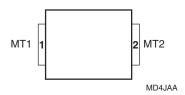
TISP4070J1BJ THRU TISP4395J1BJ

BIDIRECTIONAL THYRISTOR OVERVOLTAGE PROTECTORS

TISP4xxxJ1BJ Overvoltage Protector Series

Ground Return Element of Y Configuration

- -2x Current Capability of Y Upper Elements
- -Available in a Wide Range of Voltages
- -Enables Symmetrical and Asymmetrical Y Designs
- -SMB (DO-214AA) Package


Ion-Implanted Breakdown Region

- -Precise and Stable Voltage
- -Low Voltage Overshoot Under Surge

Device	V_{DRM}	V _(BO)
Device	V	V
TISP4070J1	58	70
TISP4080J1	65	80
TISP4095J1	75	95
TISP4115J1	90	115
TISP4125J1	100	125
TISP4145J1	120	145
TISP4165J1	135	165
TISP4180J1	145	180
TISP4200J1	155	200
TISP4219J1	180	219
TISP4250J1	190	250
TISP4290J1	220	290
TISP4350J1	275	350
TISP4395J1	320	395

SMB Package (Top View)

Device Symbol

Rated for International Surge Wave Shapes

Wave Shape	Standard	I _{PPSM}
2/10	GR-1089-CORE	1000
8/20	IEC 61000-4-5	800
10/160	TIA/EIA-IS-968 (FCC Part 68)	400
10/700	ITU-T K.20/21/45	350
10/560	TIA/EIA-IS-968 (FCC Part 68)	250
10/1000	GR-1089-CORE	200

Description

The TISP4xxxJ1BJ is a symmetrical voltage-triggered bidirectional thyristor device which has been designed as the tail (ground return) element of a Y circuit configured protector. As such, the TISP4xxxJ1BJ must be rated to conduct the sum of the TIP and RING currents. For example, the normal GR-1089-CORE testing can impose 200 A, 10/1000 and 1000 A, 2/10 on the ground return element of the Y configuration. Using the TISP4xxxJ1BJ together with two TISP4xxxH3BJ parts gives a 2x 100 A, 10/1000 Y protector circuit. For ITU-T applications, using the TISP4xxxJ1BJ with a TISP3xxxT3BJ gives a coordinated Y protector with a 2x 120 A, 5/310 capability. Design tables are given in the Applications Information section. These SMB package combinations are often more space efficient than single package Y protection multi-chip integrations.

These devices allow signal voltages, without clipping, up to the maximum off-state voltage value, V_{DRM} , see Figure 1. Voltages above V_{DRM} are limited and will not exceed the breakover voltage, $V_{(BO)}$, level. If sufficient current flows due to the overvoltage, the device switches into a low-voltage on-state condition, which diverts the current from the overvoltage through the device. When the diverted current falls below the holding current, I_{H_1} level the devices switches off and restores normal system operation.

How to Order

Device	Package	Carrier	Order As	
TISP4xxxJ1BJ	BJ (SMB/DO-214AA J-Bend)	R (Embossed Tape Reeled)	TISP4xxxJ1BJR-S	

*RoHS Directive 2002/95/EC Jan 27 2003 including Annex SEPTEMBER 2001 - REVISED JANUARY 2007

Specifications are subject to change without notice.

Customers should verify actual device performance in their specific applications.

Absolute Maximum Ratings, $T_A = 25$ °C (Unless Otherwise Noted)

Rating	Symbol	Value	Unit
'4070		±58	
'4080		±65	
'4095		±75	
'4115		±90	
'4125		±100	
'4145 '4165		±120 ±135	
Repetitive peak off-state voltage '4180	V_{DRM}	±135 ±145	V
4200		±155	
'4219		±180	
'4250		±190	
'4290		±220	
'4350		±275	
'4395		±320	
Non-repetitive peak on-state pulse current (see Notes 1 and 2)			
2/10 (Telcordia GR-1089-CORE, 2/10 voltage wave shape)		1000	
8/20 (IEC 61000-4-5, combination wave generator, 1.2/50 voltage wave shape)		800	
10/160 (TIA/EIA-IS-968 (Replæes FCC Part 68), 10/160 voltage wave shape)		400	
4/250 (ITU-T K.20/21, 10/700 voltage wave shape, simultaneous)	I_{PPSM}	370	Α
5/310 (ITU-T K.20/21, 10/700 voltage wave shape, single)		350	
5/320 (TIA/EIA-IS-968 (Replaces FCC Part 68), 9/720 voltage wave shape, single)		350	
10/560 (TIA/EIA-IS-968 (Replæes FCC Part 68), 10/560 voltage wave shape)		250	
10/1000 (Telcordia GR-1089-CORE, 10/1000 voltage wave shape)		200	
Non-repetitive peak on-state current (see Notes 1 and 2)			
50 Hz, 1 cycle	I_{TSM}	80	Α
60 Hz, 1 cycle		100	
Initial rate of rise of on-state current, Linear current ramp, Maximum ramp value < 50 A	di _T /dt	800	A/μs
Junction temperature	T_J	-40 to +150	°C
Storage temperature range	T _{stg}	-65 to +150	°C

Recommended Operating Conditions

Component	Min	Тур	Max	Unit
Series resistor for GR-1089-CORE first-level surge survival	0			
Series resistor for ITU-T recommendation K.20/K.45/K.21 (Basic coordination with 400 V GDT)	6.5			
R1, R2 Series resistor for TIA/EIA-IS-968 (Replaces FCC Part 68), 9/720 survival	0			Ω
Series resistor for TIA/EIA-IS-968 (Replaces FCC Part 68), 10/560 survival	0			
Series resistor for TIA/EIA-IS-968 (Replaces FCC Part 68), 10/160 survival	0			

NOTES: 1. Initially, the device must be in thermal equilibrium with T_J = 25 °C.

2. These non-repetitive rated currents are peak values of either polarity. The surge may be repeated after the device returns to its initial conditions.

Electrical Characteristics, T_A = 25 $^{\circ}C$ (Unless Otherwise Noted)

Repetitive peak off-state current V _D = ±V _{DRM} T _A = 25 °C ±5 ±10 ±10 ±115		Parameter	Test Conditions		Min	Тур	Max	Unit
V _(BO) AC breakover voltage V _(BO) AC breakover voltage		Repetitive peak off-	V - ·V	T _A = 25 °C			±5	^
Variable September Sept	DRM	state current	$V_D = \pm V_{DRM}$	$T_A = 85 ^{\circ}C$			±10	μΑ
V _(BO) AC breakover voltage				4070			±70	
V _(BO) AC breakover voltage				'4080			±80	
V _(BO) AC breakover voltage				'4095			±95	
V _(BO) AC breakover voltage dv/dt = ±250 V/ms, R SOURCE = 300 Ω 14145 (4165) (4165) (4160) (4160) (4160) (4160) (4200) (4200) (4200) (4219) (4219) (4219) (4219) (4220) (4220) (4220) (4220) (4220) (4280) (4280) (4280) (4280) (4280) (4280) (4280) (43				'4115			±115	
V(BO) AC breakover voltage dv/dt = ±250 V/ms, R SOURCE = 300 Ω 14165 / 4180				'4125			±125	
V(BO) AC Dreakover vortage				'4145			±145	
14200 ±200 ±200 ±200 ±219 ±219 ±219 ±219 ±250 ±250 ±250 ±250 ±250 ±250 ±250 ±250 ±250 ±250 ±250 ±250 ±250 ±250 ±250 ±250 ±250 ±250 ±395	.,		du/dt 050 V/m - D 000 C	'4165			±165	
14219 2219 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2220 2230 2335	V _(BO)	AC breakover voltage	$\frac{\text{dV/dt} = \pm 250 \text{ V/ms}, \text{H }_{\text{SOURCE}} = 300 \Omega$	'4180			±180	V
V(BO) Impulse breakover voltage Impulse breakover v				'4200			±200	
14290 14350 14				'4219			±219	
V(BO) Hamp breakover V(BO) Impulse breakover V				'4250			±250	
V(BO) Ramp breakover voltage 1000 V/μs, Linear voltage ramp, 1415 1155 1161				'4290			±290	
V(BO) Impulse breakover voltage 2/10 wave shape, I _{PP} = ±1000 A, R _S = 2.5 Ω, and contact white the contact will be a contact with the contact will be a contact				'4350			±350	
V(BO) Hamp breakover voltage Maximum ramp value ± ±500 V (di/dt ± ±20 A/μs, Linear corrent ramp, di/dt 25 (di/dt ± ±20 A/μs, Linear current ramp, di/dt 25 (di/dt ± ±20 A/μs,				⁴ 395			±395	
V(BO) Hamp breakover voltage Maximum ramp value ± ±500 V (di/dt ± ±20 A/μs, Linear corrent ramp, di/dt 25 (di/dt ± ±20 A/μs, Linear current ramp, di/dt 25 (di/dt ± ±20 A/μs,				4070			±77	
V(BO) Ramp breakover voltage Maximum ramp value = ±500 V (μs, Linear voltage ramp, divides = ±20 A/μs, Linear current ramp, divides = ±200 A/μs, Linear current ramp, divides = ±212 A/μs, Linear current ramp, divides = ±210 A/μs, Linear current ramp, divides = ±212 A/μs, Linear current ramp, divides = ±212 A/μs, L								
V(BO) Ramp breakover voltage dv/dt ss1000 V/μs, Linear voltage ramp, dv145 dv145 dv145 dv145 dv145 dv145 dv145 dv146 dv14 ss1000 V/μs, Linear current ramp, dv1480 dv14 ss1000 dv14 ss1000 dv14 ss1000 dv14 ss100 dv14 ss100 dv14 ss100 dv14 ss100 dv14 ss100 dv14200 dv1420 dv14								
V(BO) Ramp breakover voltage dv/dt s±1000 V/μs, Linear voltage ramp, dv145 4145 ±135 ±156 ±177 ±177 ±177 ±177 ±177 ±177 ±192 ±212 ±2212 ±2212 ±2212 ±2212 ±2212 ±2231 ±263 ±263 ±303 ±364 ±409 ±303 ±364 ±409 ±409 ±409 ±409 ±409 ±409 ±409 ±409 ±4112 ±4112 ±4112 ±4115 ±140 ±4125 ±4140 ±4125 ±140 ±4145 ±161 ±4140 ±4145 ±161 ±4140 ±4145 ±161 ±4140 ±4145 ±161 ±4140 ±4145 ±161 ±4140 ±4145 ±161 ±4140 ±4145 ±161 ±4140 ±4145 ±161 ±4140 ±4145 ±161 ±4140 ±4145 ±161 ±4140 ±4145 ±161 ±4140 ±4145 ±161 ±4140 ±4145 ±161 ±4140 ±4145 ±161 ±4140 ±4140 ±4145 ±4140 ±4140 ±4140 ±4140 ±4140 ±4140 ±4140 ±414								
Ramp breakover voltage Maximum ramp value = ±500 V '4165 ±177 (1480 ±192 ±192 ±192 ±192 ±192 ±192 ±192 ±192 ±192 ±192 ±192 ±192 ±192 ±192 ±192 ±193								
V(BO) Ramp breakover voltage Maximum ramp value = ±500 V di/dt = ±20 A/μs, Linear current ramp, di/dt = ±20 A/μs								
V(BO) voltage		Ramp breakover						
Maximum ramp value = ±10 A '4200	V _(BO)	•						V
1								
Part								
V(BO) Impulse breakover voltage 2/10 wave shape, I _{PP} = ±1000 A, R _S = 2.5 Ω, 1416 ±183 ±184 ±429 Y 1425 ±140 ±199 1420 ±199 1420 ±242 1425 ±140 ±199 ±242 1425 ±140 ±199								
V(BO) Impulse breakover voltage 2/10 wave shape, I _{PP} = ±1000 A, R _S = 2.5 Ω, '4180 ±199 1420 ±242 1425 ±242 1425 ±242 1425 ±242 1425 ±242 1425 ±242 1425 ±242 ±24								
Variable 1409 14								
March 101 102 101 102 102 102 103 1								
Variable Part Pa						+96		
V _(BO) Impulse breakover voltage 2/10 wave shape, I _{PP} = ±1000 A, R _S = 2.5 Ω, (3165 ±183 ±199 14200 ±221 14200 14250 ±242 14250 14250 ±276 14250 ±320 14350 ±386								
V _(BO) Impulse breakover voltage 2/10 wave shape, I _{PP} = ±1000 A, R _S = 2.5 Ω, (3165 ±183 ±199 ±199 ±242 ±242 ±242 ±245 ±320 ±320 ±336								
V _(BO) Impulse breakover voltage 2/10 wave shape, I _{PP} = ±1000 A, R _S = 2.5 Ω, (4165 ±183 ±199 4242 4219 ±242 4250 ±276 44290 ±320 4350 ±386								
V _(BO) Impulse breakover voltage 2/10 wave shape, I _{PP} = ±1000 A, R _S = 2.5 Ω, (34165 ±183 ±199 34200 ±221 34250 ±276 34250 ±276 34250 ±386								
Impulse breakover voltage 2/10 wave shape, I _{PP} = ±1000 A, R _S = 2.5 Ω, '4165 ±183 ±199 '4200 ±221 4219 ±242 4250 ±276 4290 ±320 4350 ±386								
V(BO) voltage (see Note 3)		Impulse breakover	$ 2/10 $ wave shape, $ _{PP} = \pm 1000 \text{ A. Re} = 2.5 \Omega$					
'4200	V _(BO)	voltage						V
'4219 ±242		·g-	() () () () () () () () () ()					
'4250 ±276								
'4290 ±320 ±386 ±386								
'4350 ±386								
				·4395		±434		

NOTE 3: Dynamic voltage measurements should be made with an oscilloscope with limited band width (20 MHz) to avoid high frequency noise.

SEPTEMBER 2001 - REVISED JANUARY 2007 Specifications are subject to change without notice.
Customers should verify actual device performance in their specific applications.

BOURNS®

Electrical Characteristics, $T_A = 25$ °C (Unless Otherwise Noted) (Continued)

	Parameter	Test Conditions		Min	Тур	Max	Unit
I _(BO)	Breakover current	$dv/dt = \pm 250 \text{ V/ms}, R_{SOURCE} = 300 \Omega$				±600	mA
I _H	Holding current	$I_T = \pm 5 \text{ A}, \text{ di/dt} = +/-30 \text{ mA/ms}$		±20			mA
dv/dt	Critical rate of rise of off-state voltage	Linear voltage ramp, Maximum ramp value < 0.85 V _{DI}	±5			kV/μs	
I _D	Off-state current	V _D = ±50 V	T _A = 85 °C			±10	μΑ
		$f = 1 \text{ MHz}, Vd = 1 \text{ V rms}, V_D = 0,$	'4070 thru '4115		195	235	
			'4125 thru '4219		120	145	
			'4250 thru '4395		105	125	
		$f = 1 \text{ MHz}, Vd = 1 \text{ V rms}, V_D = -1 \text{ V}$	'4070 thru '4115		180	215	
			'4125 thru '4219		110	132	
			'4250 thru '4395		95	115	
	0" -1-1	$f = 1 \text{ MHz}, Vd = 1 \text{ V rms}, V_D = -2 \text{ V}$	'4070 thru '4115		165	200	
C _{off}	Off-state capacitance		'4125 thru '4219		100	120	pF
			'4250 thru '4395		90	105	
		$f = 1 \text{ MHz}, Vd = 1 \text{ V rms}, V_D = -50 \text{ V}$	'4070 thru '4115		85	100	
			'4125 thru '4219		50	60	
			'4250 thru '4395		42	50	
		f = 1 MHz, Vd = 1 V rms, V _D = -100 V	'4125 thru '4219		40	50	
		(see Note 4)	'4250 thru '4395		35	40	

NOTE 4: To avoid possible voltage clipping, the '4125 is tested with V_D = -98 V

Thermal Characteristics

Parameter	Test Conditions	Min	Тур	Max	Unit
I DAIA JUNCTION TO HEE All THEIRIAI TESISTANCE	EIA/JESD51-3 PCB, $I_T = I_{TSM(1000)}$ $T_A = 25$ °C, (see Note 5)			90	°C/W

NOTE 5: EIA/JESD51-2 environment and PCB has standard footprint dimensions connected with 5 A rated printed wiring track widths.

Parameter Measurement Information

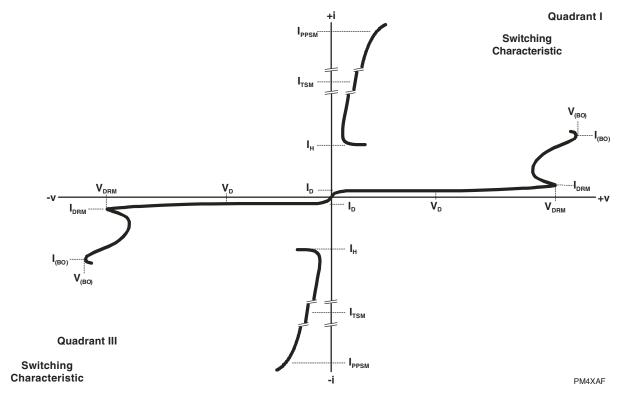


Figure 1. Voltage-Current Characteristic for Terminals 1-2
All Measurements are Referenced to Terminal 2

Typical Characteristics

OFF-STATE CURRENT vs JUNCTION TEMPERATURE TC4JAG 100 $V_{D} = \pm 50 \text{ V}$ 10 II_DI - Off-State Current - μA 1 0.001 -25 50 75 100 125 150 T, - Junction Temperature - °C

Figure 2. ON-STATE CURRENT vs

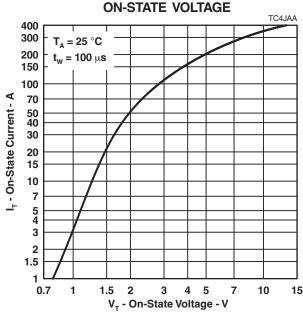


Figure 4.

NORMALIZED BREAKOVER VOLTAGE

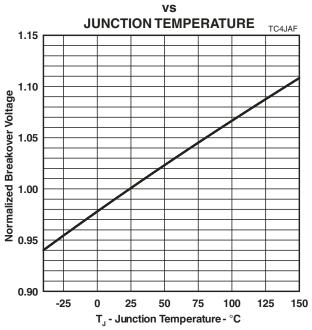


Figure 3.

NORMALIZED HOLDING CURRENT

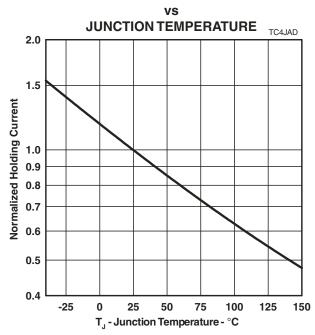
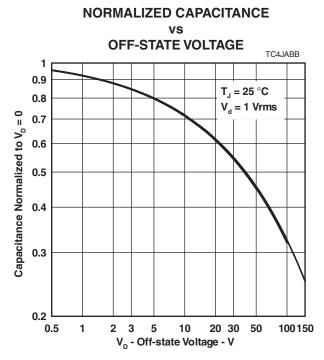



Figure 5.

SEPTEMBER 2001 - REVISED JANUARY 2007 Specifications are subject to change without notice. Customers should verify actual device performance in their specific applications.

Typical Characteristics

DIFFERENTIAL OFF-STATE CAPACITANCE vs

RATED REPETITIVE PEAK OFF-STATE VOLTAGE

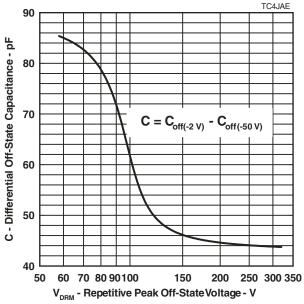
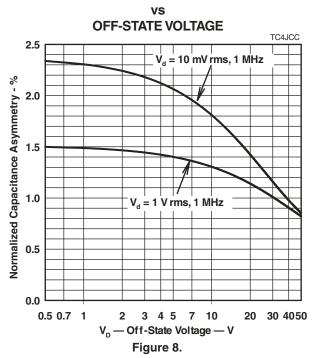
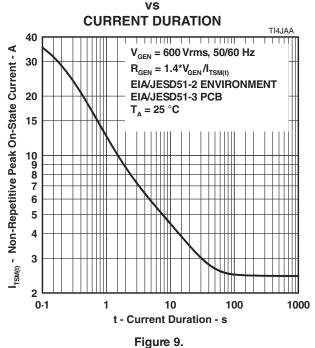



Figure 7.

Figure 6.

NORMALIZED CAPACITANCE ASYMMETRY



SEPTEMBER 2001 - REVISED JANUARY 2007 Specifications are subject to change without notice. Customers should verify actual device performance in their specific applications.

BOURNS®

Rating and Thermal Information

NON-REPETITIVE PEAK ON-STATE CURRENT

V_{DRM} DERATING FACTOR

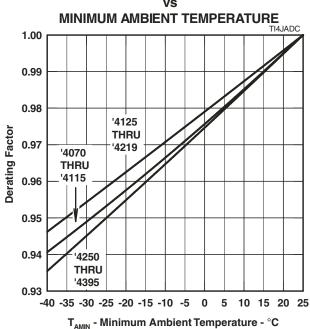
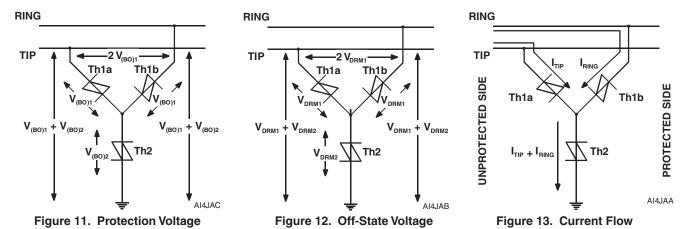


Figure 10.

APPLICATIONS INFORMATION


Y Configuration Design

This protection configuration has three modes of protection. The RING to TIP terminal pair protection is given by the series combination of protectors Th1a and Th1b, see Figure 11. The terminal pair protection voltage will be the sum of the $V_{(BO)}$, breakover voltage, of Th1a and the $V_{(BO)}$ of Th1b. Protectors Th1a and Th1b are the same device type and the terminal pair protection voltage will be 2 $V_{(BO)1}$. For a terminal pair protection voltage of $\pm 400 \text{ V}$, Th1a and Th1b would have $V_{(BO)1} = \pm 400/2 = \pm 200 \text{ V}$.

Similarly for the other terminal pairs, RING to GROUND protection is given by the series combination of Th1b and Th2 and the terminal pair protection voltage is $V_{(BO)1} + V_{(BO)2}$. TIP to GROUND protection voltage will also be $V_{(BO)1} + V_{(BO)2}$.

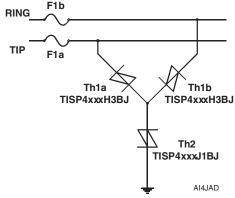
The maximum terminal pair voltage before clipping might occur is the sum of the protector V_{DRM} , off-state voltages, see Figure 12. For RING to TIP this will be 2 V_{DRM1} . The $\pm 200 \text{ V }(BO)_1$ protectors of the previous example have a V_{DRM} of $\pm 155 \text{ V}$, giving a maximum non-clipping signal voltage of $\pm 310 \text{ V}$. For RING to GROUND and TIP to GROUND terminal pairs, the maximum non-clipping signal voltage will be $V_{DRM1} + V_{DRM2}$.

Under longitudinal surge conditions, when the prospective currents of the line conductors, I_{RING} and I_{TIP} , are equal, Th2, the ground return protector, carries the sum of the Th1a and Th1b currents, see Figure 13. The current rating of Th2 must be twice that of Th1a and Th1b.

GR-1089-CORE Designs

The main impulse waveforms of the standard are 500 A, 2/10 and 100 A, 10/1000. Assuming fuse current limiters, F1a and F1b, a suitable Th1a and Th1b protector for these conductor currents is the TISP4xxxH3BJ series of devices. The ground return protector, Th2, must be rated for at least 1000 A,2/10 and 200 A, 10/1000. A suitable Th2 protector for these ground currents is the TISP4xxxJ1BJ series of devices. This arrangement is shown in Figure 14 and the following table lists all the catalogue device combinations.

RING to TI	P Voltages	RING to GROUND, TIP to GROUND Voltages		GR-1089-CORE Y Configuration Parts and Part Voltages			
V _{DRM} V	V _(BO) V	V _{DRM} V	V _(BO) V	Th1a, Th1b Part#	Th2 Part#	V _{DRM} V	V _(BO) V
±116	±140	±116	±140	TISP4070H3BJ	TISP4070J1BJ	±58	±70
±130	±160	±130	±160	TISP4080H3BJ	TISP4080J1BJ	±65	±80
±150	±190	±150	±190	TISP4095H3BJ	TISP4095J1BJ	±75	±95
±180	±230	±180	±230	TISP4115H3BJ	TISP4115J1BJ	±90	±115
±200	±250	±200	±250	TISP4125H3BJ	TISP4125J1BJ	±100	±125
±240	±290	±240	±290	TISP4145H3BJ	TISP4145J1BJ	±120	±145
±270	±330	±270	±330	TISP4165H3BJ	TISP4165J1BJ	±135	±165
±290	±360	±290	±360	TISP4180H3BJ	TISP4180J1BJ	±145	±180
±310	±400	±310	±400	TISP4200H3BJ	TISP4200J1BJ	±155	±200
±360	±438	±360	±438	TISP4219H3BJ	TISP4219J1BJ	±180	±219


SEPTEMBER 2001 - REVISED JANUARY 2007

Specifications are subject to change without notice.

Customers should verify actual device performance in their specific applications.

GR-1089-CORE Designs (Continued)

RING to T	IP Voltages	RING to G	,	GR-1089-CORE Y Configuration Parts and Part Voltages			
V _{DRM} V	V _(BO)	V _{DRM} V	V _(BO)	Th1a, Th1b Part#	Th2 Part#	V _{DRM} V	V _(BO)
±380	±500	±380	±500	TISP4250H3BJ	TISP4250J1BJ	±190	±250
±440	±580	±440	±580	TISP4290H3BJ	TISP4290J1BJ	±220	±290
±550	±700	±550	±700	TISP4350H3BJ	TISP4350J1BJ	±275	±350
±640	±790	±640	±790	TISP4395H3BJ	TISP4395J1BJ	±320	±395

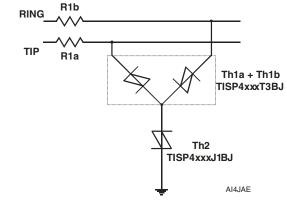


Figure 14. GR-1089-CORE Design

Figure 15. Coordinated ITU-T K Recommendation Design

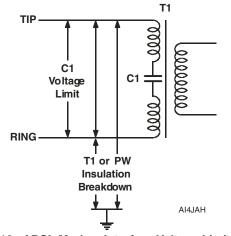
ITU-T K.20, K.45 and K.21 Designs

The main impulse voltage wave shape of these recommendations is 10/700. The current wave shape is loading dependent, but it is 5/310 into a short circuit. To coordinate with a ± 400 V primary protector a minimum series resistance of $6.5~\Omega$ is required ("The New ITU-T Telecommunication Equipment Resistibility Recommendations", Compliance Engineering Magazine, January-February 2002). The coordination resistance limits the peak non-truncated current to $\pm 400/6.5 = 62$ A. A suitable Th1a and Th1b protector for these conductor currents is the TISP3xxxT3BJ series of devices, which combine Th1a and Th1b in a single SMB3 package. The ground return protector, Th2, must be rated for at least 124 A of a 5/310 waveshape. Suitable Th2 protectors for these ground currents are the TISP4xxxH3BJ or TISP4xxxJ1BJ series of devices. The arrangement is shown in Figure 15 and the following table lists all the catalogue device combinations. Using the SMB3 packaged TISP3xxxT3BJ saves one third of the PCB placement area compared to solution using three single protector SMB packaged devices.

RING to TIE	P Voltages	RING to GROUND, TIP to GROUND Voltages		ITU-T Y Configuration Parts and Part Voltages R1a = R1b = 6.5 Ω			
V _{DRM}	V _(BO)	V _{DRM}	V _(BO)	Th1a + Th1b	Th2	V _{DRM}	V _(BO)
V	V	V	V	Part#	Part#	V	V
±116	±140	±116	±140	TISP3070T3BJ	TISP4070J1BJ	±58	±70
±130	±160	±130	±160	TISP3080T3BJ	TISP4080J1BJ	±65	±80
±150	±190	±150	±190	TISP3095T3BJ	TISP4095J1BJ	±75	±95
±180	±230	±180	±230	TISP3115T3BJ	TISP4115J1BJ	±90	±115
±200	±250	±200	±250	TISP3125T3BJ	TISP4125J1BJ	±100	±125
±240	±290	±240	±290	TISP3145T3BJ	TISP4145J1BJ	±120	±145
±270	±330	±270	±330	TISP3165T3BJ	TISP4165J1BJ	±135	±165
±290	±360	±290	±360	TISP3180T3BJ	TISP4180J1BJ	±145	±180
±310	±400	±310	±400	TISP3200T3BJ	TISP4200J1BJ	±155	±200
±360	±438	±360	±438	TISP3219T3BJ	TISP4219J1BJ	±180	±219
±380	±500	±380	±500	TISP3250T3BJ	TISP4250J1BJ	±190	±250
±440	±580	±440	±580	TISP3290T3BJ	TISP4290J1BJ	±220	±290

SEPTEMBER 2001 - REVISED JANUARY 2007 Specifications are subject to change without notice.

Customers should verify actual device performance in their specific applications.


ITU-T K.20, K.45 and K.21 Designs (Continued)

RING to TI	P Voltages	RING to G	,	ITU-T Y Configuration Parts and Part Voltages R1a = R1b = 6.5 Ω			
V _{DRM} V	V _(BO)	V _{DRM} V	V _(BO)	Th1a + Th1b Part#	Th2 Part#	V _{DRM} V	V _(BO) V
±550	±700	±550	±700	TISP3350T3BJ	TISP4350J1BJ	±275	±350
±640	±790	±640	±790	TISP3395T3BJ	TISP4395J1BJ	±320	±395

Asymmetrical Designs

These designs are for special needs, where the RING to TIP protection voltage must be different to the RING to GROUND and TIP to GROUND voltages. ADSL modem interfaces often have a need for asymmetric voltage limiting, see Figure 16. Here, the RING to TIP voltage limitation is given by the d.c. blocking capacitor, C1, and the RING to GROUND and TIP to GROUND limitation is insulation breakdown. Often the breakdown limit is set by the spacing of the PW (Printed Wiring) tracks. Figure 17 shows a solution. Using two ± 165 V V_(BO) parts for Th1a and Th1b, the RING to TIP voltage is limited to ± 330 V. Using a higher voltage ± 350 V V_(BO) part for Th2 limits the insulation stress to ± 515 V. Figure 17 and its following table is for a GR-1089-CORE compliant design.

RING to TIP Voltages		RING to GROUND, TIP to GROUND Voltages		GR-1089-CORE Y Configuration Parts and Part Voltages					
V _{DRM} V	V _(BO)	V _{DRM} V	V _(BO)	Th1a, Th1b			Th2		
				Part#	V _{DRM} V	V _(BO) V	Part#	V _{DRM} V	V _(BO)
±270	±330	±410	±515	TISP4165H3BJ	±135	±165	TISP4350J1BJ	±275	±350

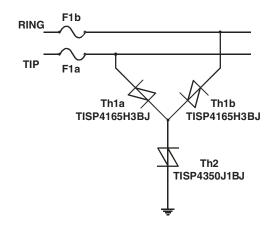
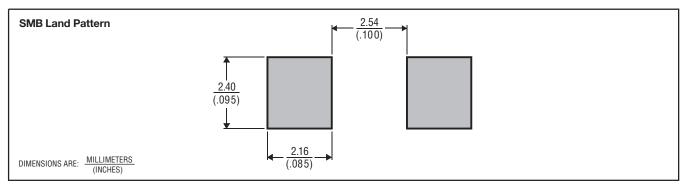


Figure 16. ADSL Modem Interface Voltage Limitations


Figure 17. Asymmetrical Design for US ADSL Modems

An ITU-T compliant design would probably require the replacement of the fuses by coordination resistors. With a ±410 V off-state voltage, this may seem unnecessary as modern primary protectors will switch at lower voltages and automatically coordinate. On a perfect longitudinal waveform this is true. However, the ITU-T also applies a transverse (metallic) test as well, to simulate non-simultaneous switching of the primary protection. In this case, one conductor is grounded, which places the RING to TIP protection in parallel with the unswitched primary protector. The ±270 V off-state voltage is likely to be lower than the primary switching voltage and there isn't coordination. Under GR-1089-CORE conditions with non-simultaneous switching, the 100 A 10/1000 current, which should have gone through the unswitched primary protector, is diverted through the top arms of the Y into the switched primary, causing a 200 A current flow in that primary protector.

MECHANICAL DATA

Recommended Printed Wiring Land Pattern Dimensions

MDXX BID

Device Symbolization Code

Devices will be coded as below. As the device parameters are symmetrical, terminal 1 is not identified.

Device	Symbolization Code
TISP4070J1	4070J1
TISP4080J1	4080J1
TISP4095J1	4095J1
TISP4115J1	4115J1
TISP4125J1	4125J1
TISP4145J1	4145J1
TISP4165J1	4165J1
TISP4180J1	4180J1
TISP4200J1	4200J1
TISP4219J1	4219J1
TISP4250J1	4250J1
TISP4290J1	4290J1
TISP4350J1	4350J1
TISP4395J1	4395J1

Carrier Information

For production quantities, the carrier will be embossed tape reel pack. Evaluation quantities may be shipped in bulk pack or embossed tape.

Package	Carrier	Standard Quantity
SMB	Embossed Tape Reel Pack	3000

"TISP" is a trademark of Bourns, Ltd., a Bourns Company, and is Registered in U.S. Patent and Trademark Office.
"Bourns" is a registered trademark of Bourns, Inc. in the U.S. and other countries.