# **SL2304NZ**

# Low Jitter and Skew DC to 140MHz Clock Buffer

### **Key Features**

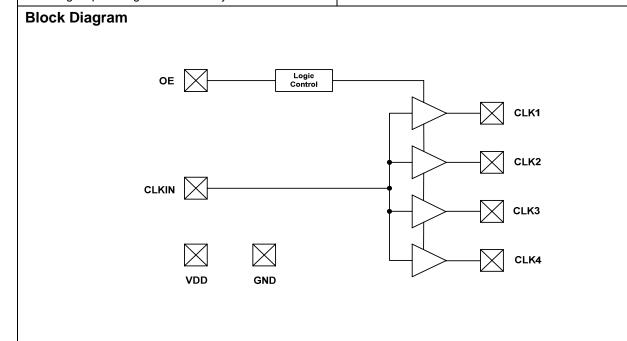
- DC to 140 MHz operating frequency range
- Low output clock skew: 50ps-typ
- Low part-to-part output skew: 100 ps-typ
- · Low output propogation delay: 2.5ns-typ
- 3.3V +/-10% operation supply voltage
- Low power dissipation:
  - 7 mA-typ at 33MHz
  - 9 mA-typ at 66MHz
  - - 12 mA-typ at 133MHz
- One input to four output fanout buffer drivers
- Output Enable (OE) control function
- Available in 8-pin TSSOP package
- Available in Commercial and Industrial grades
- Available in Lead (Pb) free package

#### **Applications**

- General Purpose PCI/PCI-X Clock Buffer
- Printers, MFPs and Digital Copiers
- PCs and Work Stations
- Routers, Switches and Servers
- · Datacom and Telecom
- High-Speed Digital Embeded Systems

### **Description**

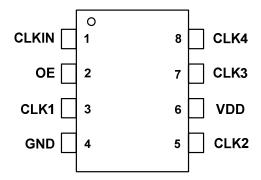
The SL2304NZ is a low skew, jitter and power fanout Buffer designed to produce up to four (4) clock outputs from one (1) reference input clock, for high speed clock distribution, including PCI/PCI-X applications.


The SL2304NZ products operate from DC to 140MHz.

The only difference between SL2304NZ-1 and SL2304NZ-1Z is the OE logic implementation. Refer to the Available OE Logic Configuration Table. 1

Refer to SL23EP04NZ products for DC to 220MHz-max frequency range and 2.5V to 3.3V power supply operation, improved skew, jitter and higher drive options.

#### **Benefits**


- Up to four (4) distribution of input clock
- · Low propogation delay
- · Low output-to-output skew
- · Low output clock Jitter
- Low power dissipation



Rev 2.1, May 6, 2008 Page 1 of 9



# **Pin Configuration**



8-Pin TSSOP

# **Pin Description**

| Pin<br>Number | Pin Name | Pin Type | Pin Description                                      |  |  |  |
|---------------|----------|----------|------------------------------------------------------|--|--|--|
| 1             | CLKIN    | Input    | Reference Clock Input                                |  |  |  |
| 2             | OE       | Output   | Output Enable. Refer to the Table. 1 for Logic Table |  |  |  |
| 3             | CLK1     | Output   | Buffered Clock Output 1                              |  |  |  |
| 4             | GND      | Power    | Power Ground.                                        |  |  |  |
| 5             | CLK2     | Output   | Buffered Clock Output 2                              |  |  |  |
| 6             | VDD      | Output   | 3.3V Power Supply                                    |  |  |  |
| 7             | CLK3     | Power    | Buffered Clock Output 3                              |  |  |  |
| 8             | CLK4     | Input    | Buffered Clock Output 4                              |  |  |  |

Rev 2.1, May 6, 2008 Page 2 of 9



#### **General Description**

The SL2304NZ is a low skew, jitter and power fanout Buffer designed to produce up to four (4) clock outputs from one (1) reference input clock, for high speed clock distribution, including PCI/PCI-X applications.

#### Input and output Frequency Range

The input and output frequency is the same (1x) for SL2304NZ-1 and SL2304NZ-1Z and operates from DC to 140MHz clock range with up to 25pF output load.

#### **OE (Output Enable) Function**

The only difference between SL2304-1 and SL2304NZ-1Z is the OE logic implementation. When OE=0, SL2404NZ-1 outputs are disabled and outputs are at Logic Low. In the case of SL2304NZ-1Z the outputs are at High-Z. Refer to the Available OE Logic Configuration Table. 1 below.

#### **Output Clock Skew**

All outputs should drive the similar load to achieve outputto-output skew and input-to-output delay specifications as given in the switching electrical tables.

#### **Power Supply Range (VDD)**

The SL2304NZ is designed to operate 3.3V+/-10% (3.63V-max to 2.97V-min) VDD power supply range. An internal on-chip voltage regulator is used to provide to constant power supply of 1.8V, leading to a consistent and stable electrical performance in terms of skew and jitter. The SL2304NZ I/O is powered by using VDD.

Refer to SL23EP04NZ products for DC to 220MHz-max frequency range, 2.5V to 3.3V power supply operation, improved skew, jitter and higher drive options.

Contact SLI for 1.8V power supply Fan-Out Buffer and ZDB products.

| CLKIN (Pin-1) | OE (Pin-2) | SL2304NZ-1<br>CLKOUT [1:4] | SL2304NZ-1Z<br>CLKOUT [1:4] |
|---------------|------------|----------------------------|-----------------------------|
| Low           | Low        | Low                        | High-Z                      |
| High          | Low        | Low                        | High-Z                      |
| Low           | High       | Low                        | Low                         |
| High          | High       | High                       | High                        |

Table 1. Available SL2304 CLKIN and OE Logic Configurations

Rev 2.1, May 6, 2008 Page 3 of 9



## **Absolute Maximum Ratings (All Products)**

| Description                      | Condition                      | Min    | Max     | Unit |
|----------------------------------|--------------------------------|--------|---------|------|
| Supply voltage, VDD              |                                | -0.5   | 4.6     | V    |
| All Inputs and Outputs           |                                | -0.5   | VDD+0.5 | V    |
| Ambient Operating Temperature    | In operation, C-Grade          | 0      | 70      | °C   |
| Ambient Operating Temperature    | In operation, I-Grade          | -40    | 85      | °C   |
| Storage Temperature              | No power is applied            | -65    | 150     | °C   |
| Junction Temperature             | In operation, power is applied | _      | 125     | °C   |
| Soldering Temperature            |                                | _      | 260     | °C   |
| ESD Rating (Human Body Model)    | JEDEC22-A114D                  | -4,000 | 4,000   | V    |
| ESD Rating (Charge Device Model) | JEDEC22-C101C                  | -1,500 | 1,500   | V    |
| ESD Rating (Machine Model)       | JEDEC22-A115D                  | -200   | 200     | V    |

# **Operating Conditions (C-Grade and VDD=3.3V)**

Unless otherwise stated VDD= 3.3V+/- 10%, CL=15pF and Ambient Temperature range 0 to +70°C

| Description               | Symbol | Condition                  | Min  | Тур | Max  | Unit |
|---------------------------|--------|----------------------------|------|-----|------|------|
| Operating Voltage         | VDD    | VDD+/-10%                  | 2.97 | 3.3 | 3.63 | ٧    |
| Operating Temperature     | TA     | Ambient Temperature        | 0    | _   | 70   | °C   |
| Input Capacitance         | VIH    | Pins 1 and 2               | _    | 3   | 5    | pF   |
| Output Capacitance        | CL1    | All outputs≤100MHz         | _    | _   | 30   | pF   |
| Output Capacitance        | CL2    | All outputs≤140MHz         | _    | _   | 15   | pF   |
| Input Operating Frequency | CLKIN  | Input Clock Range          | DC   | _   | 140  | MHz  |
| Input Operating Frequency | CLKN2  | Input Clock Range, CL=30pF | DC   | -   | 100  | MHz  |

Rev 2.1, May 6, 2008 Page 4 of 9



## DC Electrical Characteristics (C-Grade and VDD=3.3V)

Unless otherwise stated VDD= 3.3V+/- 10%, CL=15pF and Ambient Temperature range 0 to +70°C

| Description          | Symbol | Condition                                 | Min | Тур  | Max     | Unit |
|----------------------|--------|-------------------------------------------|-----|------|---------|------|
| Input Low Voltage    | VINL   | CLKIN and OE                              | _   | _    | 0.8     | V    |
| Input High Voltage   | VINH   | CLKIN and OE                              | 2.0 | _    | VDD+0.3 | V    |
| Input Low Current    | IINL   | 0 < VIN < 0.8V                            | -5  | +/-2 | 5       | μA   |
| Input High Current   | IINH   | 2.4V < VIN < VDD                          | -5  | +/-2 | 5       | μA   |
| Output Low Voltage   | VOL1   | IoL=24mA                                  | _   | _    | 0.80    | V    |
| Output Low Voltage   | VOL2   | IoL=12mA                                  | _   | _    | 0.55    | V    |
| Output High Voltage  | VOH1   | IOH=-24mA                                 | 2.0 | _    | _       | V    |
| Output High Voltage  | VOH1   | IOH=-12mA                                 | 2.4 | _    | _       | V    |
| Power Supply Current | IDD1   | CLKIN=33MHz<br>CL=0 (No load at outputs)  | _   | 7    | 11      | mA   |
| Power Supply Current | IDD2   | CLKIN=66MHz<br>CL=0 (No load at outputs)  | _   | 9    | 14      | mA   |
| Power Supply Current | IDD3   | CLKIN=133MHz<br>CL=0 (No load at outputs) | _   | 12   | 18      | mA   |

### **Switching Electrical Characteristics (C-Grade and VDD=3.3V)**

Unless otherwise stated VDD= 3.3V+/- 10%, CL=15pF and Ambient Temperature range 0 to +70°C

| Description            | Symbol | Condition                                                | Min     | Тур | Max | Unit |
|------------------------|--------|----------------------------------------------------------|---------|-----|-----|------|
| Output Fraguency Banga | FOUT1  | CL=15pF                                                  | DC      | _   | 140 | MHz  |
| Output Frequency Range | FOUT1  | CL=30pF                                                  | DC      | _   | 100 | MHz  |
| Output Rise/Fall Time  | tr/f-1 | Measured at 0.8V to 2.0V<br>CL=15pF                      | _       | -   | 2.0 | ns   |
| Output Rise/Fall Time  | tr/f-2 | Measured at 0.8V to 2.0V<br>CL=30pF                      | -       |     | 2.4 | ns   |
| Input Duty Cycle       | DC1    | Measured at VDD/2                                        | 20      | 50  | 80  | %    |
| Output Duty Cycle      | DC2    | CL=15pF, Fout=140MHz<br>Measured at VDD/2                | 45      | _   | 55  | %    |
| Output Duty Cycle      | DC3    | CL=30pF, Fout=100MHz<br>Measured at VDD/2                | 40      | _   | 60  | %    |
| Output to Output Skew  | SKW1   | Measured at VDD/2 and Outputs are equally loaded         | _       | 50  | 100 | ps   |
| Part to Part Skew      | SKW2   | Measured at VDD/2 and Outputs are equally loaded         | _       | 100 | 200 | ps   |
| Propagation Delay Time | PDT    | Measured at VDD/2 from CLKIN to Output Clock rising edge | 1.5 2.5 |     | 3.5 | ns   |
| Cycle-to-Cycle Jitter  | CCJ1   | CLKIN=66MHz and CL=15                                    | - 75    |     | 150 | ps   |
| Cycle-to-Cycle Jitter  | CCJ2   | CLKIN=133MHz and CL=15                                   | _       | 50  | 100 | ps   |

Rev 2.1, May 6, 2008 Page 5 of 9



### Operating Conditions (I-Grade and VDD=3.3V)

Unless otherwise stated VDD= 3.3V+/- 10%, CL=15pF and Ambient Temperature range -40 to +85°C

| Description               | Symbol | Condition                  | Min  | Тур | Max  | Unit |
|---------------------------|--------|----------------------------|------|-----|------|------|
| Operating Voltage         | VDD    | VDD+/-10%                  | 2.97 | 3.3 | 3.63 | V    |
| Operating Temperature     | TA     | Ambient Temperature        | -40  | _   | 85   | °C   |
| Input Capacitance         | VIH    | Pins 1 and 2               | _    | 3   | 6    | pF   |
| Output Canacitanas        | CL1    | All outputs≤100MHz         | -    | -   | 30   | pF   |
| Output Capacitance        | CL2    | All outputs≤140MHz         | -    | -   | 15   | pF   |
| Input Operating Frequency | CLKN1  | Input Clock Range, CL=15pF | DC   | -   | 140  | MHz  |
| Input Operating Frequency | CLKN2  | Input Clock Range, CL=30pF | DC   | -   | 100  | MHz  |

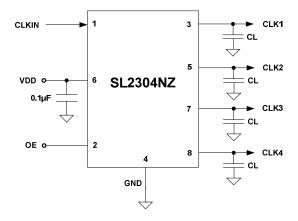
## DC Electrical Characteristics (I-Grade and VDD=3.3V)

Unless otherwise stated VDD= 3.3V+/- 10%, CL=15pF and Ambient Temperature range -40 to +85°C

| Description          | Symbol | bol Condition                             |     | Тур  | Max     | Unit |
|----------------------|--------|-------------------------------------------|-----|------|---------|------|
| Input LOW Voltage    | VINL   | CLKIN and OE                              | _   | -    | 0.8     | V    |
| Input HIGH Voltage   | VINH   | CLKIN and OE                              | 2.0 | -    | VDD+0.3 | V    |
| Input LOW Current    | IINL   | 0 < VIN < 0.8V                            | -6  | +/-3 | 6       | μA   |
| Input HIGH Current   | IINH   | 2.4V < VIN < VDD                          | -6  | +/-3 | 6       | μΑ   |
| Output Low Voltage   | VOL    | IoL=24mA                                  | _   | -    | 0.80    | V    |
| Output Low Voltage   | VOL    | IoL=12mA                                  | _   | -    | 0.55    | V    |
| Output High Voltage  | VOH    | IOH=-24mA                                 | 2.0 | -    | _       | V    |
| Output High Voltage  |        | IOH=-12mA                                 | 2.4 | -    | _       | V    |
| Power Supply Current | IDD1   | CLKIN=33MHz<br>CL=0 (No load at outputs)  | _   | 8    | 12      | mA   |
| Power Supply Current | IDD2   | CLKIN=66MHz<br>CL=0 (No load at outputs)  | _   | 10   | 15      | mA   |
| Power Supply Current | IDD3   | CLKIN=133MHz<br>CL=0 (No load at outputs) | _   | 14   | 20      | mA   |

Rev 2.1, May 6, 2008 Page 6 of 9




## Switching Electrical Characteristics (I-Grade and VDD=3.3V)

Unless otherwise stated VDD= 3.3V+/- 10%, CL=15pF and Ambient Temperature range -40 to +85°C

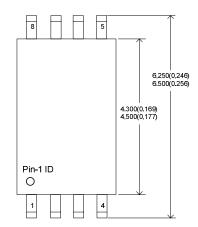
| Description            | Description Symbol Condition |                                                                                               | Min  | Тур   | Max | Unit |
|------------------------|------------------------------|-----------------------------------------------------------------------------------------------|------|-------|-----|------|
| Output Fraguency Dange | FOUT1                        | CL=15pF                                                                                       | DC   | _     | 140 | MHz  |
| Output Frequency Range | FOUT2                        | CL=30pF                                                                                       | DC   | _     | 100 | MHz  |
| Output Rise/fall Time  | tr/f-1                       | CL=15pF, measured at 0.8V to 2.0V                                                             | _    | _     | 2.2 | ns   |
| Output Rise/Fall Time  | tr/f-2                       | CL=30pF, measured at 0.8V to 2.0V                                                             | _    | _     | 2.6 | ns   |
| Input Duty Cycle       | DC1                          | Measured at VDD/2                                                                             | 20   | _     | 80  | %    |
| Output Duty Cycle      | DC2                          | CL=15pF, Fout=140MHz<br>Measured at VDD/2                                                     | 45 – |       | 55  | %    |
| Output Duty Cycle      | DC3                          | CL=30pF, Fout=100MHz<br>Measured at VDD/2                                                     | 40   | 40 –  |     | %    |
| Output to Output Skew  | SKW1                         | Measured at VDD/2 and Outputs are equally loaded                                              | _    | - 60  |     | ps   |
| Part to Part Skew      | SKW2                         | Measured at VDD/2 and Outputs are equally loaded                                              | _    | - 120 |     | ps   |
| Propagation Delay Time | PDT                          | Measured at VDD/2 from CLKIN to<br>Output Clock rising edge and Outputs<br>are equally loaded |      |       | 3.8 | ns   |
| Cycle-to-Cycle Jitter  | CCJ1                         | CLKIN=66MHz and CL=15                                                                         | _    | - 80  |     | ps   |
| Cycle-to-Cycle Jitter  | CCJ2                         | CLKIN=133MHz and CL=15                                                                        | _    | 60    | 120 | ps   |

### **External Components & Design Considerations**

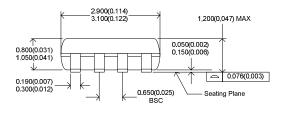
#### **Typical Application Schematic**

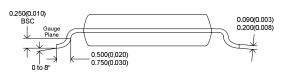


#### Recommendations


Decoupling Capacitor: A decoupling capacitor of  $0.1\mu F$  must be used between VDD and VSS pins. Place the capacitor on the component side of the PCB as close to the VDD pin as possible. The PCB trace to the VDD pin and to the GND via should be kept as short as possible. Do not use vias between the decoupling capacitor and the VDD pin.

Rev 2.1, May 6, 2008 Page 7 of 9





# **Package Outline and Package Dimensions**

### 8-Pin TSSOP (4.4 mm)



Dimensions are in milimeters (inches) Top line: (MIN) and Bottom line: (Max)





### **Thermal Characteristics**

| Parameter                              | Symbol | Condition               | Min | Тур | Max | Unit |
|----------------------------------------|--------|-------------------------|-----|-----|-----|------|
|                                        | θЈΑ    | Still air               | ı   | 110 | ı   | °C/W |
| Thermal Resistance Junction to Ambient | θЈΑ    | 1m/s air flow           | 1   | 100 | 1   | °C/W |
|                                        | θЈΑ    | 3m/s air flow           | -   | 80  | -   | °C/W |
| Thermal Resistance<br>Junction to Case | ө ЈС   | Independent of air flow | -   | 35  | -   | °C/W |

# Ordering Information [1]

Rev 2.1, May 6, 2008 Page 8 of 9



| Ordering Number | Marking      | Shipping<br>Package | Package     | Temperature |
|-----------------|--------------|---------------------|-------------|-------------|
| SL2304NZZC-1    | SL2304NZC-1  | Tube                | 8-pin TSSOP | 0 to 70°C   |
| SL2304NZZC-1T   | SL2304NZC-1  | Tape and Reel       | 8-pin TSSOP | 0 to 70°C   |
| SL2304NZZI-1    | SL2304NZI-1  | Tube                | 8-pin TSSOP | -40 to 85°C |
| SL2304NZZI-1T   | SL2304NZI-1  | Tape and Reel       | 8-pin TSSOP | -40 to 85°C |
| SL2304NZZC-1Z   | SL2304NZC-1Z | Tube                | 8-pin TSSOP | 0 to 70°C   |
| SL2304NZZC-1ZT  | SL2304NZC-1Z | Tape and Reel       | 8-pin TSSOP | 0 to 70°C   |
| SL2304NZZI-1Z   | SL2304NZI-1Z | Tube                | 8-pin TSSOP | -40 to 85°C |
| SL2304NZZI-1ZT  | SL2304NZI-1Z | Tape and Reel       | 8-pin TSSOP | -40 to 85°C |

#### Notes:

1. The SL2304NZ products are RoHS compliant.

While SLI has reviewed all information herein for accuracy and reliability, Spectra Linear Inc. assumes no responsibility for the use of any circuitry or for the infringement of any patents or other rights of third parties which would result from each use. This product is intended for use in normal commercial applications and is not warranted not is it intended for use in life support, critical medical instruments, or any other application requiring extended temperature range, high reliability, or any other extraordinary environmental requirements unless pursuant to additional processing by Spectra Linear Inc., and an expressed written agreement by Spectra Linear Inc. Spectra Linear Inc. reserves the right to change any circuitry or specification without notice.

Rev 2.1, May 6, 2008 Page 9 of 9