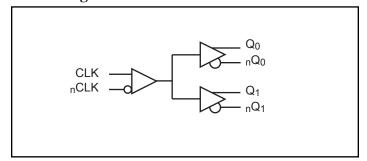
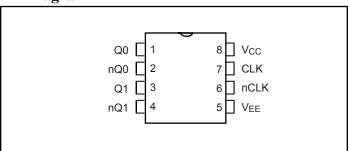


3.3V Low Skew 1-to-2 Differential to LVPECL Fanout Buffer


Features

- Pin-to-pin compatible to ICS85311
- Maximum operation frequency: 800MHz
- 2 pair of differential LVPECL outputs
- CLK, nCLK pair accepts LVDS, LVPECL, LVHSTL, SSTL and HCSL input level
- Output Skew: 100ps (maximum)
- Part-to-part skew: 150ps (maximum)
- Propagation delay: 2ns (maximum)
- 3.3V power supply
- Operating Temperature: -40°C to 85°C
- Packaging (Pb-free & Green avaliable):
 - 8-pin SOIC (W)


Description

The PI6C485311 is a high-performance low-skew LVPECL fanout buffer. PI6C485311 features two selectable differential inputs and translates to four LVPECL ultra-low jitter outputs. The inputs can also be configured to single-ended with external resistor bias circuit. The CLK input accepts LPECL or LVDS or LVHSTL or SSTL or HCSL signals, and PCLK input accepts LVPECL or SSTL or CML signals. PI6C485311 is ideal for differential to LVPECL translations and/or LVPECL clock distribution. Typical clock translation and distribution applications are data-communications and telecommunications.

Block Diagram

Pin Diagram

Pin Description

Name	Pin#	Type	Description	
V_{EE}	5	P	Connect to Negative power supply	
CLK	7	I_PD	Non-inverting differential clock input	
nCLK	6	I_PU	Inverting differential clock input	
V _{CC}	8	P	Connect to 3.3V.	
Q_1 , $_nQ_1$	3.4	О	Differential output pair, LVPECL interface level.	
Q_0 , $_nQ_0$	1,2	О	Differential output pair, LVPECL interface level.	

Note:

Pin Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
C_{IN}	Input Capacitance				4	pF
R_pullup	Input Pullup Resistance			50		ΚΩ
R_pulldown	Input Pulldown Resistance			50		K22

Absolute Maximum Ratings(1)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V_{CC}	Supply voltage	Referenced to GND			4.6	
V_{IN}	Input voltage	Referenced to GND	-0.5		V _{CC} +0.5V	V
V _{OUT}	Output voltage	Referenced to GND	-0.5		V _{CC} +0.5V	
T _{STG}	Storage temperature		-65		150	°C

Note:

1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress speci fications only and correct functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

^{1.} I = Input, O = Output, P = Power supply connection, I PD = Input with pull down, I PU = Input with pull up

Operating Conditions

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{CC}	Power Supply Voltage		3.0	3.3	3.6	V
T _A	Ambient Temperature		-40		85	°C
I _{EE}	Power Supply Current	500 MHz			60	mA

Differential DC Input Characteristics ($T_A = -40^{\circ}\text{C}$ to 85°C, $V_{CC} = 3.0 \text{V}$ to 3.6V unless otherwise stated.)

Symbol	Parameter		Conditions	Min.	Тур.	Max.	Units
т	Input High	nCLK	$V_{\rm IN} = V_{\rm CC} = 3.6 V$			5	uA
I _{IH} Current	CLK	$V_{\rm IN} = V_{\rm CC} = 3.6 V$			150	uA	
I_{IL}	Input Low Current	nCLK	$V_{CC} = 3.6V, V_{IN} = 0V$	-150			uA
		CLK	$V_{CC} = 3.6V, V_{IN} = 0V$	-5			uA
V_{PP}	Peak-to-peak Volta	ige		0.15		1.3	V
V _{CMR}	Common Mode In	put Voltage ^(1, 2)		V _{EE} +0.5		V _{CC} - 0.85V	V

Notes:

- 1. For single ended applications, the maximum input voltage for CLK and nCLK is V_{CC} +0.3V
- 2. Common mode voltage is defined as V_{IH} .

LVPECL DC Characteristics

 $(T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}, V_{CC} = 3.0\text{V to } 3.6\text{V}, R_L = 50\Omega \text{ to } V_{CC} - 2\text{V}, \text{ unless otherwise stated below.})$

Symbol	Parameter		Conditions	Min.	Тур.	Max.	Units
ī	Input High	nCLK	$V_{\rm IN} = V_{\rm CC} = 3.6 V$			5	
I_{IH}	Current	CLK	$V_{\rm IN} = V_{\rm CC} = 3.6 V$			150	4
I.,,	Input Low	nCLK	$V_{CC} = 3.6V, V_{IN} = 0V$	$= 3.6 \text{V}, \text{V}_{\text{IN}} = 0 \text{V}$ -150			μΑ
$I_{ m IL}$	Current	CLK	$V_{CC} = 3.6V, V_{IN} = 0V$	-5			
V_{PP}	Peak-to-peak Voltage			0.3		1	
V _{CMR}	Common Mode Input Voltage; Note ^(1,2)			V _{EE} +1.5		V_{CC}	
V _{OH}	Output High Voltage			V _{CC} -1.4		V _{CC} -0.9	V
V _{OL}	Output Low Voltage			V _{CC} -2.0		V _{CC} -1.6	
V _{SWING}	Peak-to-peak Out	put Voltage Swing		0.6		1.0	

Notes:

- 1. For single ended applications, the maximum input voltage for PCLK and nPCLK is V_{CC}+0.3V.
- 2. Common mode voltage is defined as V_{IH} .

AC Characteristics(1) ($T_A = -40^{\circ}$ C to 85° C, $V_{CC} = 3.0$ V to 3.6V, $R_L = 50\Omega$ to $V_{CC} - 2$ V, unless otherwise stated below.)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
f _{max}	Output Frequency				800	MHz
t _{Pd}	Propagation Delay ⁽²⁾		1.0		2.0	ns
Tsk(o)	Output-to-output Skew ⁽³⁾				100	
Tsk(pp)	Part-to-part Skew ⁽⁴⁾				150	ps
t_r/t_f	Output Rise/Fall time	20% - 80%	75		300	
odc	Output duty cycle		40		60	%

Notes:

- 1. All parameters are measured at 500MHz unless noted otherwise
- 2. Measured from the $V_{CC}/2$ of the input to the differential output crossing point
- 3 Defined as skew between outputs at the same supply voltage and with equal load condition. Measured at the outputs differential crossing point.
- 4. Defined as skew between outputs on different parts operating at the same supply voltage and with equal load condition. Measured at the outputs differential crossing point.

06-0283 4 P8865D 11/14/06

Applications Information

Wiring the differenctial input to accept single ended levels

Figure 1 shows how the differential input can be wired to accept single ended levels. The reference voltage $V_REF = V_{DD}/2$ is generated by the bias resistors R1, R2 and C1. This bias circuit should be located as close as possible to the input pin. The ratio of R1 and R2 might need to be adjusted to postion the V_REF in the center of the input voltage swing. For example, if the input clock swing is only 2.5V and $V_{DD} = 3.3V$, V REF should be 1.25V and R1/R2 = 0.609.

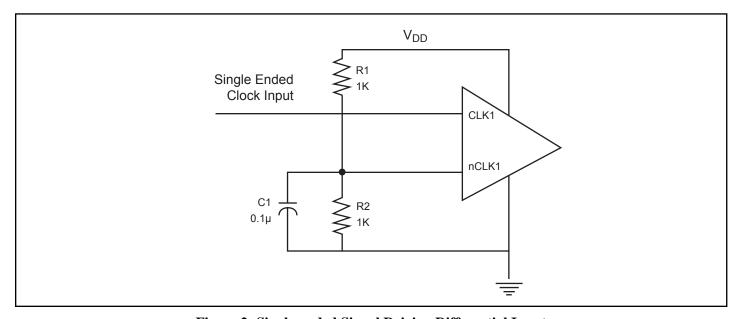
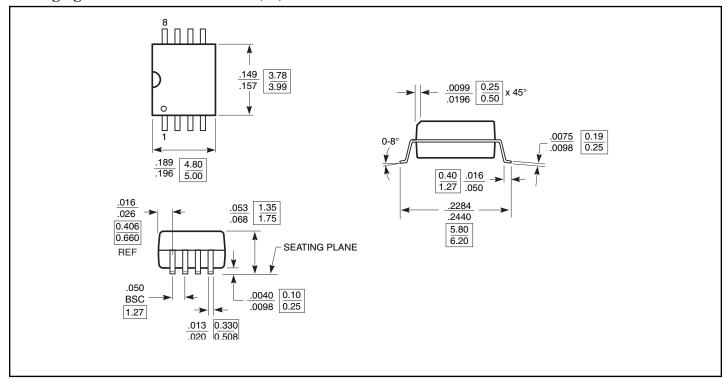



Figure 2: Single-ended Signal Driving Differential Input

Packaging Mechanical: 8-Pin SOIC (W)

Ordering Information $^{(1,2)}$

Ordering Code	Package Code	Package Description
PI6C485311WE	W	Pb-free & Green, 8-pin SOIC

Notes:

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. E = Pb-free and Green