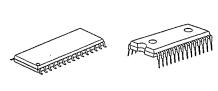
7-BAND EVR FOR GRAPHIC EQUALIZER

GENERAL DESCRIPTION

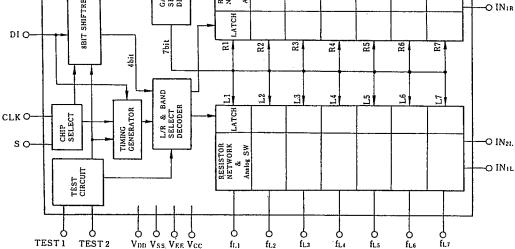

JRC

The NJU7305 is a electrical variable resistor(EVR) incorporated 7-band each for left and right channels, especially apply to stereo type graphic equalizer.

It consists of input controller. channel/band/level selector, 14 latches and resistor network blocks of 7 bands each for left and right channels.

The boost and cut value for each band of each channel can be set independently to each other by the channel/ band/level selector controlled by external controller.

The maximum boost and cut range is ±12dB and the



NJU7305M

PACKAGE OUTLINE

NJU7305L

FEATURES PIN CONFIGURATION 7 Bands Each for Left and Right Channels 28 NC 27 IN18 26 IN 28 V100 [1 IN11. [2 30 П NC 29 П IN ін Stereo Application Graphic Equalizer INu. 🗔 2 1N21. 28 IN 2H IN21. Each Channel Independent Operation 3 3 fi.7 🗖 4 27 1 (117 fi.7 🗖 4 25 5 fm7 Maximum Boost and Cut --- ±12dB 26 fns 25 fas 24 fies ſL6 🖂 5 fi.s 🗖 5 24 186 ---- ±2dB Boost and Cut Step 11.3 C 6 11.3 C 7 11.1 C 8 23 fins hs 🗖 6 8-bit Serial Data for the Equalizing • fi.i 🗖 22 fn4 21 fR3 7 Flat Level Setting Function fi.) 🗖 8 23 . (*** ---- 7.5~15V fi.2 🛄 9 20 1 182 22 🗖 fn2 fL2 🗖 9 Operating Voltage h.ı 🗖 10 2) 🗖 📖 19 🗖 fRi ha 🗖 10 SDMP 30 / SDIP 28 ___ Ö Package Outline 20 Vss 19 NC 18 V ss TESTI [1] TESTI 🗖 11 C-MOS Technology 17 CLK 16 DI TEST2 12 TEST2 [13 18 CLK s 🗖 13 17 01 15 Vec s 🗖 14 ٧٤٤ 🗖 ١٩ BLOCK DIAGRAM VAE 15 16 Vcc NJU7305L NJU7305M fri f_{R3} frs fa2 fR₄ fRA fR7 Ŷ 0 0 Q 0 0 0 RESISTOR NETWORK SW 4bit SHIFTRECISTER GAIN SELECT DECODER -O IN2R & Analog -O IN1R LATCH BIT 761 R R3 R7 R2 R4 R5 R6 4bit

-New Japan Radio Co.,Ltd.

boost and cut value is adjusted by $\pm 2dB$ step.

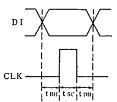
5 - 140

No	Symbol	Function
1	Vdd	Power source for Audio signal +7.5V
18	Vss	GND OV
14	Vee	Power source for Audio signal -7.5V
15	Vcc	Power source for Logic +5.0V
2, 27	N1L, N1R	Audio signal input terminal. Connect to Op-amp inverting input.
3, 26	N2L, N2R	Audio signal input terminal. Connect to Op-amp non-inverting input.
4 to 10	f _{L1} to f _{L7}	Band pass filter connecting terminal.
19 to 25	f _{R1} to f _{R7}	(14 terminals for left/right)
11	T EST2	Maker Testing terminals. Normally (except testing) connects to the VDD terminal
. 13	S	Chip-select input terminal.
16	DI	Serial data input terminal.
17	CLK	Clock signal input terminal.

TERMINAL DESCRIPTION

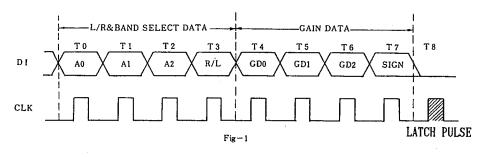
FUNCTIONAL DESCRIPTION

(1) Data set and code format


The setting of each band is performed by two signals of data and clock as shown in Fig.1. The 8 bits serial data including the information of channel selection (left/right), band selection and its gain are input from DI terminal.

The clock signal input from the CLK terminal shifts the serial data input form DI terminal into the shift register.

The 9th clock signal is used as latch pulse to latch all 8 bits of parallel data in the shift register.


All "1" of 8 bits code are special code to set OdB for all bands at once. This function is useful for Power On initialization or flat level setting.

< Data and Shift Clock >

The shift clock should be risen after 1µs from the data changing. tsc=1µs(MIN) tDH=1µs(MIN)

New Japan Radio Co., Ltd.

5-141

The 9th shift clock is used for the latch pulse. In this time the data must be "0" otherwise (the data is "1") the 9th clock shifts the data and the following clock signal latch the data when input data is "0".

If the error data is latched, the correct data must be set again from the top.

Note: The clock line should be shielded from the noise.

< Data Format >

The data is input by the LSB first format as shown bellow. And the gain data GD2 to GDO, left/right and band selection data are also shown in bellow.

M	SB							LS	В
	SIGN	GD2	GD1	GD0	R/L	A2	A1	AO	
	+/-	0~12dB		↓ R/L	f1~f7			•	

GAIN DATA CODE								
GAIN	SIGN	GD2	GD1	GD1				
12	0	1	1	0				
10	0	1	0	1				
8	0	1	0	0				
6	0	0	1	1				
4	0	0	1	0				
2	0	0	0	1				
OdB	0	0	0	0				
-2	1	0	0	1				
-4	1	0	1	0				
-6	1	0	1	1				
-8	1	1	0	0				
-10	1	1	0	1				
-12	1	1	1	0				

 R/L
 & BAND
 SELECT
 DATA
 CODE

 R/L
 A2
 A1
 A0
 BAND

 0
 0
 0
 0
 ft.7

0	0	0	0	f ₁₇
0	0	0	1	f ₁₆ f ₁₅
0	0	1	0	f 15
0	0	1	1	fL4
0	1	0	0	fls
0	1	0	1	f _{L2}
0	1	1	0	f _{L1}
1	1	1	0	f _{R1}
1	1	0	1	f _{R1} f _{R2} f _{R3}
-	1	0	0	f _{R3}
1	0	1	1	f _{R4}
1	0	1	0	f _{R5}
1	0	0	1	f _{R6}
1	0	0	0	f _{R7}

(2) Chip Select Function

S terminal is a chip select terminal. When the code "1" is input to the S terminal form CPU or other controller, the clock input is activated and the data will be written into the NJU7305(select status). When the code "0" is input to the S terminal, the clock input is not activated and the data will not be written into the NJU7305(unselect status).

S terminal	mode	function
1	Select	The clock input is activated and the data is written into the NJU7305.
0	Unselect	The clock input is not activated and the data is written into the NJU7305.

(3) Power on initialization

The NJU7305 is not incorporated the power on initialization circuits, so that the internal circuits are not defined when the power is turned on. Therefore all "1" of 8 bits serial data with shift clock and latch pulse (9th clock) are required to set the flat state as explained before.

The internal circuits of NJU7305 are initialized by the above operation, then following input will be accepted.

-New Japan Radio Co.,Ltd.

5 - 142

ABSOLUTE MAXIMUM RATINGS

			(Ta=25℃)	
PARAMETER	SYMBOL	R, ATINGS	UNIT	
Cumples Valtara	V _{DD} -V _{EE}	16	v	
Supply Voltage	Vcc	Vss≁Vss+7(Vdd≧Vcc)	v	
Innut Valtage	Vin	Vss-0.3~Vcc+0.3 (DI,CLK,S)	V.	
Input Voltage	VIN	$V_{EE}=0.3 \sim V_{DD}+0.3(_{N1L} \sim _{N2L}, _{N1R} \sim _{N2R})$	V	
Power Dissipation	PD	200	mW	
Operating Temperature	Topr	-20 ~ +75	°C	
Storage Temperature	Tstg	-40 ~ +125	°C	

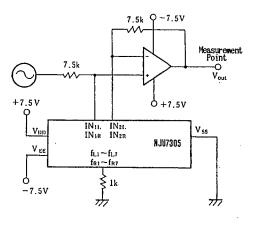
ELECTRICAL CHARACTERISTICS

 $(V_{ss}=0V, V_{dd} \ge V_{cc} > V_{ss} \ge V_{ee}, Ta=25^{\circ}C)$

PARAMETER	SYMBOL	CONDITIONS	MEN	TYP	MAX	UNIT	
On such immediate the second	Vdd-Vee	V _{EE} ≧-7.5V	7.5	10	15	۷	
Operating Voltage	Vcc	VEE - 7.3V	4.5	5.0	5.5		
Onereting Current	IDD	$V_{DD}-V_{EE}=15V$			1	m A	
Operating Current	lcc	Vcc=5V			1	mA	
Input Voltage	Vih	CLK,DI,S	0.8Vcc		Vcc		
Input voltage	Vıl	Terminals	0		0.2Vcc	V	
Input Pulse Width	tpw	CLK	1			μS	
Setup Time	tsu	DI	1			μS	
Holding Time	t _{HLD}	DI	1			μS	
Operating Frequency	fopr	CLK			330	kHz	
	THD1	Flat Status, f=20kHz		0.005	0.01		
Total Harmonics	THD2	Flat Status, f= 1kHz		0.0015	0.003		
Distortion	THD3	Boost Status, f=20kHz		0.04	0.10	%	
	THD4	Boost Status, f= 1kHz		0.015	0.03		
		(Circuit 1)					
Crosstalk	CT	(Circuit 2)		55		dB	
Setting Error	∆B	V _{DD} -V _{EE} =15V (Circuit 1)	-1		1	dB	
Analog SW Off	1	f _{L1} ~f _{L7}			10	N	
Leakage Current	loff	f _{R1} ~f _{R7}			10	щA	

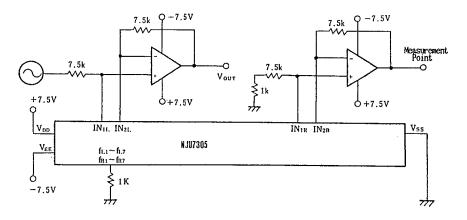
-New Japan Radio Co.,Ltd.-

5

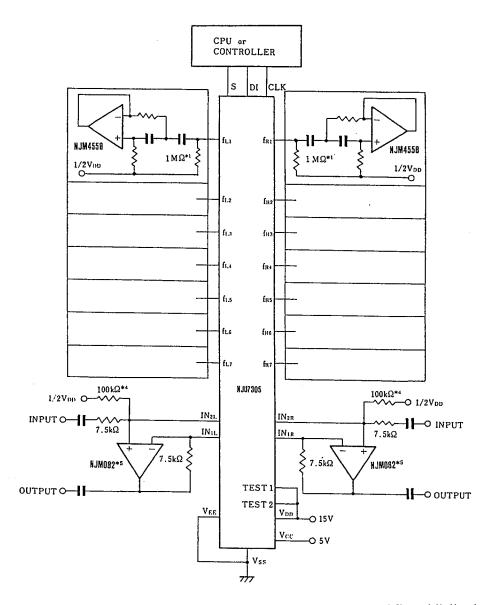

-5-143

Downloaded from $\underline{\text{Elcodis.com}}$ electronic components distributor

NJU7305


MEASUREMENT CIRCUITS

Circuit 1

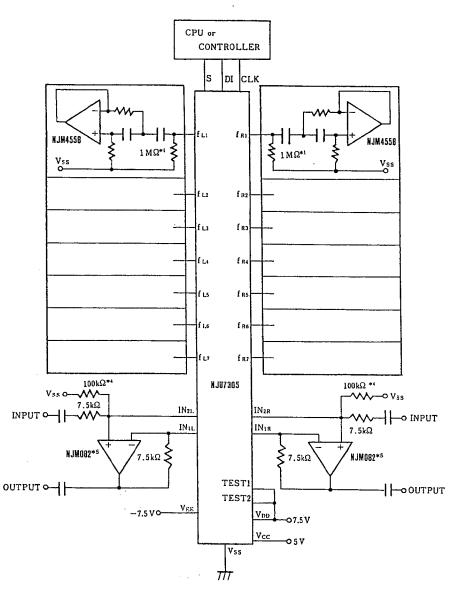

5

5-144 New Japan Radio Co., Ltd.

APPLICATION CIRCUIT 1

< Single power supply operation >

- *1) In order to reduce the pop-noise, connecting $f_L 1 \sim f_L 7$, $f_R 1 \sim f_R 7$ to $1/2 V_{DD}$ by $1M\Omega$ resistance is recommended.
- *2) The best conditions for 2dB/step are as follows: $V_{DD} = 15V$ OP-amp feedback resistance: 7.5k Ω Equivalent LC resonant impedance: 1k Ω
- *3) TEST1 and TEST2 terminals are normally connecting to the V_{DD} terminal.
- *4) In order to keep off noise input, connecting to 1/2 V_{DD} by 100k Ω resistance is recommended.
- *5) J-FET input OP-AMP is recommended.


-New Japan Radio Co.,Ltd.

-5-145

NJU7305

APPLICATION CIRCUIT 2

< Dual power supply operation >

- *1) In order to reduce the pop-noise, connecting $f_L 1 \sim f_L 7$, $f_R 1 \sim f_R 7$ to V_{ss} by $1M\Omega$ resistance is recommended.
- *2) The best conditions for 2dB/step are as follows: $V_{DD} = 7.5V$, $V_{EE} = -7.5V$ OP-amp feedback resistance: $7.5k \Omega$ Equivalent LC resonant impedance: $1k\Omega$
- *3) TEST1 and TEST2 terminals are normally connecting to the V_{DD} terminal.
- *4) In order to keep off noise input, connecting to 1/2 V_{DD} by $100k\Omega$ resistance is recommended.
- *5) J-FET input OP-AMP is recommended.

5-146 _____ New Japan Radio Co., Ltd.

5

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

New Japan Radio Co.,Ltd.