Thermally-Enhanced High Power RF LDMOS FETs
 150 W, 2110 - 2170 MHz

Description

The PTFB211503EL and PTFB211503FL are thermally-enhanced, 150-watt, LDMOS FETs designed for cellular power amplifier applications in the 2110 to 2170 frequency band. Features include I/O matching, high gain, and thermally-enhanced ceramic open-cavity packages with slotted and earless flanges. Manufactured with Infineon's advanced LDMOS process, these devices provide excellent thermal performance and superior reliability.

PTFB211503EL H-33288-6

PTFB211503FL H-34288-4/2

Features

- Broadband internal matching
- Enhanced for use in DPD error correction systems
- Typical two-carrier WCDMA performance at 2170 MHz, 30 V
- Average output power $=32 \mathrm{~W}$
- Linear Gain $=18 \mathrm{~dB}$
- Efficiency = 29\%
- Intermodulation distortion $=-34 \mathrm{dBc}$
- Adjacent channel power $=-37 \mathrm{dBc}$
- Typical CW performance, $2170 \mathrm{MHz}, 30 \mathrm{~V}$
- Output power at $\mathrm{P}_{1 \mathrm{~dB}}=150 \mathrm{~W}$
- Efficiency = 55\%
- Increased negative gate-source voltage range for improved performance in Doherty peaking amplifiers
- Integrated ESD protection
- Capable of handling 10:1 VSWR @ 30 V, 150 W (CW) output power
- Pb-Free and RoHS compliant

RF Characteristics

Two-carrier WCDMA Measurements (not subject to production test-verified by design/characterization in Infineon test fixture) $\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=1.2 \mathrm{~A}, \mathrm{P}_{\mathrm{OUT}}=32 \mathrm{~W}$ AVG, $f_{1}=2135 \mathrm{MHz}, f_{2}=2145 \mathrm{MHz}, 3 \mathrm{GPP}$ signal, channel bandwidth $=3.84 \mathrm{MHz}$, peak/average = 8 dB @ 0.01\% CCDF

Characteristic	Symbol	Min	Typ	Max	Unit
Gain	G_{ps}	-	18	-	dB
Drain Efficiency	$\eta \mathrm{D}$	-	29	-	$\%$
Adjacent Channel Power Ratio	ACPR	-	-36	-	dBc

All published data at $T_{\text {CASE }}=25^{\circ} \mathrm{C}$ unless otherwise indicated
ESD: Electrostatic discharge sensitive device-observe handling precautions!

PTFB211503EL PTFB211503FL

RF Characteristics (cont.)

Two-tone Measurement (tested in Infineon test fixture)
$\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=1.2 \mathrm{~A}, \mathrm{P}_{\text {OUT }}=150 \mathrm{~W}$ PEP, $f=2170 \mathrm{MHz}$, tone spacing $=1 \mathrm{MHz}$

Characteristic	Symbol	Min	Typ	Max	Unit
Gain	Gps	16.5	18	-	dB
Drain Efficiency	$\eta \mathrm{D}$	39	40	-	$\%$
Intermodulation Distortion	IMD	-	-30	-28	dBc

DC Characteristics

Characteristic	Conditions	Symbol	Min	Typ	Max	Unit
Drain-Source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=10 \mu \mathrm{~A}$	$\mathrm{~V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	V
Drain Leakage Current	$\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{DSS}}$	-	-	1.0	$\mu \mathrm{~A}$
	$\mathrm{~V}_{\mathrm{DS}}=63 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{DSS}}$	-	-	10.0	$\mu \mathrm{~A}$
On-State Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0.1 \mathrm{~V}$	$\mathrm{R}_{\mathrm{DS}(\mathrm{on})}$	-	0.08	-	Ω
Operating Gate Voltage	$\mathrm{V}_{\mathrm{DS}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=1.2 \mathrm{~A}$	$\mathrm{~V}_{\mathrm{GS}}$	1.6	2.1	3.0	V
Gate Leakage Current	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$	$\mathrm{I}_{\mathrm{GSS}}$	-	-	1.0	$\mu \mathrm{~A}$

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	65	V
Gate-Source Voltage	V_{GS}	-6 to +10	V
Junction Temperature	T_{J}	200	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-40 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance $\left(\mathrm{T}_{\text {CASE }}=70^{\circ} \mathrm{C}, 150 \mathrm{~W} \mathrm{CW}\right)$	$\mathrm{R}_{\theta \mathrm{JC}}$	0.27	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Ordering Information

Type and Version	Package Outline	Package Description	Shipping
PTFB211503EL V1	H-33288-6	Slotted flange, single-ended	Tray
PTFB211503EL V1 R250	H-33288-6	Slotted flange, single-ended	Tape \& Reel 250 pcs
PTFB211503FL V2	H-34288-4/2	Earless flange, single-ended	Tray
PTFB211503FL V2 R250	H-34288-4/2	Earless flange, single-ended	Tape \& Reel 250 pcs

PTFB211503EL PTFB211503FL

Typical Performance (data taken in a production test fixture)

Single-carrier WCDMA Drive-Up
$\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=1.20 \mathrm{~A}, f=2170 \mathrm{MHz}$ 3GPP WCDMA, PAR = 8 dB, BW 3.84 MHz

Single-carrier WCDMA, 3GPP Broadband
$\mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=1.20 \mathrm{~A}, \mathrm{P}_{\text {OUT }}=40 \mathrm{~W}$

PTFB211503EL PTFB211503FL

Typical Performance (cont.)

PTFB211503EL PTFB211503FL

Typical Performance (cont.)

PTFB211503EL PTFB211503FL

Broadband Circuit Impedance

Frequency	Z Source Ω		Z Load Ω	
$\mathbf{M H z}$	\mathbf{R}	$\mathbf{j X}$	\mathbf{R}	$\mathbf{j X}$
2200	2.06	-6.08	2.19	-4.73
2170	2.17	-6.33	2.19	-4.82
2140	2.30	-6.59	2.20	-4.91
2110	2.43	-6.86	2.21	-5.00
2080	2.58	-7.14	2.22	-5.09

See next page for reference circuit information

Reference Circuit

Reference circuit input schematic for $f=2170 \mathrm{MHz}$

Reference circuit output schematic for $f=2170 \mathrm{MHz}$

Reference Circuit (cont.)

Description

DUT	PTFB211503EL or PTFB211503FL
PCB	$0.508 \mathrm{~mm}[.020 "]$ thick, ε e $=3.48$, Rogers 4350, 1 oz. copper

Electrical Characteristics at 2170 MHz

Transmission Line	Electrical Characteristics	Dimensions: mm	Dimensions: mils
Input			
TL101, TL129	$0.095 \lambda, 54.17 \Omega$	W = 1.016, L = 8.001	$\mathrm{W}=40, \mathrm{~L}=315$
TL102	$0.016 \lambda, 31.24 \Omega$	$\mathrm{W}=2.286, \mathrm{~L}=1.270$	$\mathrm{W}=90, \mathrm{~L}=50$
TL103	$0.026 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=2.159$	W $=40, \mathrm{~L}=85$
TL104	$0.032 \lambda, 47.12 \Omega$	$\mathrm{W}=1.270, \mathrm{~L}=2.692$	$\mathrm{W}=50, \mathrm{~L}=106$
TL105	$0.005 \lambda, 6.67 \Omega$	$\mathrm{W}=13.970, \mathrm{~L}=0.381$	$\mathrm{W}=550, \mathrm{~L}=15$
TL106		$\begin{aligned} & \mathrm{W} 1=13.970, \mathrm{~W} 2=1.016, \mathrm{~W} 3=13.970, \\ & \mathrm{~W} 4=1.016 \end{aligned}$	$\begin{aligned} & \mathrm{W} 1=550, \mathrm{~W} 2=40, \mathrm{~W} 3=550, \\ & \mathrm{~W} 4=40 \end{aligned}$
TL107, TL108, TL109		W = 1.016	$\mathrm{W}=40$
TL110, TL139	$0.012 \lambda, 54.17 \Omega$	$\mathrm{W} 1=1.016, \mathrm{~W} 2=1.016, \mathrm{~W} 3=1.016$	$\mathrm{W} 1=40, \mathrm{~W} 2=40, \mathrm{~W} 3=40$
TL111 (taper)	$0.006 \lambda, 6.67 \Omega / 8.37 \Omega$	$\mathrm{W} 1=13.970, \mathrm{~W} 2=10.922, \mathrm{~L}=0.483$	$\mathrm{W} 1=550, \mathrm{~W} 2=430, \mathrm{~L}=19$
TL112		$\mathrm{W} 1=17.780, \mathrm{~W} 2=12.700$	$\mathrm{W} 1=700, \mathrm{~W} 2=500$
TL113		$\mathrm{W} 1=1.270, \mathrm{~W} 2=2.286$	$\mathrm{W} 1=50, \mathrm{~W} 2=90$
TL114	$0.031 \lambda, 34.72 \Omega$	$\mathrm{W}=1.981, \mathrm{~L}=2.540$	$\mathrm{W}=78, \mathrm{~L}=100$
TL115	$0.027 \lambda, 63.89 \Omega$	$\mathrm{W}=0.762, \mathrm{~L}=2.286$	$\mathrm{W}=30, \mathrm{~L}=90$
TL116	$0.096 \lambda, 63.89 \Omega$	$\mathrm{W}=.762, \mathrm{~L}=8.136$	$\mathrm{W}=30, \mathrm{~L}=320$
TL117	$0.029 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=2.451$	W = 40, L = 97
TL118	$0.018 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=1.524$	W $=40, \mathrm{~L}=60$
TL119	$0.021 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=1.727$	$\mathrm{W}=40, \mathrm{~L}=68$
TL120	$0.026 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=2.159$	W = 40, L = 85
TL121, TL122	$0.002 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=0.127$	$\mathrm{W}=40, \mathrm{~L}=5$
TL123, TL124	$0.030 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=2.540$	$\mathrm{W}=40, \mathrm{~L}=100$
TL125	$0.053 \lambda, 6.67 \Omega$	$\mathrm{W}=13.970, \mathrm{~L}=4.064$	W = 550, L = 160
TL126	$0.012 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=1.021$	$\mathrm{W}=40, \mathrm{~L}=40$
TL127	$0.134 \lambda, 47.12 \Omega$	$\mathrm{W}=1.270, \mathrm{~L}=11.151$	$\mathrm{W}=50, \mathrm{~L}=439$
TL128	$0.012 \lambda, 54.17 \Omega$	$\mathrm{W}=1.016, \mathrm{~L}=1.016$	W = 40, L=40
TL130, TL133	$0.000 \lambda, 144.35 \Omega$	$\mathrm{W}=0.025, \mathrm{~L}=0.025$	$\mathrm{W}=1, \mathrm{~L}=1$
TL131		$\begin{aligned} & \mathrm{W} 1=10.922, \mathrm{~W} 2=0.025, \mathrm{~W} 3=10.922 \\ & \mathrm{~W} 4=0.025 \end{aligned}$	$\begin{aligned} & \mathrm{W} 1=430, W 2=1, W 3=430, \\ & W 4=1 \end{aligned}$
TL132, TL135	$0.000 \lambda, 8.37 \Omega$	W = 10.922, L = 0.000	W = 430, L = 0
TL134 (taper)	$0.033 \lambda, 8.37 \Omega / 47.12 \Omega$	$\mathrm{W} 1=10.922, \mathrm{~W} 2=1.270, \mathrm{~L}=2.540$	W1 = 430, W2 = 50, L = 100
TL136, TL137	$0.012 \lambda, 63.89 \Omega$	$\mathrm{W} 1=0.762, \mathrm{~W} 2=0.762, \mathrm{~W} 3=1.016$	$\mathrm{W} 1=30, \mathrm{~W} 2=30, \mathrm{~W} 3=40$
TL138	$0.012 \lambda, 54.17 \Omega$	$\mathrm{W} 1=1.016, \mathrm{~W} 2=1.270, \mathrm{~W} 3=1.016$	$\mathrm{W} 1=40, \mathrm{~W} 2=50, \mathrm{~W} 3=40$
TL140	$0.021 \lambda, 63.89 \Omega$	$\mathrm{W}=0.762, \mathrm{~L}=1.778$	W = 30, L = 70

table continued on page 9

PTFB211503EL PTFB211503FL

Reference Circuit (cont.)
Electrical Characteristics at 2170 MHz

Transmission Line	Electrical Characteristics	Dimensions: mm	Dimensions: mils
Output			
TL201 (taper)	$0.074 \lambda, 5.33 \Omega / 39.51 \Omega$	$\mathrm{W} 1=17.780, \mathrm{~W} 2=1.651, \mathrm{~L}=5.613$	$\mathrm{W} 1=700, \mathrm{~W} 2=65, \mathrm{~L}=221$
TL202 (taper)	$0.010 \lambda, 4.84 \Omega / 5.33 \Omega$	W1 $=19.685, \mathrm{~W} 2=17.780, \mathrm{~L}=0.787$	$\mathrm{W} 1=775, \mathrm{~W} 2=700, \mathrm{~L}=31$
TL203		$\mathrm{W} 1=12.700, \mathrm{~W} 2=17.780$	$\mathrm{W} 1=500, \mathrm{~W} 2=700$
TL204		$\mathrm{W} 1=1.651, \mathrm{~W} 2=2.540$	$\mathrm{W} 1=65, \mathrm{~W} 2=100$
TL205		$\mathrm{W} 1=1.270, \mathrm{~W} 2=2.540$	$\mathrm{W} 1=50, \mathrm{~W} 2=100$
TL206	$0.000 \lambda, 5.33 \Omega$	$\mathrm{W}=17.780, \mathrm{~L}=0.025$	W = 700, L = 1
TL207	$0.047 \lambda, 47.12 \Omega$	W = 1.270, L= 3.886	$\mathrm{W}=50, \mathrm{~L}=153$
TL208	$0.021 \lambda, 39.51 \Omega$	$\mathrm{W}=1.651, \mathrm{~L}=1.753$	$\mathrm{W}=65, \mathrm{~L}=69$
TL209	$0.057 \lambda, 4.84 \Omega$	$\mathrm{W}=19.685, \mathrm{~L}=4.318$	$\mathrm{W}=775, \mathrm{~L}=170$
TL210, TL211	$0.016 \lambda, 28.85 \Omega$	W = 2.540, L = 1.270	W = 100, L = 50
TL212	$0.035 \lambda, 39.51 \Omega$	W = 1.651, L= 2.896	$\mathrm{W}=65, \mathrm{~L}=114$
TL213	$0.032 \lambda, 16.90 \Omega$	W = 4.928, L = 2.540	W = 194, L= 100
TL214	$0.032 \lambda, 17.05 \Omega$	W = 4.877, L = 2.540	W = 192, L = 100
TL215, TL231	$0.032 \lambda, 25.04 \Omega$	W1 $=3.048, \mathrm{~W} 2=3.048, \mathrm{~W} 3=2.540$	W 1 = 120, W2 = 120, W3 = 100
TL216, TL217	$0.095 \lambda, 25.04 \Omega$	W = 3.048, L = 7.645	W = 120, L = 301
TL218, TL230		W $=3.048$	W = 120
TL219, TL225	$0.054 \lambda, 25.04 \Omega$	W1 $=3.048, \mathrm{~W} 2=3.048, \mathrm{~W} 3=4.318$	$\mathrm{W} 1=120, \mathrm{~W} 2=120, \mathrm{~W} 3=170$
TL220, TL221	$0.029 \lambda, 25.04 \Omega$	W1 = 3.048, W2 = 3.048, W3 = 2.286	$\mathrm{W} 1=120, \mathrm{~W} 2=120, \mathrm{~W} 3=90$
TL222, TL224	$0.067 \lambda, 25.04 \Omega$	W $=3.048, \mathrm{~L}=5.359$	W = 120, L = 211
TL223, TL226	$0.010 \lambda, 25.04 \Omega$	W = 3.048, L = 0.762	W = 120, L = 30
TL227, TL228	$0.029 \lambda, 25.04 \Omega$	$\mathrm{W} 1=3.048, \mathrm{~W} 2=3.048, \mathrm{~W} 3=2.286$	$\mathrm{W} 1=120, \mathrm{~W} 2=120, \mathrm{~W} 3=90$
TL229	$0.022 \lambda, 39.51 \Omega$	$\mathrm{W} 1=1.651, \mathrm{~W} 2=1.651, \mathrm{~W} 3=1.778$	$\mathrm{W} 1=65, \mathrm{~W} 2=65, \mathrm{~W} 3=70$

Reference Circuit (cont.)

Circuit Assembly Information

Test Fixture Part No.
LTN/PTFB211503EF
Find Gerber files for this test fixture on the Infineon Web site at http://www.infineon.com/rfpower

Reference circuit assembly diagram (not to scale)

PTFB211503EL PTFB211503FL

Reference Circuit (cont.)

Component Information			
Component	Description	Suggested Manufacturer	P/N
Input			
C101, C102	Chip capacitor, 10 pF	ATC	ATC100A100FW150XB
C103, C104	Chip capacitor, $4.71 \mu \mathrm{~F}$	Digi-Key	493-2372-2-ND
C105	Chip capacitor, 0.6 pF	ATC	ATC100B0R6BW500XB
C106	Chip capacitor, 2.2 pF	ATC	ATC100B2R2BW500XB
C107	Chip capacitor, 8.2 pF	ATC	ATC100B8R2BW500XB
C801, C802, C803	Capacitor, 1000 pF	Digi-Key	PCC1772CT-ND
R101, R104, R803, R805	Resistor, 10Ω	Digi-Key	P10ECT-ND
R801	Resistor, 1200Ω	Digi-Key	P1.2KGCT-ND
R802	Resistor, 1300Ω	Digi-Key	P1.3KGCT-ND
R804	Resistor, 100Ω	Digi-Key	P100ECT-ND
S1	Voltage Regulator	Digi-Key	LM78L05ACM-LD
S2	Transistor	Digi-Key	BCP5616TA-ND
S3	Potentiometer, 2k Ω	Digi-Key	3224W-202ECT-ND
Output			
C201, C206	Chip capacitor, $1 \mu \mathrm{~F}$	Digi-Key	445-1411-2-ND
C202, C210	Chip capacitor, $2.2 \mu \mathrm{~F}$	Digi-Key	445-1447-2-ND
C203, C209	Capacitor, $10 \mu \mathrm{~F}$	Digi-Key	281M5002106K
C204, C205	Capacitor, $10 \mu \mathrm{~F}$	Digi-Key	587-1818-2-ND
C207	Chip capacitor, 8.2 pF	ATC	ATC100B8R2BW500XB
C208	Chip capacitor, 0.5 pF	ATC	ATC100B0R5BW500XB

PTFB211503EL PTFB211503FL

Package Outline Specifications

Package Outline Specifications (cont.)

Find the latest and most complete information about products and packaging at the Infineon Internet page http://www.infineon.com/rfpower

Revision History:		2011-03-07
Previous Version:	2010-11-10, Data Sheet	Data Sheet
Page	Subjects (major changes since last revision)	
1	Updated features	
2	Corrected typo	

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all?
Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:
highpowerRF@infineon.com
To request other information, contact us at: +1 8774653667 (1-877-GO-LDMOS) USA or +14087760600 International

Edition 2011-03-07
 Published by
 Infineon Technologies AG
 81726 Munich, Germany
 © 2010 Infineon Technologies AG
 All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com/rfpower).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

