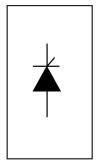
International Rectifier


SAFE**IR** Series 16TTS...SPbF

SURFACE MOUNTABLE PHASE CONTROL SCR Lead-Free ("PbF" suffix)

Description/Features

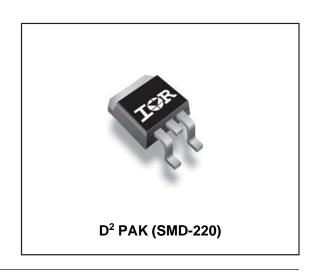
The 16TTS...SPbF SAFE**IR** series of silicon controlled rectifiers are specifically designed for medium power switching and phase control applications. The glass passivation technology used has reliable operation up to 125° C junction temperature.

Typical applications are in input rectification (soft start) and these products are designed to be used with International Rectifier input diodes, switches and output rectifiers which are available in identical package outlines.

V_T < 1.4V @ 10A

 $I_{TCM} = 200A$

 $V_{DDM} = 800V - 1200V$


Output Current in Typical Applications

Applications	Single-phase Bridge	Three-phase Bridge	Units
NEMAFR-4orG10glassfabric-basedepoxy with4oz(140μm)copper	2.5	3.5	
Aluminum IMS, R _{thCA} =15°C/W	6.3	9.5	Α
AluminumIMS with heatsink, R _{thCA} =5°C/W	14.0	18.5	

 $T_A = 55$ °C, $T_J = 125$ °C, footprint 300mm²

Major Ratings and Characteristics

Characteristics	Values	Units
I _{T(AV)} Sinusoidal waveform	10	Α
I _{RMS}	16	Α
V _{RRM} /V _{DRM}	800-1200	V
I _{TSM}	200	Α
V _T @16A,T _J =25°C	1.4	V
dv/dt	500	V/µs
di/dt	150	A/µs
T _J	-40 to 125	°C

Voltage Ratings

Part Number	V _{RRM} , maximum peak reverse voltage V	V _{DRM} , maximum peak direct voltage V	I _{RRM} /I _{DRM} 125°C mA
16TTS08S	800	800	10
16TTS12S	1200	1200	10

Absolute Maximum Ratings

	Parameters	16T	TSS	Units		Conditions
<u> </u>						
I _{T(AV)}	Max.AverageOn-stateCurrent	1	0	Α	@1 _c =93°C,18	30° conduction half sine wave
I _{RMS}	Max.RMSOn-stateCurrent	1	6			
I _{TSM}	Max.PeakOneCycleNon-Repetitive	17	70		10msSinepuls	e,ratedV _{RRM} applied
	SurgeCurrent	20	00		10msSinepulse	e,novoltagereapplied
I ² t	Max.I ² tforfusing	14	14	A ² s	10msSinepuls	e,ratedV _{RRM} applied
		20	00		10msSinepulse	e,novoltagereapplied
I ² √t	Max.I ² √tforfusing	20	2000		t=0.1to10ms,novoltagereapplied	
V _{TM}	Max.On-stateVoltageDrop	1.4		V	@ 16A, T _J = 25°C	
r _t	On-state slope resistance	24.0		mΩ	T _J = 125°C	
V _{T(TO)}	Threshold Voltage	1.1		V		
I _{RM} /I _{DM}	Max.Reverse and Direct	0.	0.5		T _J = 25 °C	V = rated V / V
	Leakage Current	1	0		T _J = 125 °C	$V_R = rated V_{RRM} / V_{DRM}$
I _H	Holding Current	Тур.	Max.		Anode Supply	= 6V, Resistive load, Initial I _T =1A
			100	mA		
IL	Max. Latching Current	200		mA	Anode Supply	= 6V, Resistive load
dv/dt	Max. Rate of Rise of off-state Voltage	500		V/µs		
di/dt	Max. Rate of Rise of turned-on Current	150		A/µs		

Bulletin I2216 09/06

Triggering

	Parameters	16TTSS	Units	Conditions
P _{GM}	Max. peak Gate Power	8.0	W	
P _{G(AV)}	Max. average Gate Power	2.0		
+ I _{GM}	Max. paek positive Gate Current	1.5	Α	
- V _{GM}	Max. paek negative Gate Voltage	10	V	
I _{GT}	Max. required DC Gate Current	90	mA	Anode supply = 6V, resistive load, T _J = - 10°C
	to trigger	60		Anode supply = 6V, resistive load, T _J = 25°C
		35		Anode supply = 6V, resistive load, T _J = 125°C
V _{GT}	Max. required DC Gate Voltage	3.0	V	Anode supply = 6V, resistive load, T _J = - 10°C
	to trigger	2.0		Anode supply = 6V, resistive load, T _J = 25°C
		1.0		Anode supply = 6V, resistive load, T _J = 125°C
V_{GD}	Max. DC Gate Voltage not to trigger	0.25		T _J = 125°C, V _{DRM} = rated value
I_{GD}	Max. DC Gate Current not to trigger	2.0	mA	T_J = 125°C, V_{DRM} = rated value

Switching

	Parameters	16TTSS	Units	Conditions
t _{gt}	Typical turn-on time	0.9	μs	$T_J = 25$ °C
t _{rr}	Typical reverse recovery time	4		T _J = 125°C
t _q	Typical turn-off time	110		

Thermal-Mechanical Specifications

	Parameters	16TTSS	Units	Conditions
T _J	Max. Junction Temperature Range	-40 to 125	°C	
T _{stg}	Max. Storage Temperature Range	-40 to 125	°C	
	Soldering Temperature	240	°C	for 10 seconds (1.6mm from case)
R _{thJC}	Max.ThermalResistanceJunction	1.3	°C/W	DCoperation
	to Case			
R _{thJA}	Typ. Thermal Resistance Junction	40	°C/W	
	to Ambient (PCB Mount)**			
wt	Approximate Weight	2 (0.07)	g(oz.)	
Т	Case Style	D ² Pak (SMD-220)		

^{**} When mounted on 1" square (650mm²) PCB of FR-4 or G-10 material 4 oz (140 μ m) copper 40°C/W For recommended footprint and soldering techniques refer to application note #AN-994

Bulletin I2216 09/06

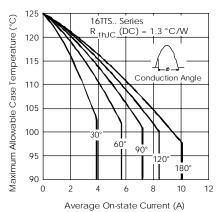


Fig. 1 - Current Rating Characteristics

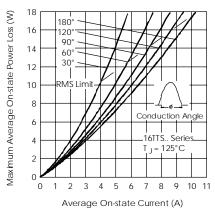


Fig. 3 - On-state Power Loss Characteristics

Fig. 6 - Maximum Non-Repetitive Surge Current

Document Number: 94381

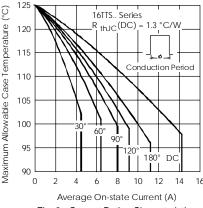


Fig. 2 - Current Rating Characteristics

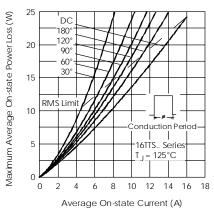


Fig. 4 - On-state Power Loss Characteristics

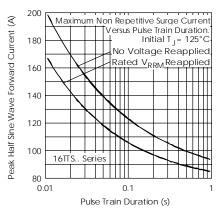


Fig. 7 - Maximum Non-Repetitive Surge Current

www.vishay.com

2

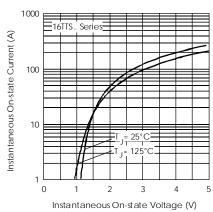


Fig. 7 - On-state Voltage Drop Characteristics

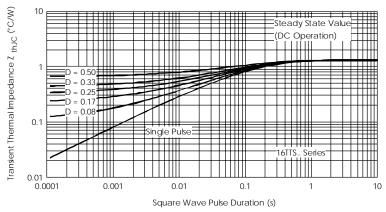


Fig. 8 - Thermal Impedance $Z_{\rm thJC}$ Characteristics

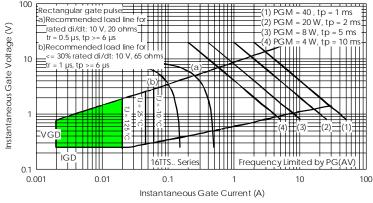
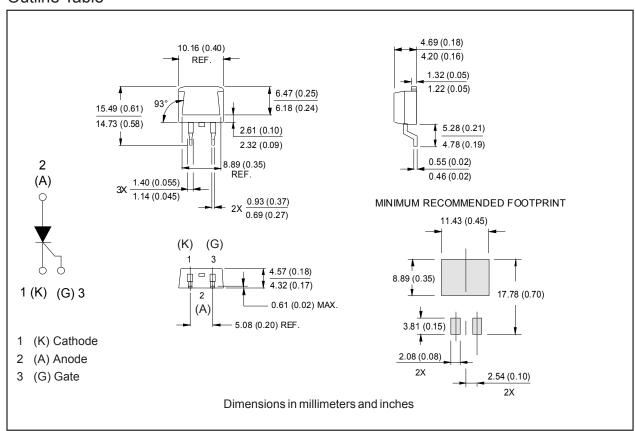
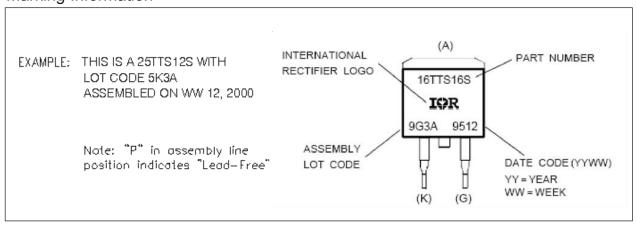
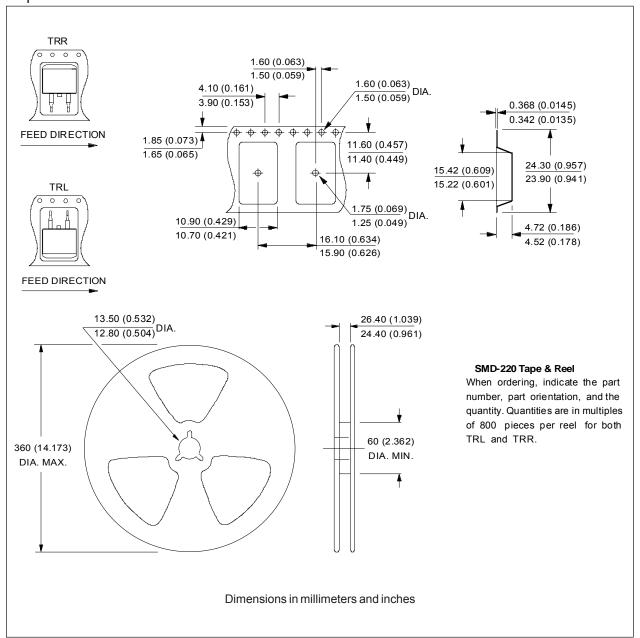
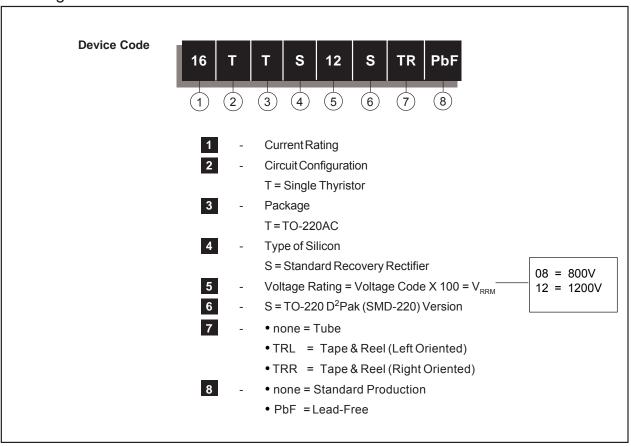




Fig. 9 - Gate Characteristics


Outline Table


Marking Information

Tape & Reel Information

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level and Lead-Free.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7309 09/06

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier[®], IR[®], the IR logo, HEXFET[®], HEXSense[®], HEXDIP[®], DOL[®], INTERO[®], and POWIRTRAIN[®] are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

Document Number: 99901 www.vishay.com
Revision: 12-Mar-07 1