International **TER** Rectifier

THYRISTOR/ DIODE and THYRISTOR/ THYRISTOR

Features

- High Voltage
- Industrial Standard Package
- Thick copper baseplate
- UL E78996 approved
- 3500V_{RMS} isolating voltage
- TOTALLY LEAD-FREE

Mechanical Description

The Generation V of Add-A-pak module combine the excellent thermal performance obtained by the usage of Direct Bonded Copper substrate with superior mechanical ruggedness, thanks to the insertion of a solid Copper baseplate at the bottom side of the device.

The Cu baseplate allow an easier mounting on the majority of heatsink with increased tolerance of surface roughness and improve thermal spread.

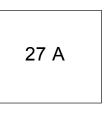
The Generation V of AAP module is manufactured without hard mold, eliminating in this way any possible direct stress on the leads.

Major Ratings and Characteristics

Parameters	IRK.26	Units
I _{T(AV)} or I _{F(AV)} @85°C	27	А
I _{O(RMS)} (*)	60	А
I _{TSM} @50Hz	400	А
I _{FSM} @60Hz	420	А
l ² t @ 50Hz	800	A ² s
@60Hz	730	A ² s
l ² √t	8000	A ² √s
V _{RRM} range	400 to 1600	V
T _{STG}	- 40 to 125	°C
TJ	-40 to 125	°C

(*) As AC switch.

Document Number: 94418


Bulletin 127214 03/06

IRK.26..PbF SERIES

ADD-A-pak[™] GEN V Power Modules

Benefits

- Up to 1600V
- Full compatible TO-240AA
- High Surge capability
- Easy Mounting on heatsink
- Al₂0₃ DBC insulator
- Heatsink grounded

The electrical terminals are secured against axial pull-out: they are fixed to the module housing via a click-stop feature already tested and proved as reliable on other IR modules.

Electrical Description

These modules are intended for general purpose high voltage applications such as high voltage regulated power supplies, lighting circuits, temperature and motor speed control circuits, UPS and battery charger.

IRK.26 Series Bulletin 127214 03/06

International **tor** Rectifier

ELECTRICAL SPECIFICATIONS Voltage Ratings

Type number	Voltage Code	V _{RRM} , maximum repetitive peak reverse voltage	V _{RSM} , maximum non-repetitive peak reverse voltage	V _{DRM} , max. repetitive peak off-state voltage, gate open circuit	I _{RRM} I _{DRM} 125°C
	-	V	V	V	mA
	04	400	500	400	
	06	600	700	600	
	08	800	900	800	
IRK.26	10	1000	1100	1000	15
	12	1200	1300	1200	
	14	1400	1500	1400	
	16	1600	1700	1600	

On-state Conduction

	Parameters	IRK.26	Units	Conditio	ns		
I _{T(AV)}	Max. average on-state current (Thyristors)	27			luction, half	sine wave,	
I _{F(AV)}	Max. average forward current (Diodes)	27		T _C =85°C			
I _{O(RMS)}	Max. continuous RMS on-state current. As AC switch	60	A		⊂ I _(RMS) or		
I _{TSM}	Max. peak, one cycle	400		t=10ms	No voltage	Sinusoidal	
or	non-repetitive on-state	420		t=8.3ms	reapplied	half wave,	
I _{FSM}	or forward current	335		t=10ms	100%V _{RRM}	Initial T _J =T _J max.	
		350		t=8.3ms	reapplied	initial 1 ₃ 1 ₃ max.	
		470		t=10ms	T _J =25°C,		
		490		t=8.3ms	no voltage r	eapplied	
l ² t	Max. I ² t for fusing	800		t=10ms	No voltage		
		730		t=8.3ms	reapplied	Initial T ₁ =T ₁ max.	
		560	.2	t=10ms	100%V _{RRM}	initial 1 _J = 1 _J max.	
		510	A ² s	t=8.3ms	reapplied		
		1100		t=10ms	T_=25°C,		
		1000		t=8.3ms	no voltage r	eapplied	
l²√t	Max. $I^2 \sqrt{t}$ for fusing (1)	8000	A²√s	t=0.1 to 10	ms, no voltage	reappl. T _J =T _J max	
V _{T(TO)}	Max. value of threshold	0.92	- v	Low level	(3)	T _J = T _J max	
.()	voltage (2)	0.95	v	High leve	l (4)		
r,	Max. value of on-state	12.11	- mΩ	Low level	(3)	T _J = T _J max	
-	slope resistance (2)	11.82	11152	High leve	l (4)		
V_{TM}	Max.peak on-state or			$I_{TM} = \pi \times I_{T}$	(AV)	T _J =25°C	
V _{FM}	forward voltage	1.95	V	$I_{FM} = \pi X I_{F(F)}$	AV)		
di/dt	Max. non-repetitive rate			T _J = 25°C	, from 0.67 V _c	DRM'	
	of rise of turned on	150	A/µs	I _{TM} =π x I _T	_(AV) , I _a = 500	mA,	
	current			t _r < 0.5 µs			
I _H	Max. holding current	200			anode supply	r=6V,	
	-		mA		oad, gate op		
I _I	Max. latching current	400	1	$T_J = 25^{\circ}C$, anode supply = 6		= 6V, resistive load	

(1) $I^{2}t$ for time $t_{x} = I^{2}\sqrt{t} \times \sqrt{t_{x}}$ (2) Average power = $V_{T(TO)} \times I_{T(AV)} + r_{t} \times (I_{T(RMS)})^{2}$ (3) 16.7% $\times \pi \times I_{AV} < I < \pi \times I_{AV}$ (4) $I > \pi \times I_{AV}$

Document Number: 94418

International **IOR** Rectifier

IRK.26 Series

Bulletin I27214 03/06

Triggering

	Parameters	IRK.26	Units	Conditions
P_{GM}	Max. peak gate power	10	14/	
P _{G(AV)}	Max. average gate power	2.5	W	
I _{GM}	Max. peak gate current	2.5	A	
-V _{GM}	Max.peak negative gate voltage	10		
	Max. gate voltage required to trigger	4.0	- V	$T_J = -40^{\circ}C$
V_{GT}		2.5		$T_J = 25^{\circ}C$ Anode supply = 6V
		1.7		T _J =125°C resistive load
1	Max. gate current	270		$T_J = -40^{\circ}C$ Anode supply = 6V
GT	required to trigger	150	mA	$T_J = 25^{\circ}C$ resistive load
	required to trigger	80		T _J = 125°C
V_{GD}	Max. gate voltage	0.05	N	T ₁ =125°C,
	that will not trigger	0.25	V	rated V _{DRM} applied
I _{GD}	Max. gate current	2	mA	T_=125°C,
	that will not trigger	6		rated V _{DRM} applied

Blocking

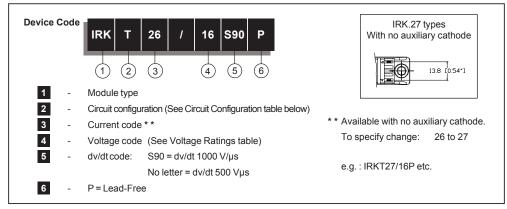
	Parameters	IRK.26	Units	Conditions
I _{RRM} I _{DRM}	Max. peak reverse and off-state leakage current at $V_{\text{RRM}}, V_{\text{DRM}}$	15	mA	T _J = 125∘C, gate open circuit
V _{INS}	RMS isolation voltage	2500 (1 min) 3500 (1 sec)	V	50 Hz, circuit to base, all terminals shorted
dv/dt	Max. critical rate of rise	500	V/µs	$T_J = 125$ °C, linear to 0.67 V_{DRM} ,

(5) Available with dv/dt = 1000V/μs, to complete code add S90 i.e. IRKT26/16AS90.

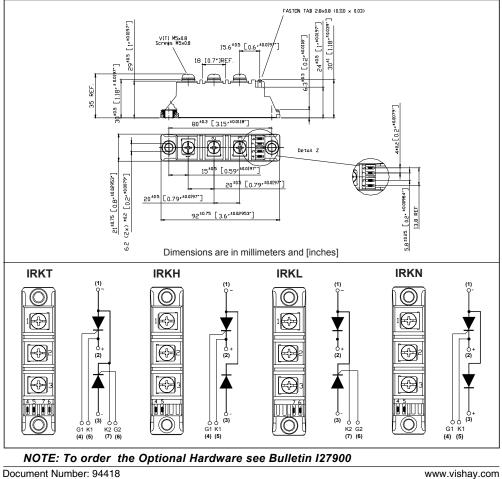
Thermal and Mechanical Specifications

	Parameters	IRK.26	Units	Conditions	
Tj	Junction operating temperature range	- 40 to 125	°C		
T _{stg}	Storage temp. range	- 40 to 125			
R _{thJC}	Max. internal thermal				
	resistance, junction	0.31		Per module, DC operation	
	to case		K/W		
R _{thCS}	Typical thermal resistance	0.1		Mounting surface flat, smooth and greased	
	case to heatsink	0.1			
Т	Mounting torque ± 10%	5		A mounting compound is recommended	
	to heatsink	5	Nm	and the torque should be rechecked after a period of 3 hours to allow for the	
	busbar	3		spread of the compound	
wt	Approximate weight	110 (4)	gr (oz)		
	Case style	TO-240AA		JEDEC	

 ΔR Conduction (per Junction) (The following table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC)

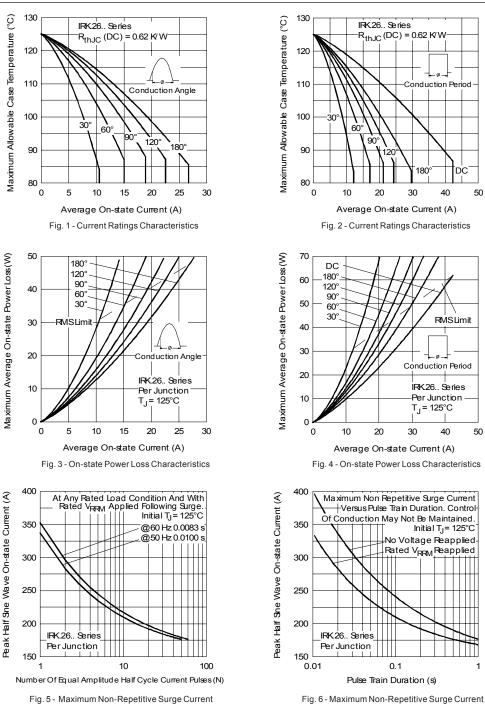

. .		Sine	half wave	conduction	on	Rect. wave conduction					
Devices	180°	120°	90°	60°	30°	180°	120°	90°	60°	30°	Units
IRK.26	0.23	0.27	0.34	0.48	0.73	0.17	0.28	0.36	0.49	0.73	°C/W

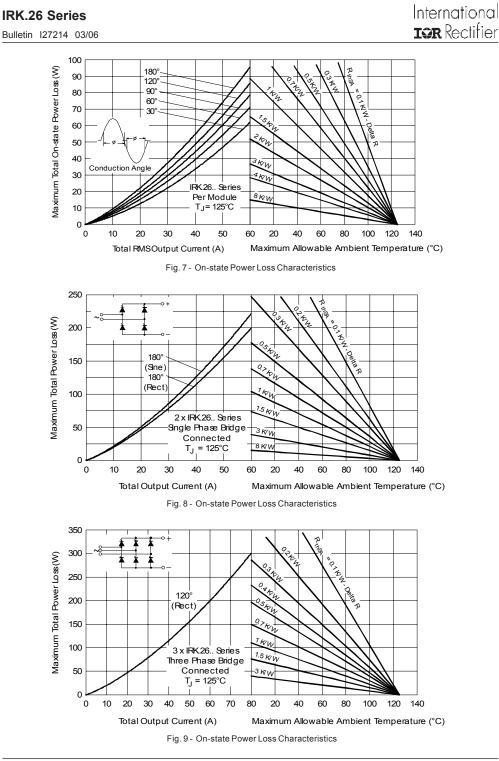
Document Number: 94418


IRK.26 Series Bulletin 127214 03/06

International

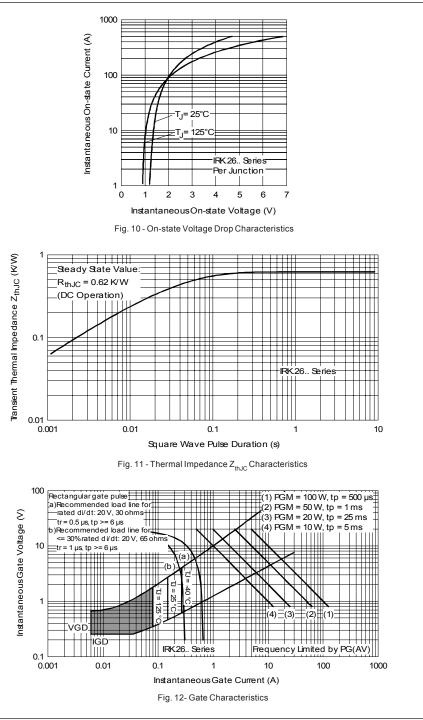
Ordering Information Table




International

IRK.26 Series

Document Number: 94418



Document Number: 94418

International

IRK.26 Series

Bulletin I27214 03/06

Document Number: 94418

IRK.26 Series	International
Bulletin 127214 03/06	tor Rectifier

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free. Qualification Standards can be found on IR's Web site.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 03/06

> www.vishay.com 8

Document Number: 94418

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier[®], IR[®], the IR logo, HEXFET[®], HEXSense[®], HEXDIP[®], DOL[®], INTERO[®], and POWIRTRAIN[®] are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.