E5-648-C242x electronic preset counter with two presets

Powering Business Worldwide

Contents

Description Page

1. Preface . 3
2. Safety instructions and warnings 3
2.1 Use according to theintended purpose.3
2.2 Mounting in a control panel 3
2.3 Electrical installation 3
3. Description 3
4. Display/Operating elements 4
5. Inputs 4
5.1 INP A, INP B 4
5.2 Reset 4
5.3 Gate 4
5.4 Lock input 4
5.5 MPI 4
6. Outputs. 4
6.1 Output 1 4
6.2 Output 2 4
6.3 Active outputs 4
7. Programming 4
7.1 Entering the programming 4
7.2 Choice of main menus 4
7.3 Entering a sub-menu 4
7.4 Selecting the menu items 5
7.5 Setting the menu items 5
7.6 Accepting the setting 5
7.7 Ending the programming 5
7.8 Programming menu 5
7.8.1 Default parameters 5
7.8.2 Parameter sets 5
7.8.3 Setting the Basic function 6
7.8.4 Pulse counter 6
7.8.5 Tacho/frequency meter 8
7.8.6 Timer. 9
7.9 Setting the presets 12
7.9.1 Setting via decade keys 13
7.9.2 Setting with Teach-In function 13
7.9.3 Setting the tracking presets 13
7.10 Set function. 13
Description Page
8. Error message 13
9. Connections 13
9.1 Signal and control inputs 14
9.2 Supply voltage and outputs 14
10. Technical data 14
10.1 General data 14
10.2 Pulse counter 14
10.3 Tacho/frequency meter 14
10.4 Timer. 14
10.5 Signal and control inputs 14
10.6 Outputs 15
10.7 Supply voltage 15
10.8 Sensor supply voltage 15
10.9 Climatic conditions 15
10.10 EMC 15
10.11 Device safety 15
10.12 Mechanical data 15
10.13 Connections 15
11. Scope of delivery 15
12. Ordering codes 16
13. Frequencies (typical) 16
13.1 Pulse counter 16
13.2 Frequency meter 16
14. Input modes: Pulse counting 17
15. Input modes: Timing 18
16. Input modes: Frequency meter 20
17. Output operations 21
18. Dimensional drawings 22

1. Preface

Please read this instruction manual carefully before installation and start-up. Please observe all warnings and advice, both for your own safety and for general plant safety. If the device is not used in accordance with this instruction manual, then the intended protection can be impaired.

2. Safety instructions and warnings

Please use the device only if its technical condition is perfect. It should be used only for its intended purpose. Please bear in mind safety aspects and potential dangers and adhere to the operating instructions at all times.

2.1 Use according to the intended purpose

The preset counter detects and measures pulses, times and frequencies up to max. 60 kHz and offers a wide variety of different operating modes. At the same time, the preset counter processes programmed presets. Use for any purpose over and beyond this will be deemed as not in accordance with its intended purpose and thus not complying with the requirements.
The application area for this device lies in industrial processes and controls, in the fields of manufacturing lines for the metal, wood, plastics, paper, glass, textile and other like industries. Over-voltages at the terminals of the device must be kept within the limits of overvoltage Category II.
The device must only be operated when mounted in a panel in the correct way and in accordance with the section Technical Data.
Correct operation of the device requires the mandatory use of the appropriate external safety fuse. Advice concerning the recommended fuse-protection can be found under Technical Data.
The device is not suitable for use in hazardous areas and for areas excluded in EN 61010 Part 1.
If the device is used to monitor machines or processes in which, in the event of a failure of the device or an error made by the operator, there might be the risk of damaging the machine or causing an accident to the operators, then it is your responsibility to take the appropriate safety measures.

2.2 Mounting in a control panel

\triangle CAUTION!
 MOUNT THE DEVICE AWAY FROM HEAT SOURCES AND AVOID DIRECT CONTACT WITH CORROSIVE LIQUIDS, HOT STEAM OR SIMILAR.

Mounting instructions

1. Remove mounting clip from the device.
2. Insert the device from the front into the panel cut-out, ensuring the front-panel gasket is correctly seated.
3. Slide the fixing clip from the rear onto the housing, until the spring clamps are under tension and the upper and lower latching lugs have snapped into place.

2.3 Electrical installation

\triangle DANGER!

THE DEVICE MUST BE DISCONNECTED FROM THE POWER SUPPLY, BEFORE ANY INSTALLATION OR MAINTENANCE WORK IS CARRIED OUT. AC-POWERED DEVICES MUST ONLY BE CONNECTED TO THE LOW-VOLTAGE NETWORK VIA A SWITCH OR CIRCUIT BREAKER. INSTALLATION OR MAINTENANCE WORK MUST ONLY BE CARRIED OUT BY OUALIFIED PERSONNEL.

Advice on noise immunity
All connections are protected against external sources of interference. The installation location should be chosen so that inductive or capacitive interference does not affect the device or its connecting lines! Interference (e.g. from switch-mode power supplies, motors, clocked controllers or contactors) can be reduced by means of appropriate cable routing and wiring.
Measures to be taken:

- Use only shielded cable for signal and control lines. Connect cable shield at both ends
- The conductor cross-section of the cables should be a minimum of $0.4 \mathrm{~mm}^{2}$
- The shield connection to the equipotential bonding should be as short as possible and with a contact area as large as possible (low-impedance)
- Only connect the shields to the control panel, if the latter is also earthed
- Install the device as far away as possible from noise-containing cables
- Avoid routing signal or control cables parallel to power lines.
- Cables and their insulation should be in accordance with the intended temperature and voltage ranges

3. Description

- Six-digit multifunction LCD display
- Easy-to-read two-line LCD-display with annunciators for both the displayed preset and the status of the two outputs
- Simultaneous display of the actual value and of the presets or auxiliary counters
- Add./Sub. preset counter with two presets
- Relay outputs
- Easy-to-program
- Simple preset entry via the front keys or via the Teach-In
function
- Step or tracking preset
- Pulse, frequency, time or batch counter
- Preset counter, Batch counter or Total counter (cumulative count)
- Set function for pulse and time counter
- Multiplication and division factor (00.0001-99.9999) for pulse counter and frequency meter
- Averaging and start delay for frequency meter
- Input modes:
- Pulse counter: cnt.dir, up.dn, up.up, quad, quad2, quad4, A/B, (A-B)/Ax100\%
- Frequency meter: $A, A-B, A+B$, quad, $A / B,(A-B) / A \times 100 \%$
- Timer: FrErun, Auto, InpA.InpB, InpB.InpB
- Output operations: Add, Sub, AddAr, SubAr, AddBat, SubBat, AddTot, SubTot, Trail, TrailAr
- Four-stage RESET-Mode
- Three-stage keypad locking (Lock)
- MPI input for Display Latch, Teach-In function or Set function
- Supply voltage $90-260 \mathrm{Vac}$ or $10-30 \mathrm{Vdc}$

4. Display/Operating elements

Key	Function
T1-6	Decade key T1-T6
P	Prog/Mode key
R	Reset key
8	Current count value/main counter
9	Preset value/Total count/Batch counter
10	Run display for timer
11	Shows which preset value is being displayed
12	Shows which preset output is active
Pr	Keys necessary for programming the parameters (highlighted in grey)

5. Inputs

5.1 INP A, INP B

- Signal inputs: function acc. to operating mode
- Max. frequency 60 kHz , can be damped in the programming menu to 30 Hz
- Pulse counter: count inputs
- Frequency meter: frequency inputs
- Timer: start input or start/stop inputs

5.2 Reset

- Dynamic reset input: resets the pulse counter or timer to zero (adding mode) or to preset value 2 (subtracting mode). The reset input can be inhibited in the programming menu
- Pulse counter: RESET input
- Frequency meter: no function
- Timer: RESET input

5.3 Gate

- Static gate input: function depending on operating mode
- Pulse counter: no counting while active
- Frequency meter: no counting while active
- Timer: no time measurement while active (Gate.hi); no time measurement while not active (Gate.Lo)

5.4 Lock Input

- Static keypad lock input for presets or programming. Lock-out level can be set in the programming menu

5.5 MPI

- Input. Programmable as Display Latch, Set or Teach-In input

6. Outputs

6.1 Output 1

Relay with potential-free make (NO) contact

6.2 Output 2

Relay with potential-free make (NO) contact

6.3 Active Outputs

An active output will be shown on the display as $\boldsymbol{\propto I}$ or $\boldsymbol{\Perp}$ II.
For safety switching the relay outputs can be inverted,
i.e. the relay will be deenergized when the presets are reached. To do this, the parameters Pr.OUT1 and Pr.OUT2 must be set to
는 (for permanent signal) or $\boldsymbol{\tau}$ or (for timed signal).

7. Programming

7.1 Entering the program

7.2 Choice of main menus

The menus are selected using the keys T2 (next) and T1 (back)

7.3 Entering a sub-menu

The sub-menu is opened with the Prog/Mode key and the first menu item is displayed

with two presets

7．4 Selecting the menu items

7．5 Setting the menu items

7．6 Accepting the setting

Pressing the Prog／Mode key causes the current setting to be accepted． Programming then switches to the next menu item

7．7 Ending the programming

During programming，it is possible to exit the programming at each menu item by pressing the reset key．

5RUE

When setting count values，each decade has a key assigned to it．Each time the key is pressed，the value increments by one
The T2 key is used to select the individual settings for the menu items

Press the Reset key

Pressing the Prog／Mode key acknowledges this prompt and terminates the programming；the modified settings are saved in the EEPROM．
The text SAVE is displayed for 2 s

7．8 Programming menu

7．8．1 Default parameters

Three default parameter sets have been permanently stored； these can be adapted as required．With each acknowledgment of the parameter sets，all parameters will be reset to the values listed in the table．

The dEFAuL P．USEr can be freely programmed．

dFFRuL Menuranameer sas

dEFRML
dEFRuL
$0.5 E t$ e
dEFRuL
$0.5 E t$
3

Default setting
Parameter set 3

7．8．2 Parameter sets

Factory setting are highlighted in grey．

Display	P．SEt 1	P．SEt 2	P．SEt 3
Func	Count	Count	Count
InP．PoL	PnP	PnP	PnP
FiltEr	on	oFF	oFF
Count	Cnt．dir	uP．dn	Quad
MPi	LAtch	LAtch	Set
Loc． nP	ProG	ProG	ProG
ModE	Add	Sub	TrAiL
FActor	01.0000	01.0000	01.0000
diViSo	01.0000	01.0000	01.0000
dP	0	0	0.00
SEtPt	000000	000000	0000.00
rESmd	Man．EL	Man．EL	Man．EL
PrES 1	on	on	on
Pr．Out 1	－	几	－
t．Out	－	00.10	－
Pr．Out 2	\square	几	几
t．Out 2	－	00.10	00.10

7.8.3 Setting the Basic Function

7.8.4 Pulse Counter

78.4.1 Main menu for Signal and Control inputs

Main menu for programming the
Lit signal and control inputs

Input polarity

Filter for signal inputs $\operatorname{In} p A$ and $\operatorname{Inp} B$

Maximum count frequency

Damped to approx. 30 Hz (for control with mechanical contacts)

Count Input mode

Count/Direction

INP A: count input
INP B: count direction input

Differential counting [A - B]

INP A: count input add
INP B: count input sub

Totalizing [A + B]

INP A: count input add
INP B: count input add

Quadrature input

INP A: count input 0°
INP B: count input 90°

Quadrature with pulse doubling

INP A: count input 0°
INP B: count input 90°
Each pulse edge of INP A will be counted

Quadrature x4

INP A: count input 0°
INP B: count input 90°
Each pulse edge of INP A and INP B will be counted.

Ratio measurement [A/B]

$\operatorname{lnp} A$: count input A
Inp B: count input B

Percentage differential counting

[(A - B)/A in \%]
Inp A : count input A
Inp B: count input B

User input

When the MPI input is activated, the display is "frozen" and remains "frozen" until the MPI input is deactivated. Internally the preset counter continues counting

When the MPI input is activated, the current count value for the preset that has just been selected will be adopted as the new preset value. See also 7.9

When the MPI input is activated, the preset counter will be set to the value specified in the parameter SEtPt.
See also 7.10

Lock input

Locing

Locinp PrESEL

When the Lock input is activated, the setting of the preset values is inhibited

When the Lock input is activated, the setting of the preset values and the programming are both inhibited

7.8.4.2 Main menu for Output operations

Main menu for determining the operation
of the outputs
Count mode SUBTRACTING with
automatic reset and Batch counter
Output 2 (timed signal) active when
main counter = zero
Automatic reset to preset 2 when
main counter = zero
Batch counter counts the number
of automatic repetitions of preset 2
Output 1 active when
Batch counter 2 preset 1
Manual reset sets main counter
to preset value 2, batch counter to zero
Electrical reset only sets the main counter
to preset value 2
Count mode ADDING with automatic
reset and Total counter

For the subtracting modes (SUB, SUBAR, SUBBAT and SUBTOT), a "Reset" (via the key or input) resets the counter/the time counter to a new preset value 2.

7.8.4.3 Main menu for configuration

Main menu for matching the input pulses
 and display

Multiplication factor

Multiplication factor can be programmed from 00.0001 to 99.9999.
The setting 00.0000 will not be accepted

Division factor

Division factor can be programmed from 01.0000 to 99.9999 .

The setting <01.0000 will not be accepted

Decimal point setting

7.8.4.5 Preset 1

See below 7.8.6.5
7.8.4.6 Preset 2

See below 7.8.6.8
7.8.5 Tacho/frequency meter
7.8.5.1 Main menu for Signal and Control inputs

Input polarity

Filter for signal inputs $\operatorname{Inp} A$ and $\operatorname{Inp} B$

Input mode frequency measurement

Simple frequency measurement
Inp A: Frequency input
Inp B: No function

Differential measurement [A - B]
Inp A: Frequency input A
Inp B: Frequency input B

Total measurement [A + B]

Inp A: Frequency input A
Inp B: Frequency input B

Frequency measurement with direction recognition [Quad]
$\operatorname{Inp} A$: Frequency input 0°
Inp B: Frequency input 90°
Ratio measurement [A/B]
Inp A: Frequency input A
Inp B: Frequency input B

Percentage differential measurement [(A-B)/A in \%]
 Inp A: Frequency input A Inp B: Frequency input B

User input

inp, teRach

When the MPI input is activated, the display is "frozen" and remains "frozen" until the MPI input is deactivated. Internally the frequency meter continues running
When the MPI input is activated, the current frequency for the preset that has just been selected will be adopted as the new preset value. See also 7.9

Lock input

When the Lock input is activated the setting of the preset values is inhibited

When the Lock input is activated the setting of the preset values and the programming are both inhibited
7.8.5.2 Main menu for configuration

Main menu for matching the input pulses and display

Multiplication factor

Multiplication factor can be programmed from 00.0001 to 99.9999 .
The setting 00.0000 will not be accepted

Division factor

	Division factor can be programmed from 01.0000 to 99.9999 .
717775 61.6448	The setting <01.0000 will not

Display mode

Calculation and display of the frequency/speed in 1/s

```
tifiode nin
```

Calculation and display of the
frequency/speed in $1 / \mathrm{min}$

Decimal point setting

Decimal point (determines the resolution)
0 no decimal place
0.01 decimal place
0.002 decimal places
0.0003 decimal places

Moving average

	Moving average calculated AVG 2: over 2 measurements
1 L	
F5	AVG 5: over 5 measurements
	AVG 10: over 10 measurements
	AVG 20: over 20 measurement

Start delay

Programmable from 00.0 to 99.9 s At the start of a measurement the measurement results within this time-period are ignored

Waiting time

Lu'RIE

7.8.5.3 Preset 1

See below 7.8.6.5

7.8.5.4 Preset 2

See below 7.8.6.6

7.8.6 Timer

7.8.6.1 Main menu for Signal and Control inputs

Main menu for programming the signal and control inputs

Input polarity
PNP: switching to Plus for all inputs in common
nPn : switching to OV for all inputs in common

Programmable from 00.1 to 99.9 s This value specifies how much time should elapse, after the last valid edge, before zero is to be displayed

Filter for the signal inputs $\operatorname{Inp} A$ and $\operatorname{Inp} B$

For electronic control of the signal inputs
off

For mechanical control of the signal inputs (for control with mechanical contacts)

Input mode time measurement

Gate control for timing
LftEio
LftEio

fint CREEM,

User input

ח7\%" $5 E t$

Start: 1. Edge to $\operatorname{Inp} B$
Stop: 2. Edge to Inp B

Timing can only be controlled via the Gate input
Inp A and Inp B: no function

The timer is reset by means of a RESET (to zero when adding, to preset 2 when subtracting) and then starts timing again.
Timing is stopped with adding operations when preset 2 is reached.

Timing is stopped with subtracting operations when zero is reached.
A RESET during the timing process also causes this to stop.
Inp A and Inp B: no function

Timing takes place when the
Gate input is not active

Timing takes place when the
Start: Edge to $\operatorname{Inp} A$
Stop: Edge to Inp B

Gate input is active

When the MPI input is activated, the display is "frozen" and remains "frozen" until the MPI input is deactivated. Internally the preset timer continues counting

When the MPI input is activated, the current count value for the preset that has just been selected will be adopted as the new preset value. See also 7.9

When the MPI input is activated, the preset timer will be set to the value specified in the parameter SEtPt. See also 7.10

Count mode SUBTRACTING with
automatic reset and Batch counter
Output 2 (timed signal) active
when main counter = zero
Automatic reset to preset 2
when main counter = zero
Batch counter counts the number of automatic repetitions of preset 2
Output 1 active when
batch counter \geq preset 1
Manual reset sets main counters to preset value 2 and batch counter to zero Electronic reset only sets the main counter to preset value 2

RTiodE

Count mode ADDING with automatic reset and Total counter
Output 2 (timed signal) active
when main counter = preset value 2
Automatic reset to zero
when main counter = preset value 2
Total counter counts all the count pulses from the main counter Output 1 active when
total counter \geq preset value 1
Manual Reset sets both counters to zero
Electronic reset only sets the main counter to zero

Ciode Subtot

Count mode SUBTRACTING with automatic reset and Total counter

Output 2 (timed signal) active
when main counter = zero
Automatic reset to preset value 2
when main counter = zero
Total counter counts (sub from preset value 1) all count pulses from main counter Output 1 active when Total counter < zero
Manual reset sets both counters to the preset values
Electronic reset sets only main counter to preset value 2

Tracking preset mode

Priode
 trRit

MTodE
 tr-Rr

When preset 2 is changed
then preset 1 automatically tracks it.
Reset to zero
Preset 1 relative to preset 2 (see also section 17, Output operations)

Tracking Preset mode with automatic reset
When preset 2 is changed
then preset 1 automatically tracks it. Reset to zero.
Automatic reset to zero when
main counter $=$ preset value 2
Preset 1 relative to Preset 2
(see also section 17, Output operations)
For the subtracting modes (SUB, SUBAR, SUBBAT and SUBTOT), a "Reset" (via the key or input) resets the counter/the time counter to a new preset value 2 .

7.8.6.3 Main menu for configuration

Confiu	${ }_{\text {M }}^{\substack{\text { Main menu for matc } \\ \text { anges and disply }}}$
Unit of time	
	Unit of time: seconds Decimal point setting \qquad
$\begin{gathered} \text { EMode } \\ \substack{\text { ininn }} \end{gathered}$	Unit of time: minutes Decimal point setting determines the resolution
$\begin{gathered} \text { kiodE } \\ \text { hour } \end{gathered}$	nit of time: hours Decimal point setting
triodE hinions	

Decimal point setting (Resolution)

Decimal place (determines the resolution)
0 no decimal place
0.002 decimal places
0.0003 decimal places

Set value

Set value can be programmed from 000000 to 999999
A previously programmed decimal point will be displayed
7.8.6.4 Main menu for reset mode

rE5nาd

rE5n7d
 no res

rE5n ad

EL res

rESn ad
 pinnas

Manual reset (with red key) and electrical reset (reset input)
Setting the reset mode

No reset possible
(red key and reset input inhibited)

7.8.6.5 Main menu for preset 1

Preset 1 ON
 count \leq preset 1 count \leq preset 1

Main menu for turning preset 1 ON/OFF

Preset 1 OFF and no function

ADD mode output operations: permanent signal at output 1, becomes active when count \geq preset 1 SUB mode output operations: permanent signal at output 1, becomes active when count \leq preset 1

ADD mode output operations: permanent signal at output 1, becomes passive when count \geq preset 1 SUB mode output operations: permanent signal at output 1, becomes passive when count \leq preset 1
ADD mode output operations: timed signal at output 1, becomes active when count \geq preset 1 . (Activation only in positive direction) SUB mode output operations: timed output at output 1, becomes active when count \leq preset 1 (Activation only in negative direction)
ADD mode output operations: timed signal at output 1, becomes passive when count \geq preset 1 . (Deactivation only in positive direction) SUB mode output operations: timed output at output 1, becomes passive when count \leq preset 1 . (Deactivation only in negative direction)
ADD mode output operations: timed signal at output 1, becomes active with positive direction and when count \geq preset 1 and subsequently active with negative direction and when

SUB mode output operations: timed signal at output 1, becomes active with negative direction and when count \leq preset 1 and subsequently active with positive direction and when count \geq preset 1
ADD mode output operations: timed signal at output 1, becomes passive with positive direction and when count \geq preset 1 and subsequently passive with negative direction and when

SUB mode output operations: timed output at output 1, becomes passive with negative direction and when count \leq preset 1 and subsequently passive with positive direction and when count \geq preset 1
Duration of timed signal of output 1, programmable from 00.01 to 99.99s. Timed signal is post-triggered

7.8.6.6 Main menu for preset 2

PrE5 द Man ment tor pesesal 2

ADD mode output operations: permanent signal at output 2, becomes active when count \geq preset 2
SUB mode output operations: permanent signal at output 2, becomes active when count \leq zero

ADD mode output operations: permanent signal at output 2, becomes passive when count \geq preset 2
SUB mode output operations: permanent signal at output 2, becomes passive when count \leq zero

ADD mode output operations: timed signal at output 2, becomes active when count \geq preset 2 (Activation only in positive direction).
SUB mode output operations: permanent signal at output 2, becomes active when count \leq zero (Activation only in negative direction)

ADD mode output operations: timed signal at output 2, becomes passive when count \geq preset 2 (Deactivation only in positive direction)
SUB mode output operations: permanent signal at output 2, becomes passive when count \leq zero (Deactivation only in negative direction)

ADD mode output operations: timed signal at output 2, becomes active with positive direction and when count \geq preset 2 and subsequently with negative direction and when count \leq preset 2
SUB mode output operations: timed signal at output 2, becomes active with negative direction and when count \leq zero and subsequently with positive direction and when count \geq zero

ADD mode output operations: timed signal at output 2, becomes passive with positive direction and when count \geq preset 2 and subsequently with negative direction and when count \leq preset 2
SUB mode output operations: timed signal at output 2, becomes passive with negative direction and when count \leq zero and subsequently with positive direction and when count \geq zero

Duration of timed signal of output 1 , programmable from 00.01 to 99.99 s. Timed output is post-triggered

Active:
Relay is activated when the preset value is reached.
Passive:
Relay becomes de-energized when the preset value is reached.

7.9 Setting the presets

7.9.1 Setting via decade keys

In programming mode preset 2 will always be displayed in the lower line. This is except for the output operations AddBat, SubBat, AddTot and SubTot.

Press the Prog/Mode key until the preset to be changed is displayed-R⿴囗 or

Press any decade key
Display switches to the editor mode

Set the desired preset value using the decade keys

Press the Prog/Mode key to confirm the value and save it

Display switches to the editor mode of the next preset REZ or PR1

Approx. 3s after the last press of the decade keys, or by pressing the Reset key, the new preset value will be accepted and the counter will switch back to operating mode
7.9.2 Setting with Teach-In function

In programming mode, select the preset to be changed using the Prog/Mode key

Briefly activate the MPI (NPN or PNP input logic)

- The current count value will be adopted as the new preset value
- The preset value can subsequently be further modified via the decade keypad

7.9.3 Setting the tracking presets (trail)

If a tracking preset has been programmed, the value for preset 2 can be set either via the decade keypad or via the Teach-In function.

However the value for preset 1 must be entered via the decade keypad. In this instance, it is not possible to use the Teach-In function.

7.10 Set function

Both the pulse counter and the timer can be set to a default value by means of the Set function.

SEtpt

 999999Briefly activate the MPI (NPN or PNP input logic)

- In Adding modes: the pulse counter or timer will be set to the SEtPt value
- In Subtracting modes: the pulse counter or timer will be set to a value that is the sum of Preset 2 value and the value of SEtPt

8. Error message

Message
Description
Err 1 Set value is outside the permitted range

9. Connections

Figure 1. Connections

9.1 Signal and control inputs

Number	Designation	Function
1	AC: $24 \mathrm{Vdc} / 80 \mathrm{~mA}$ DC: UB connected through	Sensor supply voltage
2	GND (0 Vdc)	Common connection signal and control inputs
3	INP A	Signal input A
4	INP B	Signal input B
5	RESET	Reset input
6	LOCK	Keypad lock
7	GATE	Gate input
8	MPI	User input

9.2 Supply voltage and outputs

Number	Designation	Function
9	Relay contact C.1	Output 1
10	Relay contact N.0.1	
11	Relay contact C.2	Output 2
12	Relay contact N.0.2	
14	Relay contact N.C.2	Supply voltage
15	$\frac{\text { AC: } 90-260 \text { Vac N } \sim}{\text { DC: } 10-30 \text { Vdc }}$	Supply voltage

10. Technical data

10.1 General data

- Display: LCD positive or negative, backlit 2×6-digit
- Digit height
- Upper line: 9 mm
- Lower line: 7 mm
- Special characters: 2 mm
- Overload: Blinking, 1s
- Underload: Counter loses up to 1 decade, no pulses
- Data retention: >10 years, EEPROM
- Operation: 8 keys

10.2 Pulse counter

- Count frequency: max. 55 kHz
(see section 13, Frequencies)
- Response time of the outputs—Relays
- Add/Sub/Trail: <13 ms
- With automatic repeat: $<13 \mathrm{~ms}$
- $A / B ;(A-B) / A:<34 \mathrm{~ms}$

10.3 Tacho/frequency meter

- Frequency range: 0.01 Hz to 65 kHz (see section 13, Frequencies)
- Measuring principle
- $\leq 76.3 \mathrm{~Hz}$ Time interval (period measurement)
- $>76.3 \mathrm{~Hz}$ Gate time
- Gate time approx. 13.1 ms
- Measuring error: <0.1\% per channel
- Response time of the outputs
- 1-channel operation: $<100 \mathrm{~ms}$ at $40 \mathrm{kHz},<350 \mathrm{~ms}$ at 65 kHz
- 2-channel operation: $<150 \mathrm{~ms}$ at $40 \mathrm{kHz},<600 \mathrm{~ms}$ at 65 kHz

10.4 Timer

- Seconds: 0.001s-999 999s
- Minutes: 0.001 min-999 999min
- Hours: 0.001h-999 999h
- h.min.s: 00h.00min.01s-99h.59min.59s
- Min. time measurable: $500 \mu \mathrm{~s}$
- Measuring error: <50 ppm
- Response time of the outputs
- Relays: <13 ms

10.5 Signal and control inputs

- Polarity: programmable NPN/PNP for all inputs in common
- Input resistance: 5 kohms
- Pulse shape: any
- Switching level with AC supply:
- HTL level: Low: 0-4 Vdc, High: 12-30 Vdc
- 5V level: Low: 0-2 Vdc, High: 3.5-30 Vdc
- Switching level with DC supply:
- HTL level: Low: 0-0.2 x UB, High: $0.6 \times$ UB-30 Vdc
- 5V level: Low: 0-2 Vdc, High: 3.5-30 Vdc
- Minimum pulse length of the Reset input: 1 ms
- Minimum pulse length of the Control inputs: 10 ms

10.6 Outputs

Output 1

- Relay with make contact programmable as NC or NO
- Switching voltage: max. $250 \mathrm{Vac} / 110 \mathrm{Vdc}$
- Switching current: max. 3A AC/Vdc, min. 30 mA DC
- Switching capacity: max. 750 VA/90W
- Mechanical service life (switching cycles): 2×10^{7}
- Number of switching cycles at 3A/250 Vac: 1×10^{5}
- Number of switching cycles at $3 \mathrm{~A} / 30 \mathrm{Vdc}: 1 \times 10^{5}$

Output 2

- Relay with changeover contact
- Switching voltage: max. $250 \mathrm{Vac} / 150 \mathrm{Vdc}$
- Switching current: max. 3A AC/A DC, min. 30 mA DC
- Switching capacity: max. 750 VA/90W
- Mechanical service life (switching cycles): 20×10^{6}
- Number of switching cycles at 3A/250 Vac: 5×10^{4}
- Number of switching cycles at 3A/30 Vdc: 5×10^{4}

10.7 Supply voltage

- AC supply:
- 90-260 Vac/max. 8 VA 50/60 Hz
- Ext. fuse protection: T 0.1A
- DC supply:
- $10-30 \mathrm{Vdc} /$ max. 1.5 W reverse polarity protection
- Ext. fuse protection T 0.2A

10.8 Sensor supply voltage

- AC supply: $24 \mathrm{Vdc} \pm 15 \%, 80 \mathrm{~mA}$
- DC supply: max. 80 mA , external voltage supply is connected through

10.9 Climatic conditions

- Operating temperature: $-20^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$
- Storage temperature: $-25^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
- Relative humidity: RH. 93% at $40^{\circ} \mathrm{C}$, non-condensing
- Altitude: to 2000 m

10.10 EMC

- Noise immunity: EN61000-6-2 with shielded signal and control cables
- Noise emission: EN55011 Class B

10.11 Device safety

- Design to: EN61010 Part 1
- Protection class: Class 2
- Application area: Soiling Level 2

10.12 Mechanical data

- Housing: Panel-mount housing to DIN 43 700, RAL 7021
- Dimensions: $48 \times 48 \times 91 \mathrm{~mm}$
- Panel cut-out: $45+0.6 \times 45+0.6 \mathrm{~mm}$
- Installation depth: ca. 107 mm incl. terminals
- Weight: ca. 125 g
- Protection: IP 65 (front)
- Housing material: Polycarbonate UL94 V-2
- Vibration resistance: $10-55 \mathrm{~Hz} / 1 \mathrm{~mm} / \mathrm{XYZ}$ (EN60068-2-6): 30 min in each direction
- Shock resistance: 100G/XYZ (EN60068-2-27): 3 times in each direction (EN60068-2-29): 10G/6 ms/XYZ 2000 times in each direction
- Cleaning: The front of the unit should only be cleaned using a soft damp (water) cloth

10.13 Connections

- Supply voltage and outputs:
- Plug-in screw terminal: 7-pin, RM 5.08
- Core cross section: max. $2.5 \mathrm{~mm}^{2}$
- Signal and control inputs:
- Plug-in screw terminal: 8-pin, RM 3.81
- Core cross-section: max. $1.5 \mathrm{~mm}^{2}$

11. Scope of delivery

- Preset counter
- Mounting clip
- Instruction manual

12. Ordering codes

13. Frequencies (typical)

13.1 Pulse counter

HTL level

- AC supply
- Typ. Low: 2.5V
- Typ. High: 22V
- DC supply- 12 V
- Typ. Low: 2V
- Typ. High: 10V
- DC supply-24V
- Typ. Low: 2.5 V
- Typ. High: 22V

	AddAr Add Sub Trail	AddAr AddBat SubBat TrailAr	AddTot SubTot
Display	55 kHz	2.8 kHz	2.7 kHz
Cnt.Dir	29 kHz	2.8 kHz	2.7 kHz
Up.Dn Up.Up	28 kHz	1.4 kHz	1.3 kHz
Quad	18 kHz	1.2 kHz	0.9 kHz
Quad 2	29 kHz	29 kHz	29 kHz
Quad 4			
A/B			
A-B)/A			

5 V level

- Typ. Low: 1.0V
- Typ. High: 4.0V

	Add Aub Trail	AddAr SubAr AddBat SubBat TrailAr	AddTot SubTot
Display	9 kHz	2.7 kHz	2.4 kHz
Cnt.Dir	9 kHz	2.7 kHz	2.4 kHz
Up.Dn Up.Up	9 kHz	1.2 kHz	1.2 kHz
Quad Quad 2	9 kHz	1.2 kHz	0.9 kHz
Quad 4	9 kHz	9 kHz	9 kHz
A/B			

13.2 Frequency meter

HTL level

- AC supply
- Typ. Low: 2.5 V
- Typ. High: 22V
- DC supply-12V
- Typ. Low: 2 V
- Typ. High: 10V
- DC supply-24V
- Typ. Low: 2.5V
- Typ. High: 22V

5 V level

- Typ. Low: 1.0V
- Typ. High: 4.0V

Description	HTL	5V
A	65 kHz	9 kHz
A - B	65 kHz	9 kHz
A+B		
A/B		
(A-B)/A	30 kHz	9 kHz
Quad		

Switching levels of the input
Switching levels with AC supply:

- HTL level
- Low: 0-4 Vdc
- High: $12-30 \mathrm{Vdc}$
- 5 V level
- Low: 0-2 Vdc
- High: 3.5-30 Vdc

Switching levels with DC supply:

- HTL level
- Low: 0-0.2 x UB
- High: $0.6 \times$ UB-30 Vdc
- 5 V level
- Low: 0-2 Vdc
- High: 3.5-30 Vdc

14. Input modes: Pulse counting

[^0]14. Input modes: Pulse counting, continued

[^1]
with two presets

15. Input modes: Timing

16. Input modes: Frequency meter

17. Output operations

Mode	Diagram							Mode TrailAr	Diagram						
Trail	RESET	\ldots							RESET	\ldots					
	PR1	$\checkmark \square$							PR1	4 \triangle +PR1					
		$\downarrow^{4} \Delta+$ PR1 \quad ¢													
	PR2	$\downarrow \Delta-\mathrm{PR} 1$							PR2 PR1	$\downarrow^{\square} \Delta$-PR1		\checkmark			
	PR1								PR1 COUNTER						
	OUT P1 Δ +/-PR1 OUT P1 Δ +PR1	$\square \mathrm{n} 00112\|3\| 4 \mid 5$	6178	$910 \mid 11$	12\|13] $14 \times\|13\| 21$	111019	817165		COUNTER		6\|716	[5]43\|2	$314 / 5$	61718	9/0
			t		t	t	t		OUT P1 Δ +/-PR1 OUT P1 Δ +PR1			t			
					t	t									
	$\begin{aligned} & \text { OUT P1 } \\ & \Delta-\mathrm{PR} 1 \end{aligned}$	-	t				t t		$\begin{aligned} & \text { OUT P1 } \\ & \Delta-\text { PR1 } \end{aligned}$	$\underline{\square}$	t	t	t		
				t			t		OUT P2					t	

18. Dimensional drawings (mm)

Figure 2. Dimensions

Figure 3. Panel cut-out

E5-648-C242x

Notes:

[^2]

[^0]: (1) No counting when GATE input is active

[^1]: (1) No counting when GATE input is active

[^2]: Eaton Corporation
 Electrical Sector
 1111 Superior Ave
 Cleveland, OH 44114
 United States
 877-ETN-CARE (877-386-2273)
 Eaton.com
 © 2010 Eaton Corporation
 All Rights Reserved
 Printed in USA
 Publication No. IL05407002E / 7987
 October 2010

