

- AMR Sensor with 360° capability
- TDFN outline $2.5 \times 2.5 \times 0.75 \mathrm{~mm}^{3}$
- Three 120° phase-shifted signals
- Moderate field strength requirements

DESCRIPTION

The KMT36H is a magnetic field sensor utilizing the anisotropic magneto resistance effect. Therefore the sensor is sensing the magnetic field direction rather than the magnetic field strength. The sensor contains three Wheatstone bridges rotated by 120°. A rotating magnetic field (typical strength $25 \mathrm{kA} / \mathrm{m}$ in the sensor plane) will result in three sinusoidal output signals with a period of 180°, phase shifted by 60° field angle. By use of a modified atan algorithm the field angle can be calculated with high accuracy.

As an unique feature, the KMT36H is able to measure full 360° by utilizing an additional magnetic field which is generated by a planar coil that is integrated on the chip. The $180 \% 360^{\circ}$ determination is done by a simple sign distinction and may be computed periodically or only once at power up.

FEATURES

APPLICATIONS

- Ideal for harsh environments due to magnetic sensing principle
- Contactless absolute angular measurement over 360°
- Accuracy better than +/- 0.5°
- Three bridge signals with 120° phase difference
- Tiny TDFN-housing $2.5 \times 2.5 \times 0.8 \mathrm{~mm}^{3}$
- Absolute angle measurement
- Potentiometer replacement
- Motor motion control
- Camera positioning
- Robotics

CHARACTERISTIC VALUES

Parameter	Condition	Symbol	Min	Typ	Max	Unit
Mechanical dimensions - TDFN						
Length		X		2.5		mm
Width		Y		2.5		mm
Height		Z		0.75		mm
Mechanical dimensions - SO8						
Length		X		4.9		mm
Width		Y		6.0		mm
Height		Z			1.75	mm
Operating limits						
Supply voltage		V_{cc}		5	12	V
Coil current		$\mathrm{I}_{\text {coil }}$		20	50	mA
Operating temperature			-40		+125	${ }^{\circ} \mathrm{C}$
Storage temperature			-40		+125	${ }^{\circ} \mathrm{C}$

Parameter	Condition	Symbol	Min	Typ	Max	Unit
Sensor specification						
Applied magnetic field	2), 3)	H	15	25	60	kA/m
Bridge resistance	$\mathrm{T}=25^{\circ} \mathrm{C}$	R_{B}	2.4	3.0	3.6	$\mathrm{k} \Omega$
max. signal range	$\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{H}=25 \mathrm{kA} / \mathrm{m}$	$\Delta \mathrm{V} / \mathrm{V}_{\mathrm{cc}}$	16	20		mV / V
Offset voltage 4)	$\mathrm{T}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {OFF }} / \mathrm{V}_{\text {cc }}$	-5		+5	mV / V
Hysteresis 1) (Repeatability)	$\mathrm{H}=25 \mathrm{kA} / \mathrm{m}$	Hyst		0.15	0.30	deg
Accuracy 1)	$\mathrm{H}=25 \mathrm{kA} / \mathrm{m}$	$\Delta \alpha$		0.15	0.30	deg
TC of amplitude	$\begin{aligned} & \text { Ref.temp. Tref }=-25^{\circ} \mathrm{C} \text {, } \\ & \mathrm{H}=25 \mathrm{kA} / \mathrm{m} \end{aligned}$	TCamp		-0.32		\%/K
TC of bridge resistance	Ref.temp. Tref $=-25^{\circ} \mathrm{C}$	TC ${ }_{\text {R }}$		+0.32		\%/K
Coil resistance	$\mathrm{T}=25^{\circ} \mathrm{C}$	Rcoil	75	100	150	Ω

1) Hysteresis and accuracy are depending nearly inversely proportional on the magnetic field strength.
2) Generated with reference magnet 67.044 Magnetfabrik Bonn ($25 \mathrm{kA} / \mathrm{m} @ 5.2 \mathrm{~mm}$ distance).
3) Minimum value depends on decreasing accuracy, upper limit on decreasing coil influence. Both are no absolute limits, but depend on the given application requirements.
4) Offset voltages measured as difference voltages $\mathrm{V}_{\mathrm{O} 1}-\mathrm{V}_{\mathrm{O} 2}, \mathrm{~V}_{\mathrm{O} 2}-\mathrm{V}_{\mathrm{O} 3}$ and $\mathrm{V}_{\mathrm{O3}}-\mathrm{V}_{\mathrm{O} 1}$ in relation to V_{CC}.

BLOCK DIAGRAM

Figure 1: internal and external connections (TDFN and SO8, Chip)

SENSOR OUTLINE

Figure 2: SO8 outline

Figure 3: TDFN outline

Pin Assignment for TDFN and SO8:

Pin	Symbol	Function
1	V $_{\text {O2 }}$	signal output 2
2	GND	negative supply voltage
3	V $_{\text {CC }}$	positive supply voltage
4	V $_{\text {O1 }}$	signal output 1
5	V $_{\text {COIL }}+$	positive coil input
6	n. c.	not connected
7	V $_{\text {COIL }}-$	negative coil input
8	V $_{\text {O3 }}$	signal output 3

Recommended Solder Layout for TDFN:

Recommended solder reflow process according to IPC/JEDEC J-STD-020D (Pb-Free Process)

TAPE AND REEL PACKAGING INFORMATION

DESCRIPTION	REEL SIZE	UNITS/REEL	PIN 1 ORIENTATION	NOTE
KMT36H	$7 "$	3,000	Top-right of sprocket hole side	Top-left of sprocket hole side
KMT36H/SO	$13 "$	2,500	\square	

TYPICAL PERFORMANCE CURVES

field angle in deg

$$
\square \mathrm{V} 1=\mathrm{Vo2}-\mathrm{Vo} 1 _\mathrm{V} 2=\mathrm{Vo3}-\mathrm{Vo} 2 _\mathrm{V} 3=\mathrm{Vo} 1 \mathrm{Vo3}
$$

Figure 4: output voltage change due to coil influence

Figure 3: output voltages

SIGNAL EVALUATION

180° EVALUATION

As output voltages $\left(\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}\right)$ we use the three possible differences between the three signal outputs (see fig. 3). At first the true offsets must be subtracted from the raw signals. The field angle α in a 180°-range then can be calculated in the following manner:

$$
\alpha=\frac{1}{2} \cdot \arctan \left(\frac{2 \cdot \frac{V n}{V m}+1}{\sqrt{3}}\right)
$$

Using the three possible combinations of output signals ($m, n=1,2 ; 2,3 ; 3,1$) three results are obtained, which can be averaged to increase accuracy. Comparing the three results gives additional information about their reliability.

360° EVALUATION

In order to distinguish between α and $\alpha+180^{\circ}$ two additional measurements are needed: one with positive, the other with negative coil current. In the next step the change in the signals due to the influence of the coil current must be calculated. The sign of these coil-induced output voltage changes gives the 360°-information by case differentiation (see figure 4). In principle, this 360° discrimination needs to be computed only once at start up. Nevertheless, it is recommended to check the measurement periodically.

APPLICATION EXAMPLE

Figure 5: An exemplary hardware configuration using an Atmel ATtiny44 microcontroller

ORDERING CODE

DEVICE	PACKAGE	MOQ	PART NUMBER
KMT36H	TDFN 2.5×2.5	1 Reel	G-MRCO-021
KMT36H/SO	SO8 (References: JEDEC MS-012)	1 Reel	on request

ORDERING INFORMATION

	Europe	
Measurement Specialties, Inc.	MEAS Deutschland GmbH	Measurement Specialties China
Hauert 13, D-44227 Dortmund,	No. 26, Langshan Road, Shenzhen	
Hampton, VA 23666	Germany.	High-tech Park (North) Nanshan
Tel: 1-800-555-1551	Phone: +49-(0)231-9740-0	District, Shenzhen, China 518107
Fax: 1-757-766-4297	Fax: +49-(0)231-9740-20	Phone: +86-755-33305088
Email: sales@meas-spec.com	Email: info.de@meas-	Fax: +86-755-33305099
Web: www.meas-spec.com	spec.com	Web: www.meas-spec.com
		Web: www.meas-spec.com

The information in this sheet has been carefully reviewed and is believed to be accurate; however, no responsibility is assumed for inaccuracies. Furthermore, this information does not convey to the purchaser of such devices any license under the patent rights to the manufacturer. Measurement Specialties, Inc. reserves the right to make changes without further notice to any product herein. Measurement Specialties, Inc. makes no warranty, representation or guarantee regarding the suitability of its product for any particular purpose, nor does Measurement Specialties, Inc. assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters can and do vary in different applications. All operating parameters must be validated for each customer application by customer's technical experts. Measurement Specialties, Inc. does not convey any license under its patent rights nor the rights of others

