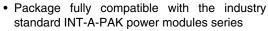


Vishay High Power Products


Three Phase Bridge (Power Modules), 90/110 A

MTK

PRODUCT SUMMARY			
Io	90/110 A		

FEATURES

• High thermal conductivity package, electrically insulated case

- · Excellent power volume ratio, outline for easy connections to power transistor and IGBT modules
- 4000 V_{RMS} isolating voltage
- UL E78996 approved
- Totally lead (Pb)-free
- Designed and qualified for industrial level

DESCRIPTION

A range of extremely compact, encapsulated three phase bridge rectifiers offering efficient and reliable operation. They are intended for use in general purpose and heavy duty applications.

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS	90MT.K	110MT.K	UNITS	
1		90 (120)	110 (150)	А	
I _O	T _C	90 (61)	90 (57)	°C	
	50 Hz	770	950	А	
I _{FSM}	60 Hz	810	1000		
l ² t	50 Hz	3000	4500	A2-	
I~l	60 Hz	2700	4100	A ² s	
I ² √t		30 000	45 000	A ² √s	
V _{RRM}	Range	800 to 1600		V	
T _{Stg}	Range	- 40 to 150		°C	

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS				
TYPE NUMBER	VOLTAGE CODE	V _{RRM} , MAXIMUM REPETITIVE PEAK REVERSE VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	$\begin{aligned} & I_{RRM} \text{ MAXIMUM} \\ \text{AT T}_{J} &= \text{MAXIMUM} \\ & \text{mA} \end{aligned}$
	80	800	900	
	100	1000	1100	
90-110MTK	120	1200	1300	10
	140	1400	1500	
	160	1600	1700	

Document Number: 94352 Revision: 29-Apr-08

90-110MT.KPbF Series

Vishay High Power Products

Three Phase Bridge (Power Modules), 90/110 A

FORWARD CONDUCTION							
PARAMETER	SYMBOL	TEST CONDITIONS		90MT.K	110MT.K	UNITS	
Maximum DC output current at case		120° rect. conduction angle		90 (120)	110 (150)	Α	
temperature	I _O	120 Tect. Cor	iduction angle		90 (61)	90 (57)	°C
Maximum peak, one-cycle		t = 10 ms	No voltage		770	950	
		t = 8.3 ms	reapplied		810	1000	
forward, non-repetitive surge current	I _{FSM}	t = 10 ms	100 % V _{RRM}		650	800	Α
		t = 8.3 ms	reapplied	Initial	680	840	
	Maximum I ² t for fusing I ² t —	t = 10 ms	No voltage	$T_J = T_J$ maximum	3000	4500	A ² s
Maximum I ² t for fusing		t = 8.3 ms	reapplied		2700	4100	
		t = 10 ms	100 % V _{RRM}		2100	3200	
		t = 8.3 ms	reapplied		1900	2900	
Maximum I²√t for fusing	I²√t	t = 0.1 to 10 ms, no voltage reapplied		30 000	45 000	A²√s	
Low level value of threshold voltage	V _{F(TO)1}	(16.7 % x π x I _{F(AV)} < I < π x I _{F(AV)}), T _J maximum		0.89	0.81	V	
High level value of threshold voltage	V _{F(TO)2}	$(I > \pi \times I_{F(AV)})$	$(I > \pi x I_{F(AV)}), T_J$ maximum		1.05	0.99	
Low level value of forward slope resistance	r _{f1}	(16.7 % x π x I _{F(AV)} < I < π x I _{F(AV)}), T _J maximum		5.11	4.37	mΩ	
High level value of forward slope resistance	r _{f2}	$(I > \pi \times I_{F(AV)}), T_J$ maximum		$(I > \pi \times I_{F(AV)}), T_J$ maximum 4.64		.64	11122
Maximum forward voltage drop	V _{FM}	I_{pk} = 150 A, T_J = 25 °C t_p = 400 μ s single junction		1.6	1.4	V	
RMS isolation voltage	V _{ISOL}	$T_J = 25$ °C, all terminal shorted f = 50 Hz, t = 1 s		40	000	V	

THERMAL AND MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	90MT.K	110MT.K	UNITS	
Maximum junction operating and storage temperature range	T _J , T _{Stg}		- 40	to 150	°C	
Maximum thermal resistance, junction to case		DC operation per module	0.21	0.18		
	Ь	DC operation per junction	1.26	1.07		
	□thJC	120° rect. conduction angle per module	0.25	0.21	°C/W	
		120° rect. conduction angle per junction	1.47	1.25]	
Maximum thermal resistance, case to heatsink per module	R _{thCS}	Mounting surface smooth, flat and greased	0.03			
Mounting to heatsing	ık	A mounting compound is recommended and	4	to 6	Nm	
torque ± 10 % to termin	al	the torque should be rechecked after a period of 3 hours to allow for the spread of the		to 4	INIII	
Approximate weight		compound. Lubricated threads.	1	176	g	

Three Phase Bridge (Power Modules), 90/110 A

Vishay High Power Products

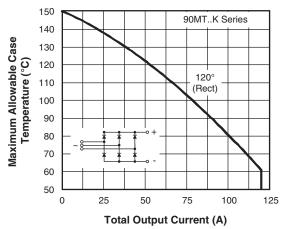


Fig. 1 - Current Ratings Characteristics

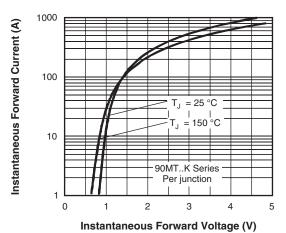


Fig. 2 - Forward Voltage Drop Characteristics

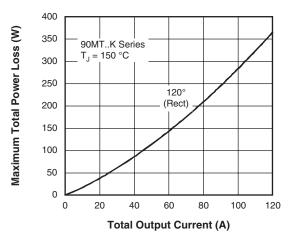
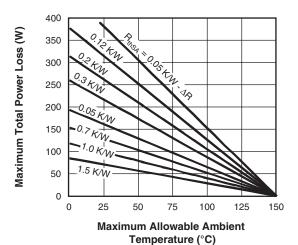



Fig. 3 - Total Power Loss Characteristics

700 At any rated load condition and with 650 rated V_{RRM} applied following surge Initial T_J = 150 °C 600 at 60 Hz 0.0083 s Peak Half Sine Wave Forward Current (A) at 50 Hz 0.0100 s 550 500 450 400 300 90MT..K Series 200 100 **Number of Equal Amplitude Half** Cycle Current Pulses (N)

Fig. 4 - Maximum Non-Repetitive Surge Current

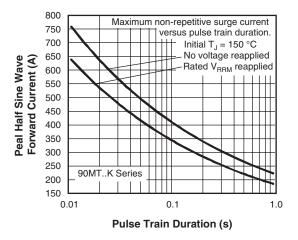


Fig. 5 - Maximum Non-Repetitive Surge Current

90-110MT.KPbF Series

Vishay High Power Products

Three Phase Bridge (Power Modules), 90/110 A

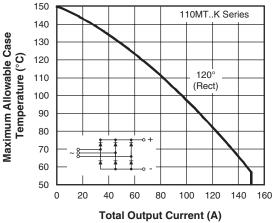


Fig. 6 - Current Ratings Characteristics

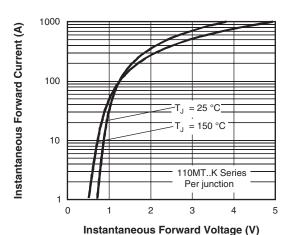


Fig. 7 - Forward Voltage Drop Characteristics

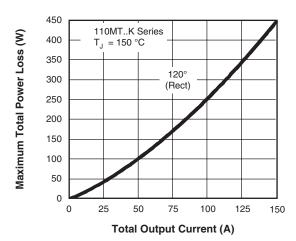
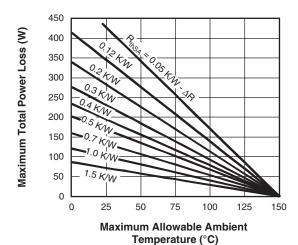



Fig. 8 - Total Power Loss Characteristics

900 At any rated load condition and with rated V_{RRM} applied following surge. 800 Initial T₁ = 150 °C at 60 Hz 0 0083 s Peak Half Sine Wave Forward Current (A) 700 600 500 400 300 110MT..K Series 200 10 100 **Number of Equal Amplitude Half**

Cycle Current Pulses (N)
Fig. 9 - Maximum Non-Repetitive Surge Current

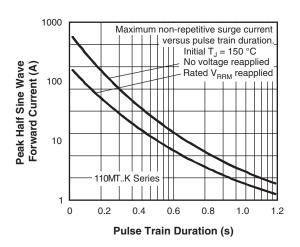


Fig. 10 - Maximum Non-Repetitive Surge Current

Three Phase Bridge (Power Modules), 90/110 A

Vishay High Power Products

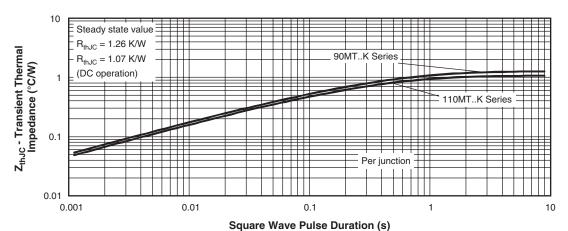
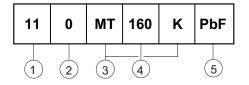
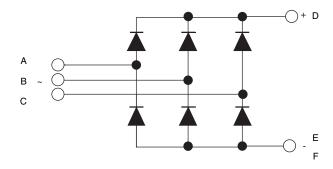



Fig. 11 - Thermal Impedance Z_{thJC} Characteristic

ORDERING INFORMATION TABLE

Device code



- 1 Current rating code: 9 = 90 A (average)
 - 11 = 110 A (average)
- 2 Three phase diodes bridge
- 3 Essential part number
- Voltage code x 10 = V_{RRM} (see Voltage Ratings table)
- 5 PbF = Lead (Pb)-free

Note

• To order the optional hardware go to www.vishay.com/doc?95172

CIRCUIT CONFIGURATION

LINKS TO RELATED DOCUMENTS			
Dimensions and pin out positions	http://www.vishay.com/doc?95004		

Document Number: 94352 Revision: 29-Apr-08

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com
Revision: 11-Mar-11 1