International **TOR** Rectifier

HFA120FA60P

Ultrafast, Soft Recovery Diode

K2

K1

Bulletin 127245 09/06

A2

A1

HEXFRED[™]

 $V_R = 600V$ $V_F(typ.)^* = 1.4V$ $I_{F(AV)} = 60A$ $Q_{rr}(typ.) = 270nC$ $I_{RRM}(typ.) = 7.0A$ $t_{rr}(typ.) = 65ns$ $di_{(rec)M}/dt(typ.)^* = 270A/\mu s$

Features

- Fast Recovery time characteristic
- Eletrically isolated base plate
- Large creepage distance between terminal
- · Simplified mechanical designs, rapid assembly
- UL Pending
- Totally Lead-Free

Description

This SOT-227 modules with FRED rectifier are available in two basic configurations. They are the antiparallel and the parallel configurations. The antiparallel configuration (HFA120EA60) is used for simple series rectifier and high voltage application. The parallel configuration (HFA120FA60) is used for simple parallel rectifier and high current application.

The semiconductor in the SOT-227 package is isolated from the copper base plate, allowing for common heatsinks and compact assemblies to be built. These modules are intended for general applications such as power supplies, battery chargers, electronic welders, motor control, DC chopper, and inverters.

	Parameter	Max.	Units
V _R	Cathode-to-Anode Voltage	600	V
I _F @ T _C = 25°C	Continuous Forward Current	75	
I _F @ T _C = 100°C	Continuous Forward Current	40	
I _{FSM}	Single Pulse Forward Current	TBD	A
I _{FRM}	Maximum Repetitive Forward Current	180	
V _{ISOL}	RMS Isolation Voltage, Any Terminal to Case, t=1 min	2500	V
P _D @ T _C = 25°C	Maximum Power Dissipation	180	۱۸/
P _D @ T _C = 100°C	Maximum Power Dissipation	71	- vv
TJ	Operating Junction and		°C
T _{STG}	Storage Temperature Range		

Absolute Maximum Ratings (per Leg)

*125 °C

Document Number: 94049

www.vishay.com 1

	Parameter	Min.	Тур.	Max.	Units	Test Conditions		
V _{BR}	Cathode Anode Breakdown Voltage	600			V	I _R = 100μA		
V _{FM}	Max Forward Voltage		1.5	1.7		I _F = 60A		
			1.9	2.1	V	I _F = 120A See Fig. 1		
			1.4	1.6		I _F = 60A, T _J = 125°C		
I _{RM}	Max Reverse Leakage Current		2.5	20		$V_R = V_R$ Rated See Fig. 2		
			130	2000	μΛ	T_J = 125°C, V_R = 0.8 x V_R Rated		
CT	Junction Capacitance		120	170	pF	V _R = 200V See Fig. 3		
CT	Junction Capacitance		120	170	pF	V _R = 200V See Fig.		

Electrical Characteristics (per Leg) $@T_J = 25^{\circ}C$ (unless otherwise specified)

Dynamic Recovery Characteristics (per Leg) @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Test Conditions		
t _{rr}	Reverse Recovery Time		34			I_F = 1.0A, di _f /dt = 200A/µs, V _R = 30V		
t _{rr1}	See Fig. 5, 6 & 16		65	98	ns	$T_J = 25^{\circ}C$		
t _{rr2}	_		130	200		T _J = 125°C	I _F = 60A	
I _{RRM1}	Peak Recovery Current		7.0	13	Δ	$T_J = 25^{\circ}C$		
I _{RRM2}	See Fig. 7& 8		13	23		T _J = 125°C	V _R = 200V	
Q _{rr1}	Reverse Recovery Charge		270	410	nC	$T_J = 25^{\circ}C$		
Q _{rr2}	See Fig. 9 & 10		490	740	ne	T _J = 125°C	$di_f/dt = 200A/\mu s$	
di _{(rec)M} /dt1	Peak Rate of Fall of Recovery Current		350		A/us	$T_J = 25^{\circ}C$		
di _{(rec)M} /dt2	During t _b See Fig. 11 & 12		270		πµs	T _J = 125°C		

Thermal - Mechanical Characteristics

	Parameter	Min.	Тур.	Max.	Units
R _{0JC}	Junction-to-Case, Single Leg Conducting			0.70	0000
	Junction-to-Case, Both Legs Conducting			0.35	°C/W
R _{0CS}	Case-to-Sink, Flat, Greased Surface		0.05		
Wt	Weight		30		gm
	Mounting Torque		1.3		(N•m)

Document Number: 94049

International

HFA120FA60P

Fig. 4 - Maximum Thermal Impedance Z_{thjc} Characteristics, (per Leg)

www.vishay.com 3

Document Number: 94049

HFA120FA60P

Fig. 5 - Typical Reverse Recovery vs. di_f/dt, (per Leg)

Document Number: 94049

International **1928** Rectifier

Fig. 6 - Typical Recovery Current vs. di_f/dt, (per Leg)

www.vishay.com 4

HFA120FA60P

Document Number: 94049

Document Number: 94049

www.vishay.com 6

HFA120FA60P

Ordering Information Table

Data and specifications subject to change without notice. This product has been designed for Industrial Level and Lead-Free. Qualification Standards can be found on IR's Web site.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 08/06

> www.vishay.com 7

Document Number: 94049

Vishay

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier[®], IR[®], the IR logo, HEXFET[®], HEXSense[®], HEXDIP[®], DOL[®], INTERO[®], and POWIRTRAIN[®] are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.