Low Voltage	VIL				0.8	V
LOSEL Input Current	I_{IL} and I_{IH}		-5		+5	μA

AC ELECTRICAL CHARACTERISTICS

(*Typical Operating Circuit*, 4.75V < V_{CC} < 5.75V, -40°C < T_A < +85°, RF and LO ports are driven from 50 Ω sources, 0dBm < P_{LO} < +6dBm, P_{RF} = -5dBm, 1700MHz < f_{RF} < 2200MHz, 1400MHz < f_{LO} < 2000MHz, f_{IF} = 200MHz. Typical values are for T_A = +25°C V_{CC} = 5.0V, P_{LO} = +3dBm, f_{RF} = 1900MHz, f_{LO} = 1700MHz, 200MHz IF.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
RF Frequency	fRF		1700		2200	MHz
LO Frequency	fLO	(Note 6)	1400		2000	MHz
IF Frequency	fIF		50		350	MHz
Conversion Gain	GC	(Note 3)		8.5		dB
Gain Variation Over Temperature		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		0.0012		dB/°C
Gain Variation from Nominal (3 σ)				0.45		dB
Input Compression Point	P _{1dB}			12.6		dBm
Input Third-Order Intercept Point	IIP3	Two RF tones: -5dBm each at 1950MHz and 1951MHz, LO: +3dBm at 1750MHz		24		dBm
(Note 3)	1143	Two RF tones: -5dBm each at 2200MHz and 2201MHz, LO: +3dBm at 2000MHz		23		uBm

///XI/M

AC ELECTRICAL CHARACTERISTICS (continued)

(*Typical Operating Circuit*, 4.75V < V_{CC} < 5.75V, -40°C < T_A < +85°, RF and LO ports are driven from 50 Ω sources, 0dBm < P_{LO} < +6dBm, P_{RF} = -5dBm, 1700MHz < f_{RF} < 2200MHz, 1400MHz < f_{LO} < 2000MHz, f_{IF} = 200MHz. Typical values are for T_A = +25°C V_{CC} = 5.0V, P_{LO} = +3dBm, f_{RF} = 1900MHz, f_{LO} = 1700MHz, 200MHz IF.) (Notes 1, 2)

PARAMETER	SYMBOL	COND	ITIONS	MIN	ТҮР	MAX	UNITS
IIP3 Variation Over Temperature		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			±0.5		dB
Noise Figure	NF	f _{RF} = 1950MHz, f _{LO} = measured single-side	,		9.5		dB
Required LO Drive	PLO			0	3	6	dBm
	2×2	2 RF - 2 LO P _{RF} = -5dBm f _{RF} = 1950MHz	$P_{LO} = +3dBm$		65		
Spurious Response at IF		$f_{LO} = 1750MHz$ $f_{SPUR} = 1850MHz$	$P_{LO} = +6dBm$		70		dBc
	3×3	3 RF - 3 LO P _{RF} = -5dBm f _{BF} = 1950MHz	$P_{LO} = +3dBm$		67		dbo
	3×3	$f_{LO} = 1750MHz$ $f_{SPUR} = 1816.66MHz$	$P_{LO} = +6dBm$		68		
Maximum LO-to-RF Leakage		$P_{LO} = 0$ dBm to +6dBm $f_{LO} = 1400$ MHz to 200			-19		dBm
Maximum LO-to-IF Leakage		$P_{LO} = 0$ dBm to +6dBr $f_{LO} = 1400$ MHz to 200			-21		dBm
Minimum RF-to-IF Isolation		$f_{RF} = 1700 MHz$ to 220	00MHz		37		dB
Conversion Loss, LO to IF		P _{LO} = +0dBm, inject - into LO port, measure			28		dB
LO Switching Time		50% of LOSEL to IF se 2 degrees	ettled to within		<50		ns
LO1-to-LO2 Isolation		(Note 4)			40		dB
RF Return Loss					19		dB
		LO port selected			15		dD
LO Return Loss		LO port unselected			14		dB
IF Return Loss		RF terminated, PLO =	+3dBm (Note 5)		15		dB

Note 1: Guaranteed by design and characterization.

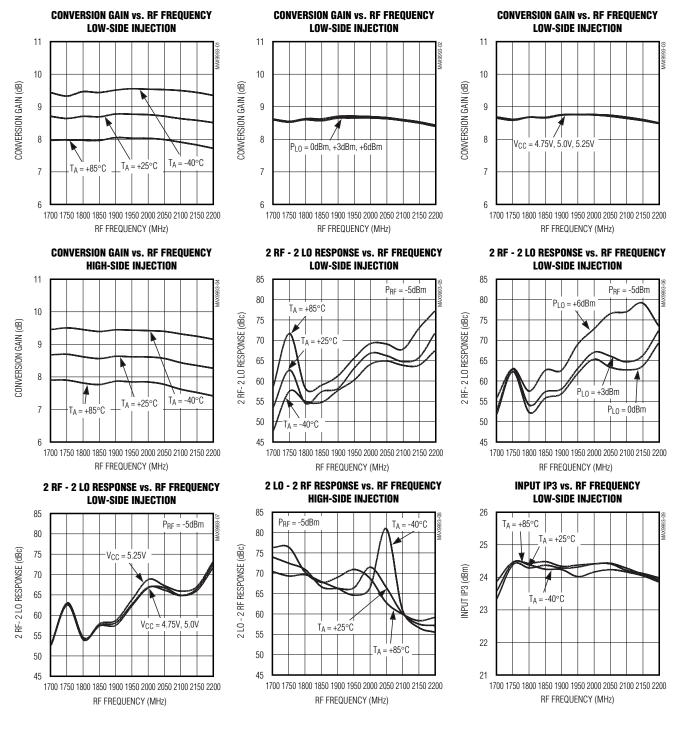
Note 2: All limits reflect losses of external components. Output measurements taken at IFOUT of the Typical Application Circuit.

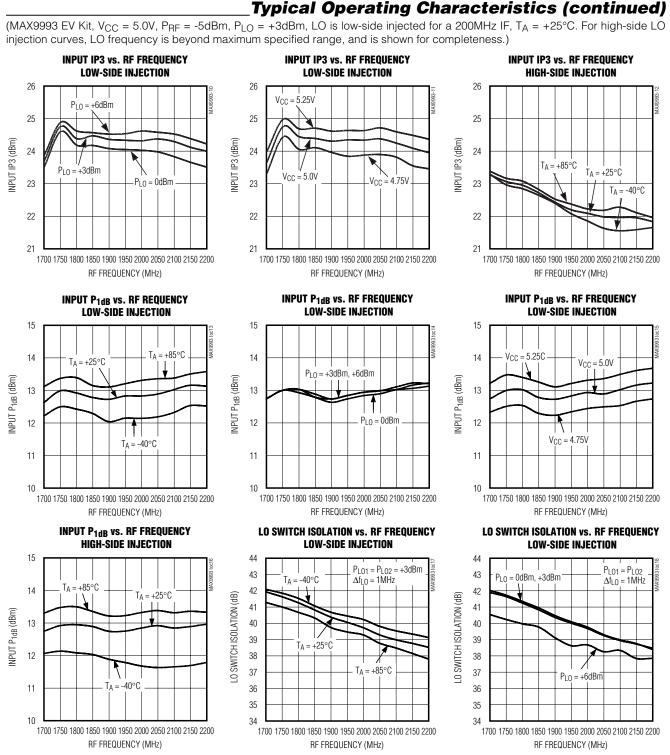
Note 3: Production tested.

Note 4: Measured at IF port at IF frequency. f_{LO1} and f_{LO2} are offset by 1MHz, $P_{LO1} = P_{LO2} = +3dBm$.

Note 5: IF return loss can be optimized by external matching components.

Note 6: Operation outside this range is possible, but with degraded performance of some specifications.


///XI///


injection curves, LO frequency is beyond maximum specified range, and is shown for completeness.)

(MAX9993 EV Kit, V_{CC} = 5.0V, P_{RF} = -5dBm, P_{LO} = +3dBm, LO is low-side injected for a 200MHz IF, T_A = +25°C. For high-side LO

Typical Operating Characteristics

M/XI/N

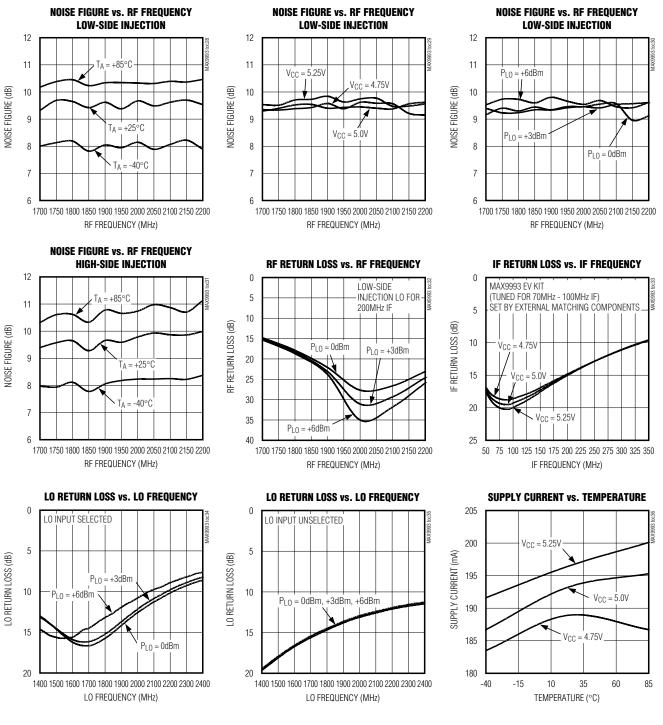
MAX9993

injection curves, LO frequency is beyond maximum specified range, and is shown for completeness.)

(MAX9993 EV Kit, V_{CC} = 5.0V, P_{RF} = -5dBm, P_{LO} = +3dBm, LO is low-side injected for a 200MHz IF, T_A = +25°C. For high-side LO

Typical Operating Characteristics (continued)

M/XI/N



LO SWITCH ISOLATION vs. RF FREQUENCY LO SWITCH ISOLATION vs. RF FREQUENCY LO LEAKAGE AT IF PORT LOW-SIDE INJECTION **HIGH-SIDE INJECTION** vs. LO FREQUENCY 44 -30 44 $P_{L01} = P_{L02} = +3dBm$ $P_{L01} = P_{L02} = +3dBm$ 43 43 $\Delta f_{L0} = 1 MHz$ $\Delta f_{L0} = 1 MHz$ 42 42 +25 LO SWITCH ISOLATION (dB) LO SWITCH ISOLATION (dB) -35 41 41 $T_A = -40^{\circ}C$ LO LEAKAGE (dBm) 40 40 +85°C TA $T_A = +25^{\circ}C$ 39 -40 39 38 38 V_{CC} = 4.75, 5.00, 5.25V 37 37 -45 36 36 T_A = -40°C $T_A = +85^{\circ}C$ 35 35 34 34 -50 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 1400 1500 1600 1700 1800 1900 2000 2100 2200 LO FREQUENCY (MHz) RE EREQUENCY (MHz) RF FREQUENCY (MHz) LO LEAKAGE AT IF PORT LO LEAKAGE AT IF PORT LO LEAKAGE AT RF PORT vs. LO FREQUENCY vs. LO FREQUENCY vs. LO FREQUENCY -30 -30 -15 IF PORT $V_{CC} = 5.25V$ TERMINATED IN 50Ω $P_{LO} = +6dBm$ -20 -35 -35 LO LEAKAGE (dBm) $P_{I,0} = 0 dBm$ LO LEAKAGE (dBm) LO LEAKAGE (dBm) $P_{LO} = 0 dBm$ -25 -40 -40 $P_{L0} = +3dBm$ $V_{CC} = 5.0V$ -30 -45 -45 -35 $V_{CC} = 4.75V$ $P_{L0} = +3dBm$ $P_{L0} =$ +6dRm -50 -40 -50 1400 1500 1600 1700 1800 1900 2000 2100 2200 1400 1500 1600 1700 1800 1900 2000 2100 2200 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 LO FREQUENCY (MHz) LO FREQUENCY (MHz) LO FREQUENCY (MHz) **RF-TO-IF ISOLATION vs. FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY RF-TO-IF ISOLATION vs. RF FREQUENCY** 57.5 57.5 57.5 55.0 55.0 55.0 +85°0 T_A : $P_{LO} = 0dBm$, +3dBm, +6dBm 52.5 52.5 52.5 RF-T0-IF ISOLATION (dB) RF-T0-IF ISOLATION (dB) $T_A = -40^{\circ}C$ RF-TO-IF ISOLATION (dB) 50.0 50.0 50.0 47.5 47.5 47.5 45.0 45.0 45.0 T_A = +25°C 42.5 42.5 42.5 40.0 40.0 40.0 V_{CC} = +4.75V, +5.0V, +5.25V 37.5 37.5 37.5 35.0 35.0 35.0 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 1700 1750 1800 1850 1900 1950 2000 2050 2100 2150 2200 RF FREQUENCY (MHz) RF FREQUENCY (MHz) 1 RF FREQUENCY (MHz) 1400 1482 1564 1646 1728 1810 1892 1974 2056 2138 2220 1400 1482 1564 1646 1728 1810 1892 1974 2056 2138 2220 1400 1482 1564 1646 1728 1810 1892 1974 2056 2138 2220 LO FREQUENCY (MHz) LO FREQUENCY (MHz) LO FREQUENCY (MHz)

(MAX9993 EV Kit, $V_{CC} = 5.0V$, $P_{RF} = -5dBm$, $P_{LO} = +3dBm$, LO is low-side injected for a 200MHz IF, $T_A = +25^{\circ}C$. For high-side LO injection curves, LO frequency is beyond maximum specified range, and is shown for completeness.)

M/IXI/M

Pin Description

PIN	NAME	FUNCTION
1, 6, 8	V _{CC}	Power Supply Connections. See the Typical Application Circuit.
2	RF	Single-Ended 50 Ω RF Input. This port is internally matched and DC shorted to GND through a balun. Provide a DC-blocking capacitor if required.
3	TAP	Center Tap of the Internal RF Balun. Bypass with capacitors close to the IC, as shown in the <i>Typical Application Circuit</i> .
4, 5, 10, 12, 13, 14, 17, EP	GND	Ground. Connect to supply ground. Provide multiple vias in the PC board to create a low- inductance connection between the exposed paddle (EP) and the PC board ground.
7	LOBIAS	LO Output Bias Resistor for LO Buffer. Connect a 383Ω (±1%) from LOBIAS to GND.
9	LOSEL	LO Select. Logic control input for selecting LO1 or LO2.
11	LO1	Local Oscillator Input. LO1 selected when LOSEL is low.
15	LO2	Local Oscillator Input. LO2 selected when LOSEL is high.
16	LEXT	External Inductor Connection. Connect a low-ESR 10nH inductor from LEXT to GND. This inductor carries approximately 100mA DC current.
18	IF-	Noninverting IF Output. Requires external bias to V _{CC} through an RF choke (see the <i>Typical Application Circuit</i>).
19	IF+	Inverting IF Output. Requires external bias to V _{CC} through an RF choke (see the <i>Typical Application Circuit</i>).
20	IFBIAS	IF Bias Resistor Connection for IF Amplifier. Connect a 523 Ω (±1%) from IFBIAS to GND.

Detailed Description

The MAX9993 high-linearity down-conversion mixer provides 8.5dB of gain and +23.5dBm IIP3, with a 9.5dB noise figure (typ). Integrated baluns and matching circuitry allow 50Ω single-ended interfaces to the RF and LO ports. A single-pole, double-throw (SPDT) LO switch provides 50ns switching time between LO inputs, with typically 40dB LO-to-LO isolation. Furthermore, the integrated LO buffer provides a high drive level to the mixer core, reducing the LO drive required at the MAX9993's inputs to 0dBm to +6dBm range. The IF port incorporates a differential output, which is ideal for providing enhanced IIP2 performance.

Specifications are guaranteed over broad frequency ranges to allow for use in UMTS and 2G/2.5G/3G DCS1800 and PCS1900 base stations. The MAX9993 is specified to operate over an RF input range of 1700MHz to 2200MHz, an LO range of 1400MHz to 2000MHz, and an IF range of 40MHz to 350MHz. This device can operate in high-side LO injection applications with an extended LO range, but performance degrades gently as f_{LO} continues to increase. See the *Typical Operating Characteristics* for measurements taken with f_{LO} up to 2400MHz. This device is available in a compact 5mm x 5mm 20-pin thin QFN package with an exposed pad.

RF Input and Balun

The MAX9993 has one input (RF) that is internally matched to 50Ω , requiring no external matching components. A DC-blocking capacitor is required, because the input is internally DC shorted to ground through the on-chip balun. Input return loss is better than 15dB over the entire RF frequency range of 1700MHz to 2200MHz.

LO Input, Switch, Buffer, and Balun

The mixer can be used for either high-side or low-side injection applications with an LO frequency range of 1400MHz to 2000MHz. An internal LO SPDT switch selects one of two single-ended LO ports. This allows the external oscillator to settle on a particular frequency before it is switched in. LO switching time is guaranteed to be less than 50ns. This switch is controlled by a digital input (LOSEL): logic low selects LO1, logic high selects LO2. LO1 and LO2 inputs are internally matched to 50Ω , requiring only a 22pF DC-blocking capacitor.

A two-stage internal LO buffer allows a wide input power range for the LO drive. All guaranteed specifications are for an LO signal power from 0dBm to +6dBm. A low-loss balun along with an LO buffer drives the double-balanced mixer. All interfacing and matching from the LO inputs to the IF outputs are integrated on-chip.

Table 1. Component List

COMPONENT	VALUE	SIZE	DESCRIPTION
C1	4pF	0603	Microwave capacitor
C2, C6, C7, C9, C10	22pF	0603	Microwave capacitors
C3, C5, C8	0.01µF	0603	Capacitors
C4	10pF	0603	Microwave capacitor
C11, C12, C13	150pF	0603	Microwave capacitors
L1, L2	470nH	1008	Wire-wound high-Q inductors
L3	10nH	0805	Wire-wound high-Q inductor
R1	523Ω	0603	±1% resistor
R2	383 Ω	0603	±1% resistor
R3, R4	7.2Ω	1206	±1% resistors
R5	200Ω	0603	±5% resistor
T1	4:1 (200:50)		IF balun

High-Linearity Mixer

The core of the MAX9993 is a double-balanced, highperformance passive mixer. Exceptional linearity is provided by the large LO swing from the on-chip LO buffer; IIP3 is typically +23.5dBm, IIP2 is typically +60dBm, and total cascaded NF is 9.5dB.

Differential IF Output Amplifier

The MAX9993 mixer has an IF frequency range of 40MHz to 350MHz. The differential, open-collector IF output ports require external pullup inductors to V_{CC}. Single-ended IF applications require a 4:1 balun to transform the 200 Ω differential output impedance to a 50 Ω single-ended output. After the balun, VSWR is typically 1.5:1.

Applications Information

Input and Output Matching

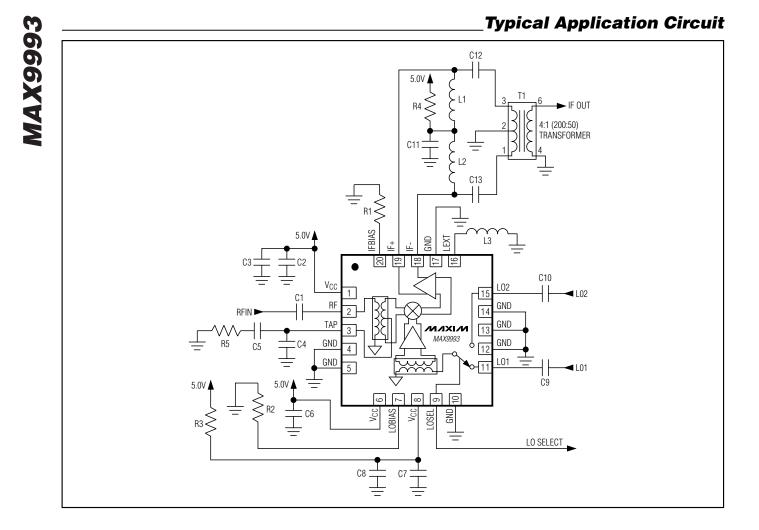
The RF and LO inputs are internally matched to 50Ω . No matching components are required. Return loss at the RF port is better than 15dB over the entire input range, 1700MHz to 2200MHz, and return loss at LO1 and LO2 is better than 10dB from 1400MHz to 2000MHz. RF and LO inputs require only DC-blocking capacitors for interfacing. These DC-blocking capacitors can be part of the matching circuit.

The IF output impedance is 200Ω differential out of the IC. An external low-loss 4:1 balun brings this impedance down to a 50Ω single-ended output (see the *Typical Application Circuit*).

Bias Resistors

Bias currents for the LO buffer and the IF amplifier were optimized by fine-tuning the resistors at LOBIAS and IFBIAS during characterization at the factory. These currents should not be adjusted. If the 383Ω (±1%) and/or 523Ω (±1%) resistor values are not readily available, substitute standard ±5% values: 390Ω and 520Ω , respectively.

Layout Considerations

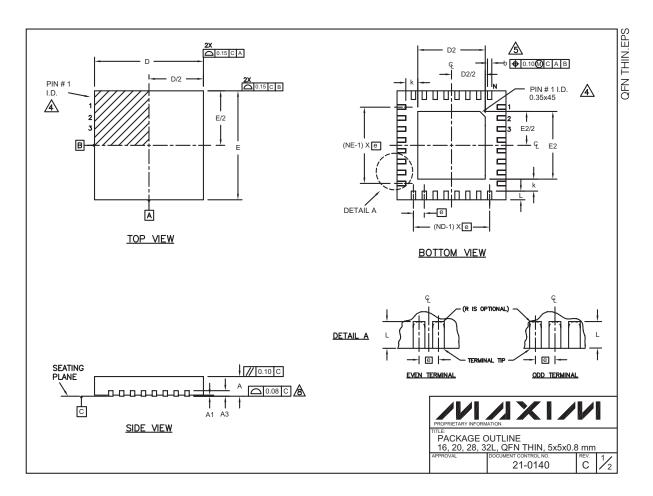

A properly designed PC board is an essential part of any RF/microwave circuit. Keep RF signal lines as short as possible to reduce losses, radiation, and inductance. For best performance, route the ground pin traces directly to the exposed pad underneath the package. This pad should be connected to the ground plane of the board by using multiple vias under the device to provide the best RF/thermal conduction path. Solder the exposed pad on the bottom of the device package to a PC board exposed pad.

Power Supply Bypassing

Proper voltage supply bypassing is essential for highfrequency circuit stability. Bypass each V_{CC} pin and TAP with the capacitors shown in the typical application circuit. Place the TAP bypass capacitor to ground within 100 mils of the TAP pin.

Chip Information

TRANSISTOR COUNT: 989 PROCESS: SiGe BiCMOS MAX9993



10

///XI//I

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

				CC	OMMON	I DIME	NSIO	NS						E	XPOS	ED P	AD VA	ARIA	TIONS	6
PKG.		16L 5x5			20L 5x5			28L 5x5	;		32L 5x5	;	РК	Э.		D2			E2	
SYMBOL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		DES	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
Α	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	0.70	0.75	0.80	T16	55-1	3.00	3.10	3.20	3.00	3.10	3.20
A1	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05	0	0.02	0.05		55-2	3.00	3.10	3.20	3.00	3.10	3.20
A3		0.20 REF).20 REF		(0.20 RE	F.		0.20 REF	F.		55-1	3.15	3.25	3.35		3.25	3.35
b	0.25	0.30	0.35	0.25	0.30	0.35	0.20	0.25	0.30	0.20	0.25	0.30		55-2	2.60		2.80		2.70	2.80
D	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	132	55-2	3.00	3.10	3.20	3.00	3.10	3.20
Е	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10	4.90	5.00	5.10								
е		0.80 BS	с.		0.65 BS	C.		0.50 BS	C.		0.50 BS	c								
k	0.25	-	-	0.25	-	-	0.25	-	-	0.25	-	-								
L	0.45	0.55	0.65	0.45	0.55	0.65	0.45	0.55	0.65	0.30	0.40	0.50								
N		16			20			28			32									
ND		4			5			7			8									
					5			7			8									
NE JEDEC		4 WHHB			WHHC			WHHD	-1		WHHD	-2								
DTES: 1. DIME 2. ALL C 3. N IS 1 4. THE SPP-	THE TOT	WHHB	IN MILLI BER OF T NTIFIER TERMIN	METERS ERMINA AND TE AL #1 ID	FORM TC S. ANGLE LS. RMINAL I ENTIFIEF	S ARE II NUMBER	N DEGF	-1994. REES. DNVENT AL, BUT I	ION SHA	E LOCAT	IFORM T TED WITH	O JESD 95 HIN THE	-1							
DTES: 1. DIME 2. ALL C 3. N IS T 4. THE SPP-I ZONE 5. DIME	DIMENSIO THE TOT TERMINA D12. DET D12. DET D12. NDICA NSION b	WHHB	IN MILLI BER OF T NTIFIER TERMIN E TERMIN	METERS ERMINA AND TE AL #1 ID NAL #1 II	WHHC FORM TC S. ANGLE LS. RMINAL I ENTIFIEF DENTIFIEF	NUMBER R ARE O R MAY E	N DEGF RING CO PTIONA BE EITH	-1994. REES. ONVENT AL, BUT I IER A MO	ION SHA MUST B DLD OR	E LOCA MARKE	IFORM T TED WITH D FEATU	O JESD 95 HIN THE	-1							
DTES: 1. DIME 2. ALL C 3. N IS T 4. THE SPP-I ZONE 5. DIME	DIMENSIO THE TOT TERMINA D12. DET D12.	WHHB NG & TOL ONS ARE AL NUME AL #1 IDE TAILS OF TED. THE AL #1 IDE NAL TIP.	IN MILLI BER OF T NTIFIER TERMIN E TERMIN 5 TO ME	METERS ERMINA AND TE AL #1 ID NAL #1 II FALLIZEI	FORM TC 3. ANGLE LLS. RMINAL I ENTIFIED DENTIFIED DENTIFIED	IS ARE II NUMBER R ARE O IR MAY E NAL AND	N DEGR RING CO PTIONA BE EITH D IS MEA	-1994. REES. DNVENT AL, BUT M HER A MO ASURED	ION SHA MUST B DLD OR BETWE	E LOCA ⁻ MARKE EEN 0.25	IFORM T TED WITH D FEATU 5 mm ANE	O JESD 95 HIN THE IRE. D 0.30 mm	-1							
DTES: 1. DIME 2. ALL C 3. N IS 1 4. THE SPP-I ZONE 5. DIME FROM	DIMENSIO THE TOT TERMINA D12. DET D12.	WHHB IG & TOL ONS ARE AL #1 IDE TALS OF TED. THE AL#1 IDE TALS OF TED. THE AL#1 IDE TALS OF TED. THE AL#1 IDE TALS OF TED. THE AL#1 IDE TALS OF THE AL#1 IDE TALS OF TALS O	IN MILLI BER OF T NTIFIER TERMIN TERMIN TO ME	METERS ERMINA AND TE AL #1 ID NAL #1 ID NAL #1 II FALLIZEI	WHHC FORM TC 3. ANGLE LLS. RMINAL I ENTIFIED ENTIFIED ENTIFIED DENTIFIED DTERMIN	IS ARE II NUMBER R ARE O IR MAY E NAL AND	N DEGF RING CO PTIONA BE EITH D IS MEA	-1994. REES. DNVENT AL, BUT M HER A MO ASURED	ION SHA MUST B DLD OR BETWE	E LOCA ⁻ MARKE EEN 0.25	IFORM T TED WITH D FEATU 5 mm ANE	O JESD 95 HIN THE IRE. D 0.30 mm	-1							
DTES: 1. DIME 2. ALL C 3. N IS T 4. THE SPP-I ZONE 5. DIME FROM 6. ND A	DIMENSIO THE TOT TERMINA D12. DET D12.	WHHB NG & TOL ONS ARE AL HI IDE TALS OF TED. THE AL #1 IDE TALS OF TED. THE	IN MILLI BER OF T NTIFIER TERMIN TERMIN TO MET	METERS ERMINA AND TE AL #1 ID NAL #1 ID FALLIZED IMBER C IN A SYM	FORM TC 3. ANGLE LS. RMINAL I ENTIFIE DENTIFIE DENTIFIE DENTIFIE DENTIFIE DENTIFIE DENTIFIE	S ARE II NUMBER R ARE O R MAY E NAL AND NALS OI AL FASH	N DEGF RING CC PTIONA 3E EITH D IS ME/ N EACH HION.	-1994. REES. ONVENTI AL, BUT I HER A MO ASURED	ION SHA MUST B DLD OR BETWE E SIDE	E LOCA ^T MARKE EEN 0.25 RESPEC	IFORM TO TED WITH D FEATU 5 mm ANE CTIVELY.	O JESD 95 HIN THE IRE. D 0.30 mm	-1							·//
DTES: 1. DIME 2. ALL C 3. N IS T SPP-1 ZONE DIME FROM M A A 7. DEPC	DIMENSIO THE TOT. TERMINA D12. DET INDICA MISION b MITERMI ND NE R DPULATIO ANARIT	WHHB NG & TOL DNS ARE AL NUME AL #1 IDE TAILS OF TAILS OF TAILS OF TAILS OF NAL TIP. CEFER TO ON IS PO Y APPLIE	IN MILLI BER OF T NTIFIER TERMIN TERMIN TO MET TO MET O THE NU SSIBLE STO TH	METERS TERMINA AND TE AL #1 ID NAL #1 ID NAL #1 II TALLIZEI IMBER C IN A SYN IE EXPO	WHHC FORM TC 3. ANGLE LS. RMINAL I ENTIFIED DENTIFIE DENTIFIE DENTIFIE DENTIFIE DENTIFIE DENTIFIE DENTIFIE SED HEA	S ARE II NUMBER R ARE O R MAY E NAL AND NALS OI AL FASH	N DEGF RING CC PTIONA 3E EITH D IS ME/ N EACH HION.	-1994. REES. ONVENTI AL, BUT I HER A MO ASURED	ION SHA MUST B DLD OR BETWE E SIDE	E LOCA ^T MARKE EEN 0.25 RESPEC	IFORM TO TED WITH D FEATU 5 mm ANE CTIVELY.	O JESD 95 HIN THE IRE. D 0.30 mm	[ROPRIETA			1>			'V

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12 _____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2002 Maxim Integrated Products

Printed USA

MAXIM is a registered trademark of Maxim Integrated Products.