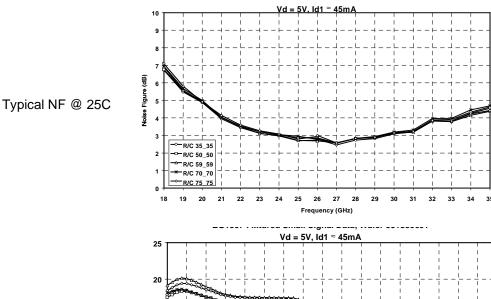
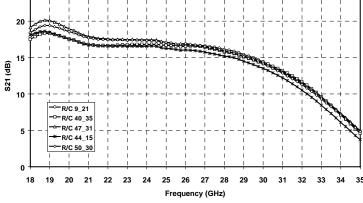


Ka Band Low Noise Amplifier

TGA1307-EPU


Chip Dimensions 2.54 mm x 1.15 mm

Key Features and Performance


- 0.25um pHEMT Technology
- 23-29 GHz Frequency Range
- 3.1 dB Nominal Noise Figure 28GHz
- 17 dB Nominal Gain
- OTOI > 22dBm
- 5V, 50 mA Self-Bias

Primary Applications

- Point-to-Point Radio
- Point-to-Multipoint Communications

Typical Gain @ 25C

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications subject to change without notice

March 25, 2002

TGA1307-EPU

MAXIMUM RATINGS

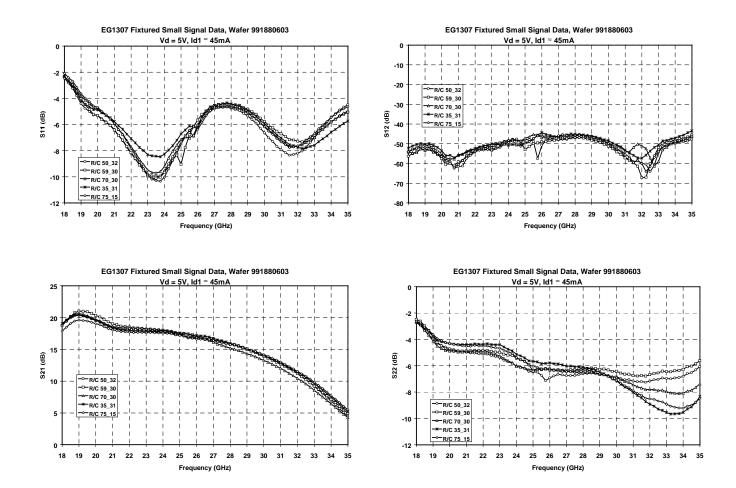
Symbol	Parameter <u>4</u> /	Value	Notes
V^{+}	Positive Supply Voltage	8 V	
I^+	Positive Supply Current	120 mA	<u>3</u> /
P_{D}	Power Dissipation	0.96 W	
P_{IN}	Input Continuous Wave Power	15.2 dBm	
T_{CH}	Operating Channel Temperature	150 °C	<u>1</u> /, <u>2</u> /
T_{M}	Mounting Temperature (30 seconds)	320 °C	
T_{STG}	Storage Temperature	-65 °C to 150 °C	

- 1/ These ratings apply to each individual FET
- 2/ Junction operating temperature will directly affect the device mean time to failure (MTTF). For maximum life it is recommended that junction temperatures be maintained at the lowest possible levels.
- 3/ Total current for the entire MMIC
- 4/ These values represent the maximum operable values for this device

DC PROBE TESTS $(T_A = 25 \text{ °C} \pm 5 \text{ °C})$

Symbol	Parameter	Minimum	Maximum	Value
Idss	Saturated Drain Current	30	141	mA
V_{P}	Pinch-off Voltage	-1.5	-0.5	V
BVGS	Breakdown Voltage gate-source	-30	-8	V
BVGD	Breakdown Voltage gate-drain	-30	-8	V

ON-WAFER RF PROBE CHARACTERISTICS

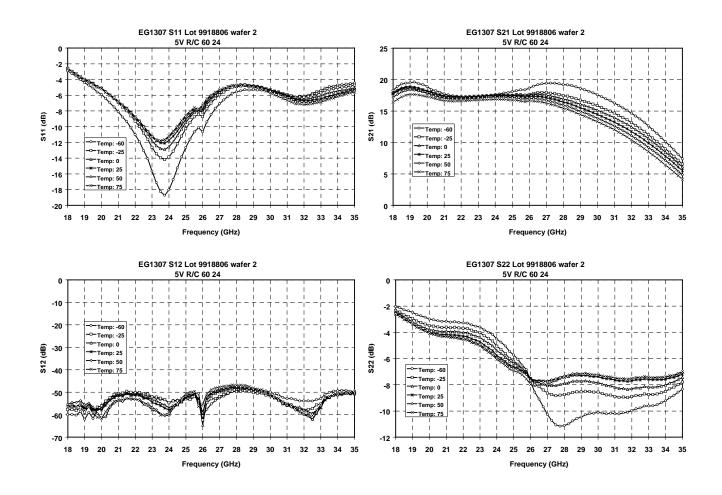

$$(T_A = 25~^{\circ}C \pm 5^{\circ}C)$$

$$V_d = 5~V$$

Symbol	Parameter	Test Condition		Limit		Units
			Min	Тур	Max	
Gain	Small Signal Gain	F = 23 - 29 GHz	15			dB
IRL	Input Return Loss	F = 23 - 29 GHz			-4.5	dB
ORL	Output Return Loss	F = 23 - 29 GHz			-5	dB
PWR	Output Power @ P1dB	F = 28 GHz	14			dBm
NF	Noise Figure	F = 28 GHz			3.5	dB

March 25, 2002

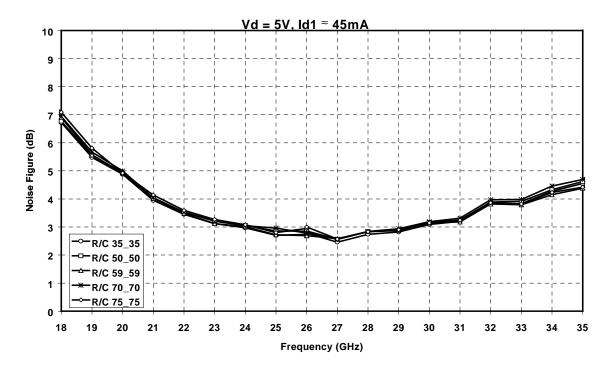
TGA1307-EPU


Typical Small Signal S-parameters at 25C.

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.

March 25, 2002

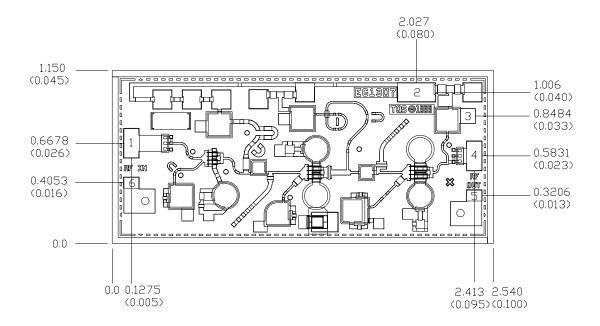
TGA1307-EPU


Small Signal S-parameters over temperature.

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.

March 25, 2002

TGA1307-EPU


Typical Noise Figure - 5 devices

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications are subject to change without notice.

March 25, 2002

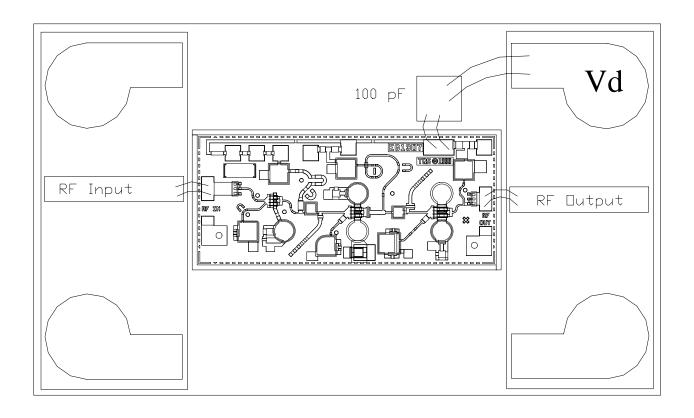
TGA1307-EPU

Units: millimeters (inches)

Thickness: 0.1016 (0.004) (reference only)

Chip to bond pad dimensions are shown to center of bond pad Chip size tolerance: $\pm 1/-0.051$ (0.002)

Bond Pad #1	(RF Input)	$0.105 \times 0.200 (0.004 \times 0.008)$
Bond Pad #2	(Vd)	$0.130 \times 0.253 (0.005 \times 0.010)$
Bond Pad #3	(GND)	$0.100 \times 0.100 (0.004 \times 0.004)$
Bond Pad #4	(RF Dutput)	$0.105 \times 0.200 (0.004 \times 0.008)$
Bond Pad #5	(GND)	$0.075 \times 0.105 (0.003 \times 0.004)$
Bond Pad #6	(GND)	$0.075 \times 0.105 (0.003 \times 0.004)$


TGA1307-EPU - Mechanical Drawing

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications subject to change without notice

March 25, 2002

TGA1307-EPU

TGA1307-EPU - Recommended Assembly Drawing

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications. Specifications subject to change without notice

March 25, 2002

TGA1307-EPU

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300 °C.
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire.
- Maximum stage temperature is 200 °C.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.