International Rectifier

IR140CSPTRPbF

FlipKYTM 1 Amp

Features

- Ultra Low V_F per Footprint Area
- Low Thermal Resistance
- One-fifth Footprint of SMA
- Super Low Profile (<.7mm)
- Available Tested on Tape & Reel
- Lead-Free ("PbF" suffix)

Major Ratings and Characteristics

Characteristics	Values	Units
I _{F(AV)} Rectangular waveform	1.0	А
V _{RRM}	40	V
I_{FSM} @ tp = 5 μ s sine	250	Α
V _F @1.0 Apk, T _J =125°C	0.38	V
T _J range	- 55 to 150	°C

Description

True chip-scale packaging is available from International Rectifier. The IR140CSPTRPbF surface-mount Schottky rectifier has been designed for applications requiring low forward drop and very small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- · Small foot print, surface mountable
- · Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

The FlipKYTM package, is one-fifth the footprint of a comparable SMA package and has a profile of less then .7mm. Combined with the low thermal resistance of the die level device, this makes the FlipKYTM the best device for application where printed circuit board space is at a premium and in extremely thin application environments such as battery packs, cell phones and PCMCIA cards.

Document Number: 94279 www.vishay.com

Voltage Ratings

Part number	IR140CSPTRPbF	
V _R Max. DC Reverse Voltage (V)	40	
V _{RWM} Max. Working Peak Reverse Voltage (V)		

Absolute Maximum Ratings

	Parameters	Value	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	1.0	Α	50% duty cycle @ T _{PCB} = 112°	C, rectangular wave form
I _{FSM}	Max. Peak One Cycle Non-Repetitive	250	А	5μs Sine or 3μs Rect. pulse	Following any rated load condition and
	Surge Current @ 25°C	21		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non-Repetitive Avalanche Energy	10	mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 2.0\text{A}, L = 5.0\text{mH}$	
I _{AR}	Repetitive Avalanche Current	2.0	А	Current decaying linearly to zero in 1 μ sec Frequency limited by T_{J} max. Va = 1.5 x Vr typical	

Electrical Specifications

	Parameters	Тур.	Max.	Units		Conditions
V _{FM}	Max. Forward Voltage (1)	0.43	0.48	V	@ 1A	T _J = 25 °C
	Drop	0.51	0.56		@ 2A	-
	* See Fig. 1	0.34	0.38		@ 1A	T _J = 125 °C
		0.46	0.53		@ 2A	
I _{RM}	Max. Reverse Leakage (1)	10	80	μA	T _J = 25 °C	$V_R = \text{rated } V_R$
	Current	3.5	20			V _R = 20V
	* See Fig. 2	2	10			V _R = 10V
		1.5	5			V _R = 5V
		9.0	20	mA	T _J = 125 °C	V _R = rated V _R
		3.5	8			V _R = 20V
		2.5	6			V _R = 10V
		2	5			V _R = 5V
C _T	Max. Junction Capacitance	-	160	pF	V _R = 5V _{DC} (test signal range 100kHz to 1MHz) 25°C	
dv/dt	Max. Volatge Rate of Charge	-	10000	V/ µs	(Rated V _R)	

⁽¹⁾ Pulse Width < 300 μ s, Duty Cycle < 2%

Thermal-Mechanical Specifications

	Parameters	Value	Units	Conditions
TJ	Max. Junction Temperature Range (*)	-55 to 150	°C	
T _{stg}	Max. Storage Temperature Range	-55 to 150	°C	
R _{thJL}	Typ. Thermal Resistance Junction to PCB (**)	40	°C/W	DC operation
R _{thJA}	Max. Thermal Resistance Junction to Ambient	62	°C/W	

 $[\]frac{\text{(*)}}{\text{dTj}} < \frac{\text{dPtot}}{\text{Rth(j-a)}} < \frac{1}{\text{Rth(j-a)}} \quad \text{thermal runaway condition for a diode on its own heatsink}$

^(**) Mounted 1 inch square PCB

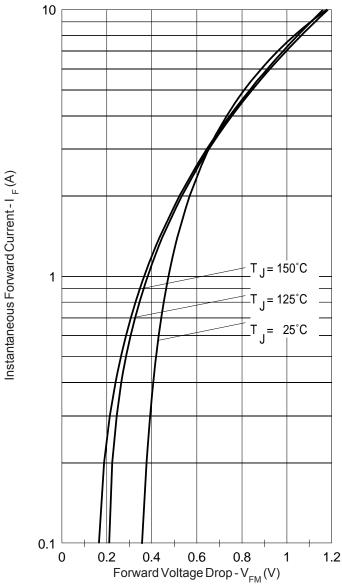


Fig. 1 - Max. Forward Voltage Drop Characteristics (Per Leg)

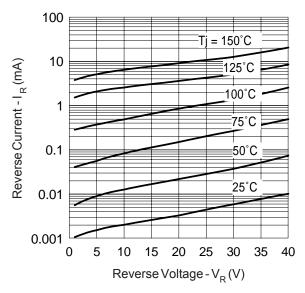


Fig. 2-Typical Values Of Reverse Current Vs. Reverse Voltage (Per Leg)

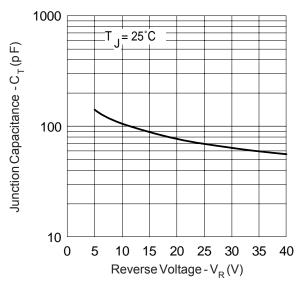


Fig. 3 - Typical Junction Capacitance Vs. Reverse Voltage (Per Leg)

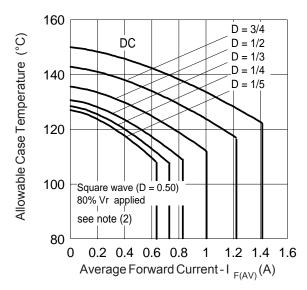


Fig. 4 - Max. Allowable Case Temperature Vs. Average Forward Current (Per Leg)

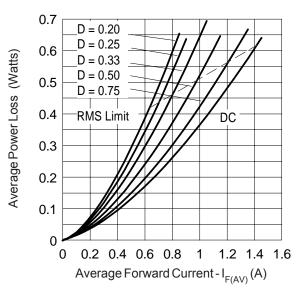


Fig. 5 - Forward Power Loss Characteristics (Per Leg)

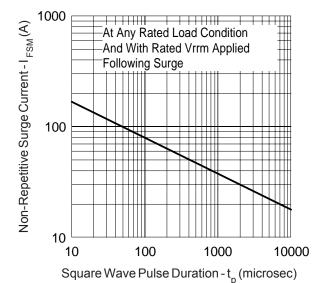


Fig. 6 - Max. Non-Repetitive Surge Current (Per Leg)

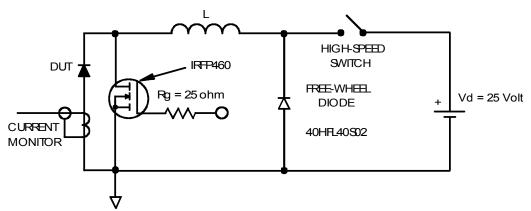
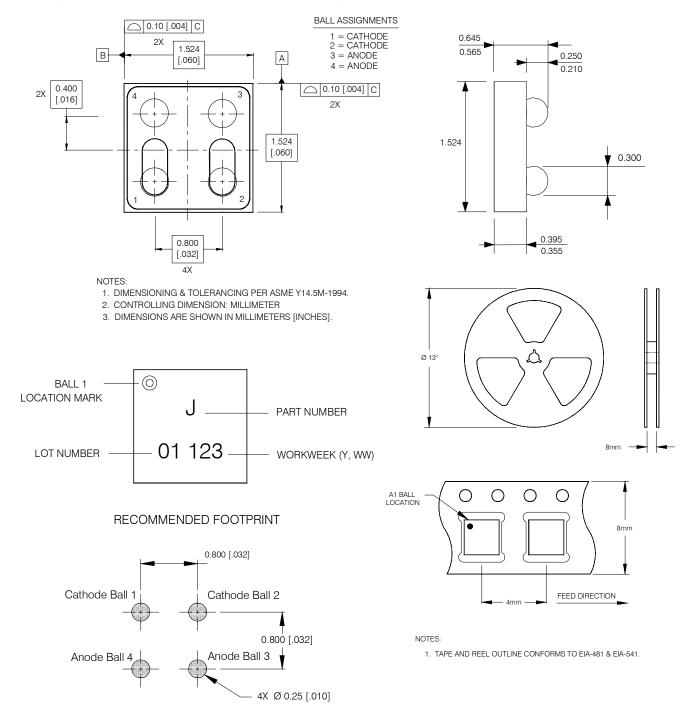



Fig. 8 - Unclamped Inductive Test Circuit

(2) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D)$ (see Fig. 6); $Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R (1 - D)$; $I_R @ 80\% V_R$ applied

FlipKY TM Outline Dimension and Tape and Reel

Data and specifications subject to change without notice.

This product has been designed for Consumer Level and Lead-Free.

Qualification Standards can be found on IR's Web site.

International Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309

X. (310) 232-7309

Document Number: 94279

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier[®], IR[®], the IR logo, HEXFET[®], HEXSense[®], HEXDIP[®], DOL[®], INTERO[®], and POWIRTRAIN[®] are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

Document Number: 99901 www.vishay.com
Revision: 12-Mar-07 1