International

SCHOTTKY RECTIFIER

50UQ03GPbF

5.5 Amp

$$I_{F(AV)} = 5.5 Amp$$

 $V_R = 30 V$

Major Ratings and Characteristics

Characteristics	Values	Units
I _{F(AV)} Rectangular waveform	5.5	A
V _{RRM}	30	V
I _{FSM} @tp=5µssine	240	А
V _F @5 Apk, T _J = 125°C	0.35	V
T _J range	-40 to 150	°C

Description/Features

The 50UQ03GPbF I-PAK Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC board. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- 150°C T_J operation
- Unique I-PAK outline
- Center tap configuration
- Small foot print
- Low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability
- Lead-Free ("PbF" suffix)

Document Number: 94231

50UQ03GPbF

Bulletin PD-21139 05/06

International **IOR** Rectifier

Voltage Ratings

	Partnumber	50UQ03GPbF
V_{R}	Max. DC Reverse Voltage (V)	30
V _{RWM}	Max. Working Peak Reverse Voltage (V)	30

Absolute Maximum Ratings

	0					
	Parameters	50UQ	Units	Conditions		
I _{F(AV)}	Max. Average Forward Current * See Fig. 5	5.5	A	50% duty cycle @ T _c = 136°C, r	ectangular wave form	
I _{FSM}	Max. Peak One Cycle Non-Repetitive	240	Α	5µs Sine or 3µs Rect. pulse	Following any rated load condition and with rated V _{RRM} applied	
	Surge Current * See Fig. 7	100		10ms Sine or 6ms Rect. pulse		
E _{AS}	Non-Repetitive Avalanche Energy	10	mJ	T _J = 25 °C, I _{AS} = 2.0 Amps, L = 5	δmH	
I _{AR}	Repetitive Avalanche Current	2.0	A	Current decaying linearly to zero in 1 μ sec Frequency limited by T _J max. V _A = 1.5 x V _R typical		

Electrical Specifications

	Parameters	50UQ	Units		Conditions
V _{EM}	Max. Forward Voltage Drop	0.46	V	@ 5A	T = 25 °C
	* See Fig. 1 (1)	0.53	V	@ 10A	T _J = 25 °C
		0.39	V	@ 5A	T = 125 °C
		0.48	V	@ 10A	1 ₁ = 120 0
I _{RM}	Max. Reverse Leakage Current	1.1	mA	T _J = 25 °C	V_{p} = rated V_{p}
	* See Fig. 2 (1)	58	mA	T _J = 125 °C	v _R - lateu v _R
V _{F(TC}	, Threshold Voltage	0.19	V	$T_J = T_J max.$	
r _t	Forward Slope Resistance	22.22	mΩ		
C _T	Typical Junction Capacitance	590	pF	V_R = 5 V_{DC} (test signal range 100Khz to 1Mhz) 25 °C	
Ls	Typical Series Inductance	5.0	nH	Measured lead to lead 5mm from package body	

(1) Pulse Width < 300µs, Duty Cycle < 2%

Thermal-Mechanical Specifications

	Parameters	50UQ	Units	Conditions
TJ	Max. Junction Temperature Range (*)	-40 to 150	°C	
T _{stg}	Max. Storage Temperature Range	-40 to 150	°C	
R _{thJC}	Max. Thermal Resistance	3.0	°C/W	DC operation * See Fig. 4
	Junction to Case			
wt	Approximate Weight	0.3 (0.01)	g(oz.)	
	Case Style	I-Pal	<	Similar to TO-251SL
	Device Marking	50UQ0	3G	

(*) <u>dPtot</u> < 1 thermal runaway condition for a diode on its own heatsink dTj Rth(j-a)

Document Number: 94231

International **TOR** Rectifier

Instantaneous Forward Curent -I_F(A)

50UQ03GPbF Bulletin PD-21139 05/06

100 1000 T_J= 150°C 100 Reverse Curent - I_R (mA) 125°C 10 100°C 1 ≣75°C 50°C 0.1 25°C 0.01 0.001 0 5 10 15 20 25 30 Reverse Voltage - $V_R(V)$ 10 Fig. 2 - Typical Values of Reverse Current Vs. Reverse Voltage 1000 Junction Capacitance - C $_{
m T}$ (pF) T₁= 25°C Tj = 150°C Tj = 125°C Tj = 25°C 100 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 0 5 10 15 20 25 30 35 Forward Voltage Drop - $V_{FM}(V)$ Reverse Voltage - V_R (V) Fig. 1 - Maximum Forward Voltage Drop Characteristics Fig. 3 - Typical Junction Capacitance Vs. Reverse Voltage 10 Thermal Impedance Z_{thJC} (°C/W) D = 0.75 D = 0.50 D = 0.33 PDM D = 0.25 D = 0.20 1 1 ## -t₁+ Single Pulse Notes (Thermal Resistance 1. Duty factor D = t1/t2 2. Peak Tj = Pdm x ZthJC + Tc 0.1 0.1 0.001 0.01 1 t_1 , Rectangular Pulse Duration (Seconds) Fig. 4 - Maximum Thermal Impedance $\rm Z_{thJC}$ Characteristics Document Number: 94231 www.vishay.com

3

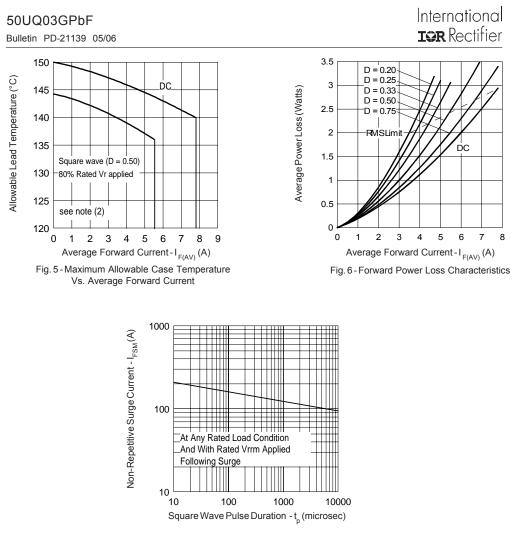
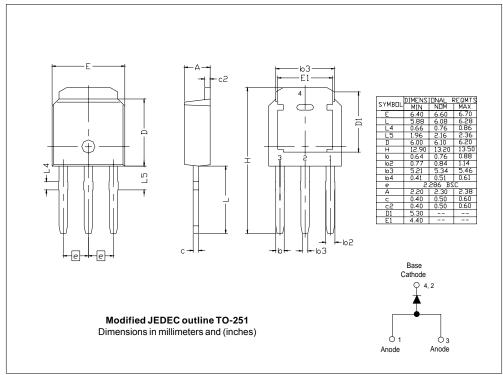
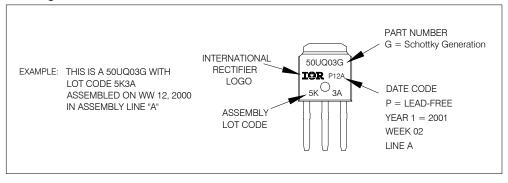
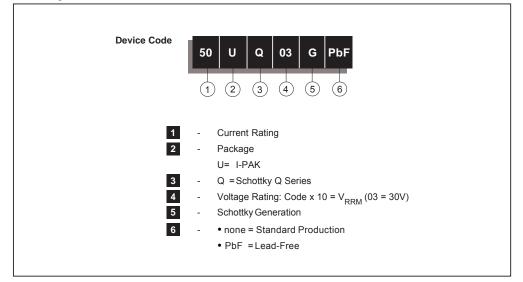



Fig. 7 - Maximum Non-Repetitive Surge Current


(2) Formula used: $T_{C} = T_{J} - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)}/D)$ (see Fig. 6); $Pd_{REV} = Inverse Power Loss = V_{R1} \times I_{R}(1 - D); I_{R} @ V_{R1} = 80\%$ rated V_{R}

Document Number: 94231

Outline Table



Marking Information

Document Number: 94231

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial level and Lead-Free. Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 05/06

> www.vishay.com 6

Document Number: 94231

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier[®], IR[®], the IR logo, HEXFET[®], HEXSense[®], HEXDIP[®], DOL[®], INTERO[®], and POWIRTRAIN[®] are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.