
BOURNS®

- Sensitive Gate Triacs
- 4 A RMS
- Glass Passivated Wafer
- 400 V to 700 V Off-State Voltage
- Max I_{GT} of 5 mA (Quadrants 1 3)

Pin 2 is in electrical contact with the mounting base.

MDC2ACA

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING			VALUE	UNIT	
	TIC206D		400		
Repetitive peak off-state voltage (see Note 1)	TIC206M	V _{DRM}	600	V	
	TIC206S		700		
Full-cycle RMS on-state current at (or below) 85°C case temperature (see Note 2)			4	A	
Peak on-state surge current full-sine-wave at (or below) 25°C case temperature (see Note 3)			25	А	
Peak gate current			±0.2	А	
Peak gate power dissipation at (or below) 85°C case temperature (pulse width \leq 200 μ s)			1.3	W	
Average gate power dissipation at (or below) 85°C case temperature (see Note 4)			0.3	W	
Operating case temperature range			-40 to +110	°C	
Storage temperature range			-40 to +125	°C	
Lead temperature 1.6 mm from case for 10 seconds			230	°C	

NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.

2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 85°C derate linearly to 110°C case temperature at the rate of 160 mA/°C.

This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge
may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.

4. This value applies for a maximum averaging time of 20 ms.

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			MIN	ТҮР	MAX	UNIT
I _{DRM}	Repetitive peak off-state current	$V_D = rated V_{DRM}$	l _G = 0	T _C = 110°C			±1	mA
I _{GT}		V _{supply} = +12 V†	R _L = 10 Ω	t _{p(g)} > 20 μs		0.9	5	
	Gate trigger	V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-2.2	-5	mA
	current	$V_{supply} = -12 V^{\dagger}$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-1.8	-5	-5
		$V_{supply} = -12 V^{+}$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \ \mu s$		2.4	10	

† All voltages are with respect to Main Terminal 1.

PRODUCT INFORMATION

DECEMBER 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

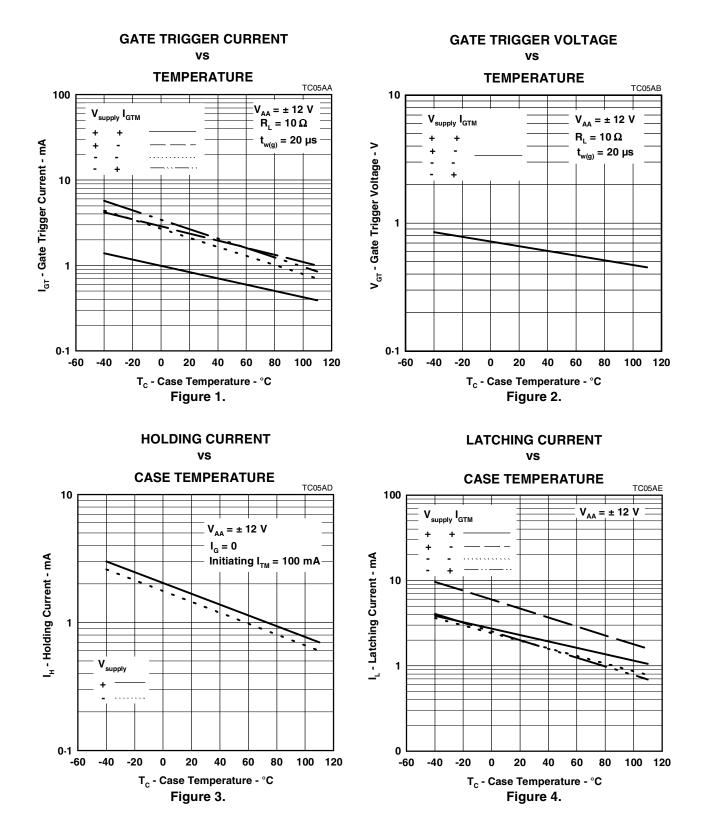
electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

PARAMETER		TEST CONDITIONS			MIN	ТҮР	MAX	UNIT
		V _{supply} = +12 V†	R _L = 10 Ω	t _{p(g)} > 20 μs		0.7	2	
V _{GT}	Gate trigger	V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-0.7	-2	V
⁺GT	voltage	$V_{supply} = -12 V^{\dagger}$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		-0.7	-2	v
		$V_{supply} = -12 V^{\dagger}$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs		0.7	2	
V _T	On-state voltage	$I_{T} = \pm 4.2 \text{ A}$	l _G = 50 mA	(see Note 5)		±1.4	±2.2	V
I _H	Holding current	V _{supply} = +12 V†	l _G = 0	Init' I _{TM} = 100 mA		1.5	15	mA
		$V_{supply} = -12 V^{\dagger}$	$I_{G} = 0$	Init' I _{TM} = -100 mA		-1.3	-15	
L	Latching current	V _{supply} = +12 V†	(see Note 6)				30	mA
L		$V_{supply} = -12 V^{\dagger}$					-30	1107
dv/dt	Critical rate of rise of	V_{DRM} = Rated V_{DRM}	I _G = 0	$T_{C} = 110^{\circ}C$		±20		V/µs
uv/ut	off-state voltage					120		v/µ3
dv/dt	Critical rise of	V _{DRM} = Rated V _{DRM}	$I_{\text{TRM}} = \pm 4.2 \text{ A}$	T _C = 85°C	±1	±3		V/µs
dv/dt _(c)	commutation voltage					±3		v/µs

† All voltages are with respect to Main Terminal 1.

NOTES: 5. This parameter must be measured using pulse techniques, $t_p = \le 1$ ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

6. The triacs are triggered by a 15-V (open circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G = 100 \Omega$, $t_{p(g)} = 20 \mu s$, $t_r = \le 15 ns$, f = 1 kHz.


thermal characteristics

PARAMETER			TYP	MAX	UNIT
R_{\thetaJC}	Junction to case thermal resistance			7.8	°C/W
R_{\thetaJA}	Junction to free air thermal resistance			62.5	°C/W

DECEMBER 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

TYPICAL CHARACTERISTICS

PRODUCT INFORMATION

DECEMBER 1971 - REVISED SEPTEMBER 2002 Specifications are subject to change without notice.

BOURNS®