
- High Current Triacs
- 16 A RMS
- Glass Passivated Wafer
- 400 V to 800 V Off-State Voltage
- 125 A Peak Current
- Max I_{GT} of 50 mA (Quadrants 1 3)

Pin 2 is in electrical contact with the mounting base.

MDC2ACA

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING			VALUE	UNIT
Repetitive peak off-state voltage (see Note 1)	TIC246D		400	
	TIC246M	M	600	V
	TIC246S	V_{DRM}	700	
	TIC246N		800	
Full-cycle RMS on-state current at (or below) 70°C case temperature (see Note 2)			16	Α
Peak on-state surge current full-sine-wave at (or below) 25°C case temperature (see Note 3)			125	Α
Peak gate current			±1	Α
Operating case temperature range			-40 to +110	°C
Storage temperature range			-40 to +125	°C
Lead temperature 1.6 mm from case for 10 seconds			230	°C

- NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
 - 2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 70°C derate linearly to 110°C case temperature at the rate of 400 mA/°C.
 - 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of peak reverse volta ge and on-state current. Surge may be repeated after the device has returned to original thermal equilibrium.

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
I _{DRM}	Repetitive peak off-state current	V _D = rated V _{DRM}	I _G = 0	T _C = 110°C			±2	mA
I _{GT}	Gate trigger current	$V_{\text{supply}} = +12 \text{ V}\dagger$ $V_{\text{supply}} = +12 \text{ V}\dagger$ $V_{\text{supply}} = -12 \text{ V}\dagger$ $V_{\text{supply}} = -12 \text{ V}\dagger$	$R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{I} = 10 \Omega$	$t_{p(g)} > 20 \ \mu s$ $t_{p(g)} > 20 \ \mu s$ $t_{p(g)} > 20 \ \mu s$ $t_{p(g)} > 20 \ \mu s$		12 -19 -16 34	50 -50 -50	mA
V _{GT}	Gate trigger voltage	$\begin{aligned} &V_{\text{supply}} = +12 \text{ V}\dagger \\ &V_{\text{supply}} = +12 \text{ V}\dagger \\ &V_{\text{supply}} = -12 \text{ V}\dagger \\ &V_{\text{supply}} = -12 \text{ V}\dagger \end{aligned}$	$R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$ $R_{L} = 10 \Omega$	$t_{p(g)} > 20 \mu \text{s}$ $t_{p(g)} > 20 \mu \text{s}$ $t_{p(g)} > 20 \mu \text{s}$ $t_{p(g)} > 20 \mu \text{s}$ $t_{p(g)} > 20 \mu \text{s}$		0.8 -0.8 -0.8 0.9	2 -2 -2 2	V
V _T	On-state voltage	I _{TM} = ±22.5 A	$I_G = 50mA$	(see Note 4)		±1.4	±1.7	V

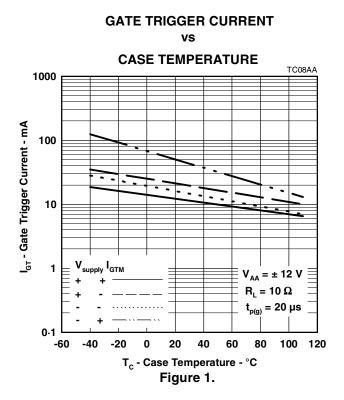
[†] All voltages are with respect to Main Terminal 1.

NOTE 4: This parameter must be measured using pulse techniques, t_p = ≤ 1 ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

PRODUCT INFORMATION

electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

	PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
1	Holding current	V _{supply} = +12 V†	$I_G = 0$	Init' I _{TM} = 100 mA		22	40	mA
'н	riolaing current	$V_{\text{supply}} = -12 \text{ V}\dagger$	$I_G = 0$	Init' $I_{TM} = -100 \text{ mA}$		-12	-40	IIIA
I.	Latching current	$V_{\text{supply}} = +12 \text{ V}^{\dagger}$	(see Note 5)				80	mA
"L		$V_{\text{supply}} = -12 \text{ V}\dagger$					-80	ША
dv/dt	Critical rate of rise of	$V_D = Rated V_D$	I _G = 0	T _C = 110°C		±400		V/µs
uv/ut	off-state voltage	VD - Haled VD	ig – 0	1C = 110 O		±400		ν/μ5
dv/dt _(c)	Critical rise of	$V_D = Rated V_D$		$T_C = 80^{\circ}C$	±1.2	±9		V/µs
uv/ut _(c)	commutation voltage	$di/dt = 0.5 I_{T(RMS)}/ms$		$I_{T} = 1.4 I_{T(RMS)}$				ν/μ5
di/dt	Critical rate of rise of	$V_D = Rated V_D$	I _{GT} = 50 mA	T _C = 110°C		±100		A/µs
di/dt	on -state current	$di_G/dt = 50 \text{ mA/}\mu\text{s}$				±100		Α/μδ

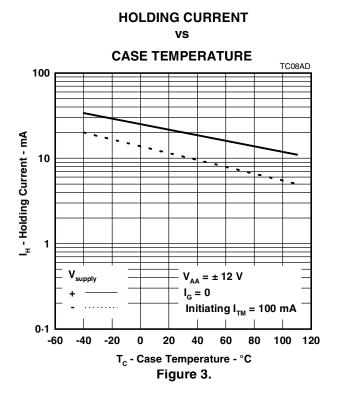

[†] All voltages are with respect to Main Terminal 1.

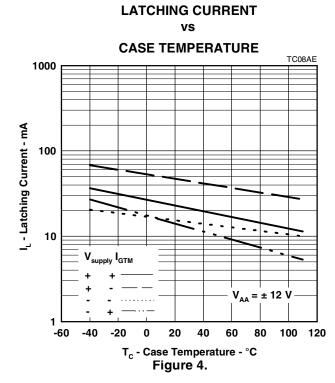
NOTE 5: The triacs are triggered by a 15-V (open-circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G = 100 \ \Omega$, $t_{p(g)} = 20 \ \mu s$, $t_r = \le 15 \ ns$, $f = 1 \ kHz$.

thermal characteristics

PARAMETER			TYP	MAX	UNIT
$R_{\theta JC}$	Junction to case thermal resistance			1.9	°C/W
$R_{\theta JA}$	Junction to free air thermal resistance			62.5	°C/W

TYPICAL CHARACTERISTICS


vs **CASE TEMPERATURE** TC08AB 10 V_{cr} - Gate Trigger Voltage - V $V_{\text{supply}} I_{\text{GTM}}$ $V_{\Delta\Delta} = \pm 12 \text{ V}$ $R_1 = 10 \Omega$ t_{p(g)} = 20 μs 0.1 80 0 20 40 60 100 120 -60 -40 -20 T_c - Case Temperature - °C


GATE TRIGGER VOLTAGE

PRODUCT INFORMATION

Figure 2.

TYPICAL CHARACTERISTICS

