International IOR Rectifier

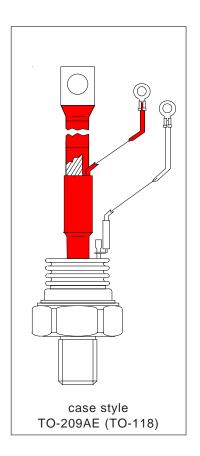
ST330SPbF SERIES

PHASE CONTROL THYRISTORS

Stud Version

Features

- Center amplifying gate
- Hermetic metal case with ceramic insulator
- International standard case TO-209AE (TO-118)
- Compression Bonded Encapsulation for heavy duty operations such as severe thermal cycling
- Lead Free


330A

Typical Applications

- DC motor controls
- Controlled DC power supplies
- AC controllers

Major Ratings and Characteristics

Parameters		ST330S	Units
I _{T(AV)}		330	А
	@ T _C	75	°C
I _{T(RMS)}		520	А
I _{TSM}	@ 50Hz	9000	А
	@ 60Hz	9420	А
l ² t @ 50Hz		405	KA ² s
	@ 60Hz	370	KA ² s
V _{DRM} /V _{RRM}		400 to 2000	V
t _q typical		100	μs
T _J		- 40 to 125	°C

Document Number: 94409

www.vishay.com

Bulletin I25242 10/06

ELECTRICAL SPECIFICATIONS

Voltage Ratings

Type number	Voltage V _{DRM} /V _{RRM} , max. repetitive peak and off-state voltage V		V _{RSM} , maximum non- repetitive peak voltage V	I _{DRM} /I _{RRM} max. @ T _J = T _J max mA
	04	400	500	
	08	800	900	
ST330S	12	1200	1300	50
	16	1600	1700	
	20	2000	2100	

On-state Conduction

	Parameter	ST330S	Units	Conditions	Conditions		
I _{T(AV)} Max. average on-state current		330	Α	180° condu	180° conduction, half sine wave		
` ′	@ Case temperature	75	°C				
I _{T(RMS)}	Max. RMS on-state current	520	А	DC @ 75°C case temperature			
I _{TSM}	Max. peak, one-cycle	9000		t = 10ms	No voltage		
	non-repetitive surge current	9420		t = 8.3ms	reapplied		
		7570	A	t = 10ms	100% V _{RRM}		
		7920		t = 8.3ms	reapplied	Sinusoidal half wave,	
I ² t	Maximum I ² t for fusing	405		t = 10ms	No voltage	Initial $T_J = T_J$ max.	
		370	KA ² s	t = 8.3ms	reapplied		
		287	· IVA 5	t = 10ms	100% V _{RRM}		
		262		t = 8.3ms	reapplied		
I ² √t	Maximum I ² √t for fusing	4050	KA²√s	t = 0.1 to 10ms, no voltage reapplied		e reapplied	
V _{T(TO)1}	Low level value of threshold voltage	0.834	V	(16.7% x π	x I _{T(AV)} < I < π >	$(I_{T(AV)}), T_J = T_J \text{ max.}$	
V _{T(TO)2} High level value of threshold voltage		0.898		$(I > \pi \times I_{T(AV)}), T_J = T_J \text{ max.}$			
r _{t1}	Low level value of on-state slope resistance	0.687	· mΩ	$(16.7\% \times \pi \times I_{T(AV)} < I < \pi \times I_{T(AV)}), T_J = T_J \text{ max.}$			
r _{t2}	High level value of on-state 0.636 slope resistance		. 11152	$(I > \pi \times I_{T(A)})$	(J) , $T_J = T_J \text{ max.}$		
V _{TM}	Max. on-state voltage	1.52	V	$I_{pk} = 1000A$, $T_J = T_J \text{ max}$, $t_p = 10 \text{ms}$ sine pul		t _p = 10ms sine pulse	
I _H	Maximum holding current	600	^	T _J = 25°C, anode supply 12V resistive load			
IL	Max. (typical) latching current	1000	mA				

Switching

	Parameter	ST330S	Units	Conditions
di/dt	Max. non-repetitive rate of rise of turned-on current	1000	A/µs	Gate drive 20V, 20 Ω , $t_r \le 1 \mu s$ $T_J = T_J \text{ max, anode voltage} \le 80\% \text{ V}_{DRM}$
t _d	Typical delay time	1.0		Gate current A, $\operatorname{di}_g/\operatorname{dt} = 1\operatorname{A}/\mu s$ $\operatorname{V}_d = 0.67\% \operatorname{V}_{\operatorname{DRM}}, \operatorname{T}_J = 25^{\circ}\operatorname{C}$
t _q	Typical turn-off time	100	μs	$I_{TM} = 550A$, $T_J = T_J$ max, $di/dt = 40A/\mu s$, $V_R = 50V$ $dv/dt = 20V/\mu s$, Gate $0V 100\Omega$, $t_p = 500\mu s$

Blocking

	Parameter	ST330S	Units	Conditions
dv/dt	Maximum critical rate of rise of off-state voltage	500	V/µs	$T_J = T_J$ max. linear to 80% rated V_{DRM}
I _{RRM} I _{DRM}	Max. peak reverse and off-state leakage current	50	mA	$T_J = T_J \text{ max, rated } V_{DRM} / V_{RRM} \text{ applied}$

Triggering

	999							
	Parameter	ST330S		Units	Conditions			
P _{GM}	Maximum peak gate power	10.0		w	$T_J = T_J \text{ max, } t_p$	≤5ms		
P _{G(AV)}	Maximum average gate power	2.	0	VV	$T_J = T_J \text{ max, } f = 50 \text{Hz, } d\% = 50$			
I _{GM}	Max. peak positive gate current	3.	0	Α	$T_J = T_J \max, t_p \le 5 \text{ms}$			
+V _{GM}	Maximum peak positive	2	0					
	gate voltage		U	V	T T			
-V _{GM}	Maximum peak negative	-	0	V	$T_J = T_J \text{ max, } t_p$	≤ oms		
	gate voltage	5.0						
		TYP.	MAX.					
I _{GT}	DC gate current required	200	-		T _J = - 40°C			
	to trigger	100	200	mA	$T_J = 25^{\circ}C$	Max. required gate trigger/ cur-		
		50	-		T _J = 125°C	rent/voltage are the lowest value which will trigger all units 12V		
V _{GT}	DC gate voltage required	2.5	-		T _J = - 40°C	anode-to-cathode applied		
	to trigger	1.8	3.0	V	$T_J = 25^{\circ}C$			
		1.1	-		T _J = 125°C			
I _{GD}	DC gate current not to trigger	0.25		mA		Max. gate current/ voltage not to trigger is the max. value which		
V _{GD}	DC gate voltage not to trigger			V	$T_J = T_J \text{ max}$	will not trigger any unit with rated V _{DRM} anode-to-cathode applied		

Bulletin I25242 10/06

Thermal and Mechanical Specification

	Parameter	ST330S	Units	Conditions		
T _J	Max. operating temperature range	-40 to 125				
T _{stg}	Max. storage temperature range	-40 to 150	°C			
R _{thJC}	Max. thermal resistance,	0.10		DC operation		
	junction to case		K/W			
R _{thCS}	Max. thermal resistance,	0.03		Mounting surface, smooth, flat and greased		
	case to heatsink					
Т	Mounting torque, ±10%	48.5	Nm N	Non lubricated threads		
		(425)	(lbf-in)	Non lubricated trireads		
wt	Approximate weight	535	g			
	Case style TO - 209AE (TO-1		118)	See Outline Table		

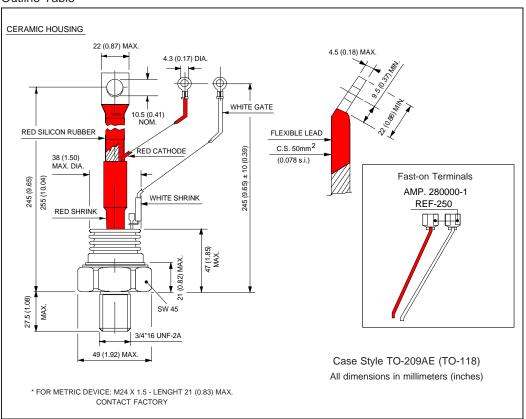

ΔR_{thJC} Conduction

(The following table shows the increment of thermal resistence R_{thJC} when devices operate at different conduction angles than DC)

1100									
Conduction angle	Sinusoidal conduction	Rectangular conduction	Units	Conditions					
180°	0.011	0.008							
120°	0.013	0.014							
90°	0.017	0.018	K/W	$T_J = T_J \text{ max.}$					
60°	0.025	0.026							
30°	0.041	0.041							

Ordering Information Table

Device Code


- 1 Thyristor
- 2 Essential part number
- 3 0 = Converter grade
- 4 S = Compression bonding Stud
- 5 Voltage code: Code x 100 = V_{RRM} (See Voltage Rating Table)
- 6 P = Stud base 3/4"-16UNF-2A threads
- 7 0 = Eyelet terminals (Gate and Auxiliary Cathode Leads)
 - 1 = Fast on terminals (Gate and Auxiliary Cathode Leads)
- 8 Lead Free

Document Number: 94409

www.vishay.com

Outline Table

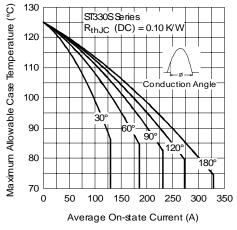


Fig. 1 - Current Ratings Characteristics

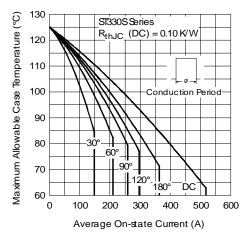


Fig. 2 - Current Ratings Characteristics

Document Number: 94409

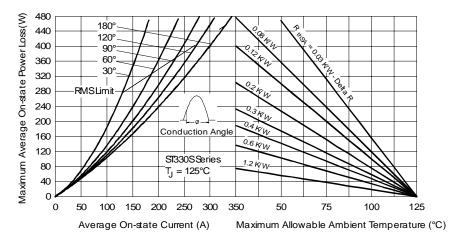


Fig. 3 - On-state Power Loss Characteristics

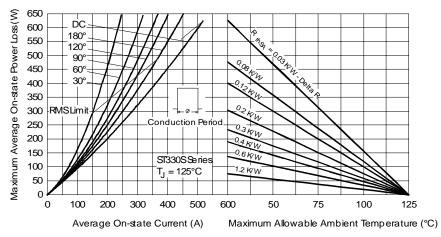


Fig. 4 - On-state Power Loss Characteristics

Fig. 5 - Maximum Non-Repetitive Surge Current

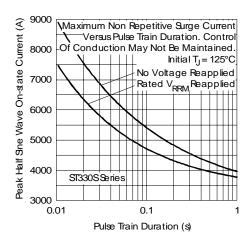


Fig. 6 - Maximum Non-Repetitive Surge Current

Document Number: 94409

www.vishay.com

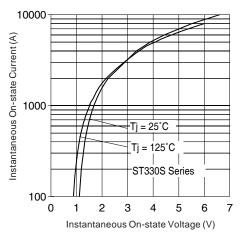


Fig. 7 - On-state Voltage Drop Characteristics

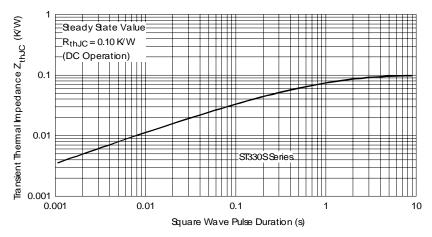


Fig. 8 - Thermal Impedance Z_{thJC} Characteristic

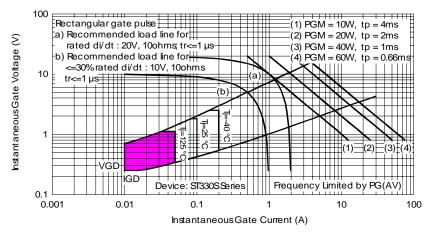


Fig. 9 - Gate Characteristics

Document Number: 94409 www.vishay.com Bulletin I25242 10/06

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.

International Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309

10/06

Document Number: 94409 www.vishay.com

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier[®], IR[®], the IR logo, HEXFET[®], HEXSense[®], HEXDIP[®], DOL[®], INTERO[®], and POWIRTRAIN[®] are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

Document Number: 99901 www.vishay.com
Revision: 12-Mar-07 1