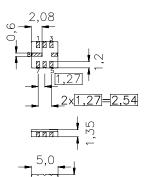


SAW Components

Data Sheet R 708

SAW Components	R 708
Resonator	433,42 MHz

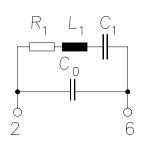

Data Sheet

Features

- 1-port resonator
- Provides reliable, fundamental mode, quartz frequency stabilization i.e. in transmitters or local oscillators

Terminals

Ni, gold plated


5,0

Ceramic package QCC8C

Dimensions in mm, approx. weight 0,1 g

Pin configuration

2	Input
6	Output, grounded in 1-port conf.
4,8	Ground (case)
1,3	float
5,7	float / ground

Туре	Ordering code	Marking and Package	Packing
		according to	according to
R 708	B39431-R 708-U310	C61157-A7-A56	F61074-V8070-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T _A	-45/+120	°C	
Storage temperature range	T _{stg}	-45/+120	°C	
DC voltage	$V_{\rm DC}$	12	V	between any terminals
Source power	$P_{\rm s}^{-1}$	0	dBm	

2

Jul 27, 2001

SAW Components Resonator 433,4 Data Sheet					R 708 2 MHz
Characteristics Reference temperature: Terminating source impedance: Terminating load impedance:	$T_{A} = 25 ^{\circ} \Omega$ $Z_{S} = 50 \Omega$ $Z_{I} = 50 \Omega$				
Center frequency ¹⁾	<i>f</i> _c	min. 433,345	typ. 433,42	max. 433,52	MHz
Minimum insertion attenuation Unloaded quality factor	$lpha_{\sf min}$ $Q_{\sf U}$	— 6000	1,2 12500	1,8	dB
Ageing of <i>f</i> _c		_	_	± 50	ppm
Equivalent circuit elements Motional capacitance Motional inductance Motional resistance Parallel capacitance ²⁾	C ₁ L ₁ R ₁ C ₀	 	1,98 68,1 14 3,4	 25 	fF μH Ω pF

¹⁾ Center frequency is defined as maximum of the real part of the admittance

²⁾ If used in two port configuration (pin 2-input, pin 6-output) C_0 is reduced by approx. 0,3 pF.

 $TC_{\rm f}$

 T_0

0

- 0,03

_

ppm/K²

°C

30

³⁾Temperature dependence of f_c : $f_c(T_A) = f_c(T_0)(1 + TC_f(T_A - T_0)^2)$

Temperature coefficient of frequency 3)

Turnover temperature

Jul 27, 2001

3

SAW Components	R 708
Resonator	433,42 MHz

Data Sheet

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW CE AE PD P.O. Box 80 17 09, D-81617 München

© EPCOS AG 2001. All Rights Reserved.

As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, prices and delivery please contact the sales offices of EPCOS AG or the international representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

Jul 27, 2001