E5-648-C446x electronic preset counter with four presets (relays) LCD negative, red-green backlighting

E5-648-C446x electronic preset counter with four presets (relays) LCD negative, red-green backlighting

Contents

Description Page1. Preface3
2. Safety instructions and warnings 3
2.1 Use according to the intended purpose 3
2.2 Mounting in a control panel 3
2.3 Electrical Installation 3
3. Description 3
4. Display/operating elements 4
5. Inputs 4
5.1 INP A, INP B 4
5.2 RESET 4
5.3 GATE 4
5.4 LOCK INPUT 4
5.5 MPI 4
6. Outputs 4
6.1 Output 1 and output 3 4
6.2 Output 2 and output 4 4
6.3 Active outputs 4
7. Programming 4
7.1 Entering the programming 4
7.2 Choice of main menus 4
7.3 Entering a sub-menu 4
7.4 Selecting the menu items 5
7.5 Setting the menu items 5
7.6 Accepting the setting 5
7.7 Ending the programming 5
7.8 Programming menu 5
7.8.1 Default parameters 5
7.8.2 Parameter sets 5
7.8.3 Setting the Basic function 6
7.8.4 Pulse counter 6
7.8.5 Tacho/frequency meter 8
7.8.6 Timer. 9
7.9 Setting the presets 13
7.9.1 Setting via decade keys 13
7.9.2 Setting with Teach-In function 13
7.10 Set function. 13
Description Page
8. Error message 13
9. Connections 14
9.1 Signal and control inputs 14
9.2 Supply voltage and outputs 14
10. Technical data 14
10.1 General data 14
10.2 Pulse counter 14
10.3 Tacho/frequency meter 14
10.4 Timer. 14
10.5 Signal and control inputs 15
10.6 Outputs 15
10.7 Supply voltage 15
10.8 Sensor supply voltage 15
0.9 Climatic conditions 15
10.10 EMC 15
10.11 Device safety 15
10.12 Mechanical data 15
10.13 Connections 15
11. Scope of delivery 16
12. Ordering codes 16
13. Frequencies (typical) 16
13.1 Pulse counter 16
13.2 Frequency meter 16
14. Input modes: Pulse counting 17
15. Input modes: Timing 19
16. Input modes: Frequency meter 20
17. Output operations 21
18. Dimensional drawings 22

1. Preface

Please read this instruction manual carefully before installation and start-up. Please observe all warnings and advice, both for your own safety and for general plant safety. If the device is not used in accordance with this instruction manual, then the intended protection can be impaired.

2. Safety instructions and warnings

Please use the device only if its technical condition is perfect. It should be used only for its intended purpose. Please bear in mind safety aspects and potential dangers and adhere to the operating instructions at all times.

2.1 Use according to the intended purpose

The preset counter detects and measures pulses, times and frequencies up to max. 60 kHz and offers a wide variety of different operating modes. At the same time, the preset counter processes programmed presets. Use for any purpose over and beyond this will be deemed as not in accordance with its intended purpose and thus not complying with the requirements.
The application area for this device lies in industrial processes and controls, in the fields of manufacturing lines for the metal, wood, plastics, paper, glass, textile and other like industries. Over-voltages at the terminals of the device must be kept within the limits of overvoltage Category II.
The device must only be operated when mounted in a panel in the correct way and in accordance with the section Technical Data.
Correct operation of the device requires the mandatory use of the appropriate external safety fuse. Advice concerning the recommended fuse-protection can be found under Technical Data.
The device is not suitable for use in hazardous areas and for areas excluded in EN 61010 Part 1.
If the device is used to monitor machines or processes in which, in the event of a failure of the device or an error made by the operator, there might be the risk of damaging the machine or causing an accident to the operators, then it is your responsibility to take the appropriate safety measures.

2.2 Mounting in a control panel

\triangle CAUTION!
 MOUNT THE DEVICE AWAY FROM HEAT SOURCES AND AVOID DIRECT CONTACT WITH CORROSIVE LIOUIDS, HOT STEAM OR SIMILAR.

Mounting instructions

1. Remove mounting clip from the device.
2. Insert the device from the front into the panel cut-out, ensuring the front-panel gasket is correctly seated.
3. Slide the fixing clip from the rear onto the housing, until the spring clamps are under tension and the upper and lower latching lugs have snapped into place.

2.3 Electrical installation

DANGER!
THE DEVICE MUST BE DISCONNECTED FROM THE POWER SUPPLY,
BEFORE ANY INSTALLATION OR MAINTENANCE WORK IS CARRIED
OUT. AC-POWERED DEVICES MUST ONLY BE CONNECTED TO THE
LOW-VLTAGE NETWORK VIA A SWITCH OR CIRCUIT BREAKER.
INSTALLATION OR MAINTENANCE WORK MUST ONLY BE CARRIED
OUT BY OUALIFIED PERSONNEL.

THE DEVICE MUST BE DISCONNECTED FROM THE POWER SUPPLY, beFOre any installation or maintenance work is carried OUT. AC-POWERED DEVICES MUST ONLY BE CONNECTED TO THE
 OUT BY QUALIFIED PERSONNEL.

Advice on noise immunity
All connections are protected against external sources of interference. The installation location should be chosen so that inductive or capacitive interference does not affect the device or its connecting lines. Interference (e.g. from switch-mode power supplies, motors, clocked controllers or contactors) can be reduced by means of appropriate cable routing and wiring.
Measures to be taken:

- Use only shielded cable for signal and control lines. Connect cable shield at both ends
- The conductor cross-section of the cables should be a minimum of $0.4 \mathrm{~mm}^{2}$
- The shield connection to the equipotential bonding should be as short as possible and with a contact area as large as possible (low-impedance)
- Only connect the shields to the control panel, if the latter is also earthed
- Install the device as far away as possible from noise-containing cables
- Avoid routing signal or control cables parallel to power lines
- Cables and their insulation should be in accordance with the intended temperature and voltage ranges

3. Description

- Six-digit multifunction LCD display
- Easy-to-read two-line LCD-display with annunciators for both the displayed preset and the status of the outputs
- Simultaneous display of the actual value and of the presets or auxiliary counters
- Versions with/without backlit display
- Add./Sub. preset counter with four presets
- Relay outputs
- Easy-to-program
- Simple preset entry via the front keys or via the Teach-In function
- Step preset
- Pulse, frequency, time or batch counter
- Preset counter, Batch counter or Total counter (cumulative count)
- Set function for pulse and time counter
- Multiplication (00.0001-99.9999) and division factor (01.0000-99.9999) for pulse counter and frequency meter
- Averaging and start delay for frequency meter
- Input modes:
- Pulse counter: cnt.dir, up.dn, up.up, quad, quad2, quad4, A/B, (A-B)/Ax100\%
- Frequency meter: $A, A-B, A+B$, quad, $A / B,(A-B) / A \times 100 \%$
- Timer: FrErun, Auto, InpA.InpB, InpB.InpB
- Output operations:

Add, Sub, AddAr, SubAr, AddBat, AddTot

- Four-stage RESET-Mode
- Three-stage keypad locking (Lock)
- MPI input for Display Latch, Teach-In function or Set function
- Supply voltage $90-260 \mathrm{Vac}$ or $10-30 \mathrm{Vdc}$

4. Display/Operating elements

Key	Function
$\mathrm{T1}$-6	Decade key T1-T6
P	Prog/Mode key
R	Reset key
8	Current count value/main counter
9	Preset value/Total count/Batch counter
10	Run display for timer
11	Shows which preset value is being displayed
12	Shows which preset output is active
Pr	Keys necessary for programming the parameters (highlighted in grey)

5. Inputs

5.1 INP A, INP B

- Signal inputs: function according to operating mode
- Max. frequency 55 kHz , can be damped in the programming menu to 30 Hz
- Pulse counter: count inputs
- Frequency meter: frequency inputs
- Timer: start input or start/stop inputs

5.2 Reset

- Dynamic reset input: resets the pulse counter or timer to zero (adding mode) or to preset value 2 (subtracting mode). The reset input can be inhibited in the programming menu
- Pulse counter: RESET input
- Frequency meter: no function
- Timer: RESET input

5.3 Gate

- Static gate input: function depending on operating mode
- Pulse counter: no counting while active
- Frequency meter: no counting while active
- Timer: no time measurement while active (Gate.hi); no time measurement while not active (Gate.Lo)

5.4 Lock input

- Static keypad lock input for presets or programming. Lock-out level can be set in the programming menu

5.5 MPI

- Input. Programmable as Display Latch, Set or Teach-In input

6. Outputs

6.1 Output 1 and output 3

Relay with potential-free make (NO) contact

6.2 Output 2 and output 4

Relay with potential-free changeover contact

6.3 Active outputs

An active output will be shown on the display as $\boldsymbol{\sim} \mathbf{I}, \bigwedge$ II, \leftrightharpoons III or $\boldsymbol{\sim}$ II.

For safety switching the relay outputs can be inverted, i.e. the relay will be de-energized when the presets are reached. To do this, the parameters Pr.OUT1 to Pr.OUT4 must be set to ㄴ (for permanent signal) or $\boldsymbol{\Psi}$ or \boldsymbol{U} (for timed signal).

7. Programming

7.1 Entering the program

Press the Reset key and Prog/Mode key simultaneously for 3s

Press key T2 to continue with the programming

The security prompt appears in the display yE5

Enter the main menu by pressing the Prog/Mode key

7.2 Choice of main menus

The menus are selected using the keys T2 (next) and T1 (back)

7.3 Entering a sub-menu

The sub-menu is opened with the Prog/Mode key and the first menu item is displayed

7.4 Selecting the menu items

The Prog/Mode key is used to select a menu item within the sub-menu

7.5 Setting the menu items

When setting count values, each decade has a key assigned to it. Each time the key is pressed, the value increments by one

7.6 Accepting the setting

Pressing the Prog/Mode key causes the current setting to be accepted. Programming then switches to the next menu item

7.7 Ending the programming

During programming, it is possible to exit the programming at each menu item by pressing the reset key.

Press the Reset key
$584 E$

Pressing the Prog/Mode key acknowledges this prompt and causes the programming menu to start again from the beginning. The previously programmed values are preserved. These can now be changed or checked again
Pressing the decade key T2 selects the termination of the programming
The security prompt appears in the display

Pressing the Prog/Mode key acknowledges this prompt and terminates the programming; the modified settings are saved in the EEPROM

The text SAVE is displayed for 2 s

7.8 Programming menu

7.8.1 Default parameters

Three default parameter sets have been permanently stored; these can be adapted as required. With each acknowledgment of the parameter sets, all parameters will be reset to the values listed in the table.
The dEFAuL P.USEr can be freely programmed.

Default setting Parameter set 2

Default setting Parameter set 3 dEFRuL puiser

Freely programmable User settings

7.8.2 Parameter sets

Factory settings are highlighted in grey

Display	P.SEt 1	P.SEt 2	P.SEt 3
Func	Count	Count	Count
InP.PoL	PnP	PnP	PnP
FiLtEr	on	oFF	oFF
Count	Cnt.dir	uP.dn	Quad
MPi	LAtch	LAtch	Set
Loc.lnP	ProG	ProG	ProG
ModE	Add	Sub	AddAr
FActor	01.0000	01.0000	01.0000
diViSo	01.0000	01.0000	01.0000
dP	0	0	0.00
SEtPt	000000	000000	0000.00
CoLor	red.Grn	red.Grn	red.Grn
rESmd	Man.EL	Man.EL	Man.EL
Pr.Out 1	\checkmark	几	-
t.Out 1	-	00.10	-
Pr.Out 2	-	ـ	ـ
t.Out 2	-	00.10	00.10
Pr.Out 3	\ldots	,	-
t.Out 3	-	00.10	-
Pr.Out 4	-	,	\ldots
t.Out 4	-	00.10	-

7.8.3 Setting the basic function

> Funct thicho
7.8.4 Pulse counter

7.8.4.1 Main menu for Signal and Control inputs

Input polarity

Main menu for programming the signal and control inputs
Programming menu Tacho/Frequency meter (7.8.5)
Programming menu
Timer/Hour meter (7.8.6)
Programming menu
Pulse counter (7.8.4)

PNP: switching to Plus for all inputs in common

Filter for signal inputs IncA and InpB

NPN: switching to OV for all inputs in common
-

Count Input mode

Count quid

Count Fund ?

User input

Percentage differential counting
[(A - B)/A in \%]
Inv A : count input A
In B: count input B

Count/Direction

INP A: count input
INP B: count direction input

Differential counting [A - B]

INP A: count input add
INP B: count input sub

Totalizing [$\mathrm{A}+\mathrm{B}$]

INP A: count input add
INP B: count input add

Quadrature input

INP A: count input 0°
INP B: count input 90°

Quadrature with pulse doubling

INP A: count input 0°
INP B: count input 90°
Each pulse edge of INP A will be counted

Quadrature $\mathbf{x 4}$

INP A: count input 0°
INP B: count input 90°
Each pulse edge of INP A
and INP B will be counted.

Ratio measurement [A/B]

Inf A: count input A
Inf B: count input B

When the MPI input is activated, the display is "frozen" and remains "frozen" until the MPI input is deactivated. Internally the preset counter continues counting

When the MPI input is activated, the current count value for the preset that has just been selected will be adopted as the new preset value. See also 7.9

When the MPI input is activated, the preset counter will be set to the value specified in the parameter SEtPt.
See also 7.10

Lock input

$\begin{aligned} & \text { Locínp } \\ & \text { proú } \end{aligned}$
$\begin{aligned} & \text { Locing } \\ & \text { preset } \end{aligned}$
$\begin{aligned} & \text { Locing } \\ & p_{r} p_{r} p_{r} \end{aligned}$

When the Lock input is activated the programming is inhibited

When the Lock input is activated the setting of the preset values is inhibited

7.8.4.2 Main menu for output operations

When the Lock input is activated the setting of the preset values and the programming are both inhibited

Main menu for determining the operation of the outputs

Count mode ADD

Outputs active when
count status \geq preset value
Reset to zero

Count mode SUBTRACT

Outputs 1, 3 and 4 active when count status \leq preset values 1, 3 and 4 Output 2 active when count status ≤ 0 Reset to preset 2

Count mode ADDING

 with automatic resetOutputs 1, 3 and 4 active when count status \geq preset values 1,3 and 4 Output 2 (timed signal) active when count status = preset value 2 Automatic reset to zero when count status = preset value 2 Reset to zero
MiodE
Rodoh he

Count mode ADDING with automatic

 reset and Batch counterOutput 2 (timed signal) active when main counter $=$ preset value 2
Automatic reset to zero when main counter $=$ preset 2
Output 3 active when
main counter \geq preset value 3
Batch counter counts the number of automatic repetitions of preset 2
Output 1 resp. 4 active when
batch counter \geq preset 1 resp. 4
Manual reset sets both counters to zero.
Electrical reset only sets the main counter to zero

Count mode ADDING with automatic reset and Total counter
Output 2 (timed signal) active when main counter $=$ preset value 2
Automatic reset to zero when
main counter = preset value 2
Output 3 active when
main counter \geq preset value 3
Total counter counts all the
count pulses from the main counter Output 1 resp. 4 active when total counter \geq preset value 1 resp. 4 Manual Reset sets both counters to zero Electrical reset only sets the main counter to zero

7.8.4.3 Main menu for configuration

Main menu for matching the input pulses and display

Multiplication factor

Division factor

Division factor can be programmed from 01.0000 to 99.9999 . The setting <01.0000 will not be accepted

Decimal point setting

Decimal point (only optical function)
0
0.01 decimal place
0.002 decimal places
0.0003 decimal places
0.00004 decimal places
0.000005 decimal places

Set value

Set value can be programmed
from -999999 to 999999
A previously programmed decimal point will be displayed

Display color (for device E5-648-C446x)

$\begin{gathered} \text { Coigr } \\ \text { rEd } \end{gathered}$	Display color Upper line: red Lower line: red
$\begin{gathered} \text { Loíar } \\ \text { rdurn } \end{gathered}$	Display color Upper line: red Lower line: green

7.8.4.4 Main menu for reset mode
rE5nาd

Manual reset (with red key) and electrical reset (reset input)

rE5nod no res

No reset possible
(red key and reset input inhibited)

rE5nาd Ei res

Only electrical reset possible (reset input)

rE5n od مMRnre

7.8.4.5 Preset 1

See below 7.8.6.5
7.8.4.6 Preset 2

See below 7.8.6.6
7.8.4.7 Preset 3 and 4

See below 7.8.6.7
7.8.5 Tacho/frequency meter
7.8.5.1 Main menu for Signal and Control inputs

Main menu for programming the signal and control inputs

Filter for signal inputs $\operatorname{Inp} A$ and $\operatorname{Inp} B$

Maximum count frequency

Damped to approx. 30 Hz
(for control with mechanical contacts)

Input mode frequency measurement

User input

חпp, teRch

Simple frequency measurement

Inp A: Frequency input Inp B: No function

Differential measurement [A - B]

Inp A: Frequency input A
Inp B: Frequency input B

Total measurement [A + B]

Inp A: Frequency input A
Inp B: Frequency input B

Frequency measurement with direction

 recognition [Quad]$\operatorname{Inp} A$: Frequency input 0°
Inp B: Frequency input 90°

Ratio measurement [A/B]

Inp A: Frequency input A
Inp B: Frequency input B

Percentage differential measurement

 [(A-B)/A in \%]Inp A: Frequency input A
Inp B: Frequency input B

When the MPI input is activated, the display is "frozen" and remains "frozen" until the MPI input is deactivated. Internally the frequency meter continues running

When the MPI input is activated, the current frequency for the preset that has just been selected will be adopted as the new preset value. See also 7.9

Input polarity

NPN: switching to OV for all inputs in common

Lock input

$\text { Locing } \operatorname{lou}_{\text {goús }}$
Locing

When the Lock input is activated the programming is inhibited

When the Lock input is activated the setting of the preset values is inhibited

7.8.5.2 Main menu for configuration

Main menu for matching the input pulses and display

Multiplication factor can be programmed from 00.0001 to 99.9999. The setting 00.0000 will not be accepted

Division factor

Division factor can be programmed from 01.0000 to 99.9999. The setting <01.0000 will not be accepted

Display mode

Start delay

$5 t$ Rrt
0.0

Programmable from 00.0 to 99.9 s At the start of a measurement the measurement results within this time-period are ignored

Waiting time

Programmable from 00.1 to 99.9 s This value specifies how much time should elapse, after the last valid edge, before zero is to be displayed

Display color (for device E5-648-C446x)

CoLor Edd
Color redurn

7.8.5.3 Preset 1

See below 7.8.6.5

7.8.5.4 Preset 2

See below 7.8.6.6

7.8.5.5 Preset 3 and 4

See below 7.8.6.7
7.8.6 Timer
7.8.6.1 Main menu for Signal and Control inputs

E5-648-C446x electronic preset

Input mode time measurement

Start: Edge to Inp A
Stop: Edge to Inp B

Start: 1. Edge to $\operatorname{Inp} B$
Stop: 2. Edge to Inp B

Timing can only be controlled via the Gate input
$\operatorname{Inp} A$ and $\operatorname{Inp} B$: no function

The timer is reset by means of a RESET (to zero when adding, to preset 2 when subtracting) and then starts timing again.
Timing is stopped with adding operations when preset 2 is reached.
Timing is stopped with subtracting operations when zero is reached.
A RESET during the timing process also causes this to stop.
$\operatorname{Inp} A$ and $\operatorname{Inp} B$: no function

Gate control for timing

Timing takes place when the Gate input is not active

Timing takes place when the Gate input is active

User input

When the MPI input is activated, the display is "frozen" and remains "frozen" until the MPI input is deactivated. Internally the preset timer continues counting
When the MPI input is activated, the current count value for the preset that has just been selected will be adopted as the new preset value. See also 7.9

When the MPI input is activated, the preset timer will be set to the value specified in the parameter SEtPt. See also 7.10

Lock input

When the Lock input is activated, the programming is inhibited

When the Lock input is activated, the setting of the preset values is inhibited

When the Lock input is activated, the setting of the preset values and the programming are both inhibited

7.8.6.2 Main menu for output operations

count status \geq preset values 1,3 and 4 Output 2 (timed signal) active when count status $=$ preset value 2
Automatic reset to zero when
count status $=$ preset value 2
Reset to zero

Count mode SUBTRACTING

with automatic reset

Outputs 1, 3 and 4 active when count status \leq preset values 1,3 and 4 Output 2 (timed signal) active when count status $=0$
Automatic reset to preset value 2 when
count status $=0$
Reset to preset value 2
Count mode ADDING with automatic reset and Batch counter
Output 2 (timed signal) active when main counter = preset value 2
Automatic reset to zero when main counter = preset value 2 Output 3 active when
main counter \geq preset value 3 Batch counter counts the number of automatic repetitions of preset 2 Output 1 resp. 4 active when batch counter \geq preset 1 resp. 4 Manual reset sets both counters to zero Electrical reset sets only main counter to zero

Count mode ADDING with automatic

 reset and Total counterOutput 2 (timed signal) active when main counter $=$ preset value 2 Automatic reset to zero when main counter $=$ preset value 2 Output 3 active when main counter \geq preset value 3 Total counter counts all the count pulses from the main counter Output 1 resp. 4 active when total counter \geq preset value 1 resp. 4 Manual Reset sets both counters to zero Electronic reset only sets the main counter to zero
7.8.6.3 Main menu for configuration

Confis
Unito of time
$\begin{gathered} \text { EMTOdE } \\ 5 E E \end{gathered}$
kModE
$\begin{gathered} t \text { Mod } \\ \text { hour } \end{gathered}$
ginode

Main menu for matching the time ranges and display

Unit of time: seconds
Decimal point setting determines the resolution

Unit of time: minutes
Decimal point setting determines the resolution

Unit of time: hours
Decimal point setting determines the resolution

Unit of time: hrs. min. sec.

Decimal point setting (Resolution)

Decimal place (determines the resolution)
0 no decimal place
$0.0 \quad 1$ decimal place
$0.00 \quad 2$ decimal places
0.0003 decimal places

Set value

Set value can be programmed from 000000 to 999999.
A previously programmed
decimal point will be displayed

Display color (for device E5-648-C446x)

Display color
Upper line: red
Lower line: red

Display color
Upper line: red
Lower line: green

7.8.6.4 Main menu for reset mode

Setting the reset mode
7.8.6.5 Main menu for preset 1

Main menu for turning preset 1 ON/OFF

ADD mode output operations: permanent signal at output 1, becomes active when count \geq preset 1 SUB mode output operations: permanent signal at output 1 , becomes active when count \leq preset 1

ADD mode output operations:
permanent signal at output 1 ,
becomes passive when count \geq preset 1
SUB mode output operations: permanent signal at output 1, becomes passive when count \leq preset 1
ADD mode output operations: timed signal at output 1, becomes active when count \geq preset 1 . (Activation only in positive direction) SUB mode output operations: timed output at output 1, becomes active when count \leq preset 1 (Activation only in negative direction)
ADD mode output operations: timed signal at output 1, becomes passive when count \geq preset 1 . (Deactivation only in positive direction) SUB mode output operations: timed output at output 1, becomes passive when count \leq preset 1 .
(Deactivation only in negative direction)

ADD mode output operations: timed signal at output 1, becomes active with positive direction and when count \geq preset 1 and subsequently active with negative direction and when count \leq preset 1 SUB mode output operations: timed signal at output 1, becomes active with negative direction and when count \leq preset 1 and subsequently active with positive direction and when count \geq preset 1
ADD mode output operations: timed signal at output 1 , becomes passive with positive direction and when count \geq preset 1 and subsequently passive with negative direction and when count \leq preset 1 SUB mode output operations: timed output at output 1, becomes passive with negative direction and when count \leq preset 1 and subsequently passive with positive direction and when count \geq preset 1
Duration of timed signal of output 1, programmable from 00.01 to 99.99 s Timed signal is post-triggered

7.8.6.6 Main menu for preset 2

Main menu for preset 2

ADD mode output operations: permanent signal at output 2, becomes active when count \geq preset 2 SUB mode output operations: permanent signal at output 2 , becomes active when count \leq zero
ADD mode output operations: permanent signal at output 2, becomes passive when count \geq preset 2 SUB mode output operations: permanent signal at output 2, becomes passive when count \leq zero

ADD mode output operations: timed signal at output 2, becomes active when count \geq preset 2
(Activation only in positive direction).
SUB mode output operations: permanent signal at output 2, becomes active when count \leq zero (Activation only in negative direction)

ADD mode output operations:
timed signal at output 2 , becomes passive when count \geq preset 2 (Deactivation only in positive direction)
SUB mode output operations: permanent signal at output 2, becomes passive when count \leq zero (Deactivation only in negative direction)

ADD mode output operations: timed signal at output 2, becomes active with positive direction and when count \geq preset 2 and subsequently with negative direction and when count \leq preset 2
SUB mode output operations:
timed signal at output 2, becomes
active with negative direction and when count \leq zero and subsequently with positive direction and when count \geq zero

ADD mode output operations: timed signal at output 2, becomes passive with positive direction and when count \geq preset 2 and subsequently with negative direction and when count \leq preset 2 SUB mode output operations: timed signal at output 2, becomes passive with negative direction and when count \leq zero and subsequently with positive direction and when count \geq zero

Duration of timed signal of output 1 , programmable from 00.01 to 99.99 s Timed output is post-triggered

7.8.6.7 Main menu for preset 3 and 4

Only preset 3 is represented here

Main menu for preset 3 [4]

ADD mode output operations: permanent signal at output 3 [4], becomes active when count \geq preset 3 [4] SUB mode output operations: permanent signal at output 3 [4], becomes active when count \leq preset 3 [4]

ADD mode output operations: permanent signal at output 3 [4], becomes passive when count \geq preset 3 [4] SUB mode output operations: permanent signal at output 3 [4], becomes passive when count \leq preset 3 [4]

ADD mode output operations: timed signal at output 3 [4], becomes active when count \geq preset 3 [4]. (Activation only in positive direction) SUB mode output operations: timed signal at output 3 [4], becomes active when count \leq preset 3 [4]. (Activation only in negative direction)
ADD mode output operations: timed signal at output 3 [4], becomes passive when count \geq preset 3 [4].
(Deactivation only in positive direction) SUB mode output operations: timed signal at output 3 [4], becomes passive when count \leq preset 3 [4]. (Deactivation only in negative direction)

ADD mode output operations:
timed signal at output 3 [4], becomes active with positive direction and when count \geq preset 3 [4] and subsequently active with negative direction and when count \leq preset 3 [4] SUB mode output operations: timed signal at output 3 [4], becomes active with negative direction and when count \leq preset 3 [4] and subsequently active with positive direction and when count \geq preset 3 [4]

ADD mode output operations: timed signal at output 3 [4], becomes passive with positive direction and when count \geq preset 3 [4] and subsequently passive with negative direction and when count \leq preset 3 [4]
SUB mode output operations: timed signal at output 3 [4], becomes passive with negative direction and when count \leq preset 3 [4] and subsequently passive with positive direction and when count \geq preset 3 [4]

Duration of timed signal of output 3 [4], programmable from 00.01 to 99.99 s Timed output is post-triggered

Active:
Relays are activated when the preset value is reached.
Passive:
Relay becomes de-energized when the preset value is reached.

7.9 Setting the presets

7.9.1 Setting via decade keys

In operating mode preset 4 will be displayed in the lower line, excepted for the output operations AddBat and AddTot.

Press the Prog/Mode key until the preset to be changed is displayedPR1, PRA, PR3 or PR4

Press any decade key Display switches to the editor mode

Set the desired preset value using the decade keys

Press the Prog/Mode key to confirm the value and save it Display switches to the editor mode of the next preset \boldsymbol{R} or

Approx. 3s after the last press of the decade keys, or by pressing the Reset key, the new preset value will be accepted and the counter will switch back to operating mode

7.9.2 Setting with Teach-In function

\%ip,	Ach
cerich	

In programming mode, select the preset to be changed using the Prog/Mode key

Briefly activate the MPI (NPN or PNP input logic)

- The current count value will be adopted as the new preset value
- The preset value can subsequently be further modified via the decade keypad

7.10 Set function

Both the pulse counter and the timer can be set to a default value by means of the Set function.

$\operatorname{mip}_{5 E t}$

5EtP! 999999

Briefly activate the MPI (NPN or PNP input logic)

- In Adding modes: the pulse counter or timer will be set to the SEtPt value
- In Subtracting modes: the pulse counter or timer will be set to a value that is the sum of Preset 2 value and the value of SEtPt

8. Error message

Designation	Function
Err 1	Set value is outside the permitted range

Instruction leaflet IL05407001E
Effective October 2010

9. Connections

Figure 1. Connections

9.1 Signal and control inputs

Number	Designation	Function
1	AC: $24 \mathrm{Vdc} / 80 \mathrm{~mA}$ DC: UB connected through	Sensor supply voltage
2	GND (0 Vdc)	Common connection signal and control inputs
3	INP A	Signal input A
4	INP B	Signal input B
5	RESET	Reset input
6	LOCK	Keypad lock
7	GATE	Gate input
8	MPI	User input

9.2 Supply voltage and outputs

Number	Designation	Function
9	Relay contact C. 1	Output 1
10	Relay contact N.0.1	
11	Relay contact C. 2	Output 2
12	Relay contact N.0.2	
13	Relay contact N.C. 2	
14	AC: 90-260 Vac $\mathrm{N} \sim$ DC: $10-30 \mathrm{Vdc}$	Supply voltage
15	AC: 90-260 Vac L~ DC: GND (0 Vdc)	Supply voltage
16	Relay contact N.C. 4	Output 4
17	Relay contact C. 4	
18	Relay contact N.0.4	
19	Relay contact N.0.3	Output 3
20	Relay contact C. 3	

E5-648-C446x electronic preset counter with four presets (relays) LCD negative, red-green backlighting

10. Technical data

10.1 General data

- Display: LCD positive or negative, backlit 2×6-digit
- Digit height
- Upper line: 9 mm
- Lower line: 7 mm
- Special characters: 2 mm
- Overload: Blinking, 1s
- Underload: Counter loses up to 1 decade no pulses
- Data retention: >10 years, EEPROM
- Operation: 8 keys

10.2 Pulse counter

- Count frequency: max. 50 kHz (see section 13, Frequencies)
- Response time of the outputs-Relays
- Add/Sub: <16 ms
- With automatic repeat: $<13 \mathrm{~ms}$
- A/B; (A-B)/A: <38 ms

10.3 Tacho/frequency meter

- Frequency range: 0.01 Hz to 50 kHz (see section 13, Frequencies)
- Measuring principle
- $\leq 76.3 \mathrm{~Hz}$ Time interval (period measurement)
- $>76.3 \mathrm{~Hz}$ Gate time
- Gate time approx. 13.1 ms
- Measuring error: <0.1\% per channel
- Response time of the outputs
- 1-channel operation: $<110 \mathrm{~ms}$ at $40 \mathrm{kHz},<170 \mathrm{~ms}$ at 50 kHz
- 2-channel operation: $<200 \mathrm{~ms}$ at $40 \mathrm{kHz},<300 \mathrm{~ms}$ at 50 kHz

10.4 Timer

- Seconds: 0.001s-999 999s
- Minutes: 0.001 min-999 999 min
- Hours: 0.001h-999 999h
- h.min.s: 00h.00min.01s-99h.59min.59s
- Min. time measurable: $500 \mu \mathrm{~s}$
- Measuring error: <50 ppm
- Response time of the outputs:
- Relays: <16 ms

10.5 Signal and control inputs

- Polarity: programmable NPN/PNP for all inputs in common
- Input resistance: 5 kohms
- Pulse shape: any
- Switching level with AC supply:
- HTL level: Low: 0-4 Vdc; High: 12-30 Vdc
- 5V level: Low: 0-2Vdc; High: 3.5-30 Vdc
- Switching level with DC supply:
- HTL level: Low: 0-0.2 x UB; High: $0.6 \times$ UB-30 Vdc 5 V level: Low: 0-2 Vdc; High: 3.5-30 Vdc
- Minimum pulse length of the Reset input: 1 ms
- Minimum pulse length of the Control inputs: 10 ms

10.6 Outputs

Output 1

- Relay with make contact programmable as NC or NO
- Switching voltage: max. $250 \mathrm{Vac} / 110 \mathrm{Vdc}$
- Switching current: max. 3A AC/Vdc, min. 30 mA DC
- Switching capacity: max. 750 VA/90W
- Mechanical service life (switching cycles): 2×10^{7}
- Number of switching cycles at 3A/250 Vac: 1×10^{5}
- Number of switching cycles at $3 \mathrm{~A} / 30 \mathrm{Vdc}: 1 \times 10^{5}$

Output 2

- Relay with changeover contact
- Switching voltage: max. $250 \mathrm{Vac} / 150 \mathrm{Vdc}$
- Switching current: max. 3A AC/A DC, min. 30 mA DC
- Switching capacity: max. 750 VA/90W
- Mechanical service life (switching cycles): 20×10^{6}
- Number of switching cycles at 3A/250 Vac: 5×10^{4}
- Number of switching cycles at $3 \mathrm{~A} / 30 \mathrm{Vdc}: 5 \times 10^{4}$

Output 3

- Relay with make contact
- Switching voltage: max. $125 \mathrm{Vac} / 110 \mathrm{Vdc}$
- Switching current: max. 1A AC/1A DC, min. 1 mA AC/DC
- Switching capacity: max. 62.5 VA/30W
- Mechanical service life (switching cycles): 5×10^{7}
- Number of switching cycles at $0.5 \mathrm{~A} / 125 \mathrm{Vac}: 1 \times 10^{5}$
- Number of switching cycles at $1 \mathrm{~A} / 30 \mathrm{Vdc}: 1 \times 10^{5}$

Output 4

- Relay with changeover contact
- Switching voltage: max. $125 \mathrm{Vac} / 110 \mathrm{Vdc}$
- Switching current: max. 1A AC/1A DC, min. 1 mA AC/DC
- Switching capacity: max. 62.5 VA/30W
- Mechanical service life (switching cycles): 5×10^{7}
- Number of switching cycles at $0.5 \mathrm{~A} / 125 \mathrm{Vac}: 1 \times 10^{5}$
- Number of switching cycles at $1 \mathrm{~A} / 30 \mathrm{Vdc}: 1 \times 10^{5}$

10.7 Supply voltage

- AC supply
- 90-260 Vac/max. 8 VA $50 / 60 \mathrm{~Hz}$
- Ext. fuse protection: T 0.1A
- DC supply
- $10-30 \mathrm{Vdc} / \mathrm{max} .1 .5 \mathrm{~W}$ reverse polarity protection
- Ext. fuse protection T 0.2A

10.8 Sensor supply voltage

- AC supply: $24 \mathrm{Vdc} \pm 15 \%, 80 \mathrm{~mA}$
- DC supply: max. 80 mA , external voltage supply is connected through

10.9 Climatic conditions

- Operating temperature: $-20^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$
- Storage temperature: $-25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
- Relative humidity: RH. 93% at $40^{\circ} \mathrm{C}$, non-condensing
- Altitude: to 2000 m

10.10 EMC

- Noise immunity: EN61000-6-2 with shielded signal and control cables
- Noise emission: EN55011 Class B

10.11 Device safety

- Design to: EN61010 Part 1
- Protection class: Class 2
- Application area: Soiling Level 2

10.12 Mechanical data

- Housing: Panel-mount housing to DIN 43 700, RAL 7021
- Dimensions: $48 \times 48 \times 91 \mathrm{~mm}$
- Panel cut-out: $45^{+0.6} \times 45^{+0.6} \mathrm{~mm}$
- Installation depth: ca. 107 mm incl. terminals
- Weight: ca. 125 g
- Protection: IP 65 (front)
- Housing material: Polycarbonate UL94 V-2
- Vibration resistance: $10-55 \mathrm{~Hz} / 1 \mathrm{~mm} / X Y Z$ (EN60068-2-6): 30 min in each direction
- Shock resistance: 100G/XYZ (EN60068-2-27): 3 times in each direction (EN60068-2-29): 10G/6 ms/XYZ 2000 times in each direction
- Cleaning: The front of the unit should only be cleaned using a soft damp (water) cloth

10.13 Connections

- Supply voltage and outputs
- Plug-in screw terminal: 7-pin, RM 5.08
- Core cross section: max. $2.5 \mathrm{~mm}^{2}$
- Plug-in screw terminal: 5-pin, RM 3.81
- Core cross-section: max. $1.5 \mathrm{~mm}^{2}$
- Signal and control inputs:
- Plug-in screw terminal: 8-pin, RM 3.81
- Core cross-section: max. $1.5 \mathrm{~mm}^{2}$

Instruction leaflet IL05407001E
Effective October 2010

11. Scope of delivery

- Preset counter
- Mounting clip
- Instruction manual

12. Ordering codes

E5-648-C446 \mathbf{x}
Supply voltage $\mathbf{1}=9$ to 260 Vac $2=10$ to 20 Vdc

13. Frequencies (typical)

13.1 Pulse counter

HTL level

- AC supply
- Typ. Low: 2.5V
- Typ. High: 22V
- DC supply- 12 V
- Typ. Low: 2V
- Typ. High: 10V
- DC supply-24V
- Typ. Low: 2.5 V
- Typ. High: 22V

	Add Sub	AddAr SubAr AddBat	AddTot
Display	55 kHz	1.5 kHz	1.6 kHz
Cnt.Dir	20 kHz	1.5 kHz	1.6 kHz
Up.Dn Up.Up	28 kHz	0.7 kHz	0.7 kHz
Quad Quad 2	10 kHz	0.7 kHz	0.7 kHz
Quad 4	29 kHz	29 kHz	29 kHz
A/B			

5 V level

- Typ. Low: 1.0 V
- Typ. High: 4.0V

Display	Add Sub	AddAr SubAr AddBat	AddTot
Cnt.Dir	9 kHz	1.3 kHz	1.6 kHz
Up.Dn Up.Up	9 kHz	1.3 kHz	1.6 kHz
Quad Quad 2	9 kHz	0.5 kHz	0.7 kHz
Quad 4	9 kHz	0.5 kHz	0.7 kHz
A/B (A-B)/A	9 kHz	9 kHz	9 kHz

E5-648-C446x electronic preset
counter with four presets (relays) LCD negative, red-green backlighting

13.2 Frequency meter

HTL level

- AC supply
- Typ. Low: 2.5V
- Typ. High: 22V
- DC supply-12V
- Typ. Low: 2 V
- Typ. High: 10V
- DC supply-24V
- Typ. Low: 2.5V
- Typ. High: 22V

5 V level

- Typ. Low: 1.0V
- Typ. High: 4.0V

Description	HTL	5V
A	65 kHz	9 kHz
$A-B$	59 kHz	9 kHz
A+B		
A/B		
(A-B)/A	30 kHz	9 kHz
Quad		

Switching levels of the input

Switching levels with AC supply:

- HTL level
- Low: 0-4 Vdc
- High: 12-30 Vdc
- 5 V level
- Low: 0-2 Vdc
- High: 3.5-30 Vdc

Switching levels with DC supply:

- HTL level
- Low: 0-0.2 x UB
- High: $0.6 \times$ UB-30 Vdc
- 5 V level
- Low: 0-2 Vdc
- High: 3.5-30 Vdc

14. Input modes: Pulse counting
Function
Cnt.Dir
INP A
Piagram (1)
(1) No counting when GATE input is active
15. Input modes: Pulse counting, continued

[^0]
LCD negative, red-green backlighting

15. Input modes: Timing

16. Input modes: Frequency meter

17. Output operations

18. Dimensional drawings (mm)

Figure 2. Dimensional Drawing

Figure 3. Panel Cut-Out

E5-648-C446x electronic preset
LCD negative, red-green backlighting

Notes:

Instruction leaflet IL05407001E
Effective October 2010

E5-648-C446x electronic preset counter with four presets (relays) LCD negative, red-green backlighting

Eaton Corporation

Electrical Sector
1111 Superior Ave
Cleveland, OH 44114
United States
877-ETN-CARE (877-386-2273)
Eaton.com
© 2010 Eaton Corporation
All Rights Reserved
Printed in USA
Publication No. IL $05407001 \mathrm{E} / 79872$
October 2010

[^0]: (1) Note: No counting when GATE input is active

