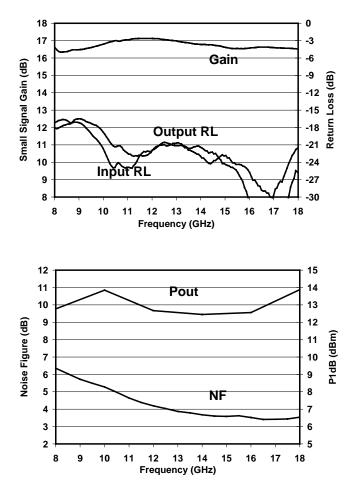

Advance Product Information


June 25, 2003

8 - 18 GHz Wideband Driver Amplifier TGA8399C-EPU

TriQuint C

Chip Dimensions: 3.5mm x 2.4mm x 0.1 mm

Fixtured Measured Performance

Key Features and Performance

- Two Stage Driver Amplifier
- 0.25µm pHEMT 2MI Technology
- 8-18 GHz Frequency Range
- 13 dBm Nominal Pout
- 17 dB Nominal Gain
- Balanced In/Out for Low VSWR
- 4.5V @ 50mA Self Bias
- Chip Dimensions: 3.5mm x 2.4mm x 0.1 mm

Primary Applications

- X and Ku band Driver
- Point-to-Point Radio

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications.

Advance Product Information June 25, 2003 TGA8399C-EPU

TABLE I MAXIMUM RATINGS

Symbol	Parameter 1/	Value	Notes
V ⁺	Positive Supply Voltage	8 V	2/
I ⁺	Positive Supply Current	180 mA	2/
I _G	Gate Supply Current	3.52 mA	
P _{IN}	Input Continuous Wave Power	17.0 dBm	<u>2/</u>
P _D	Power Dissipation	0.94 W	2/, 3/
Т _{СН}	Operating Channel Temperature	150 °C	4/, 5/
T _M	Mounting Temperature (30 seconds)	320 °C	
T _{STG}	Storage Temperature	-65 °C to 150 °C	

1/ These ratings represent the maximum operable values for this device.

 $\underline{2}$ / Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D.

 $\underline{3}$ / When operated at this bias condition with a base plate temperature of 70 °C, the median life is 1 E+6 hours.

4/ Junction operating temperature will directly affect the device median time to failure (T_M). For maximum life, it is recommended that junction temperatures be maintained at the lowest possible levels.

5/ These ratings apply to each individual FET.

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications.

3

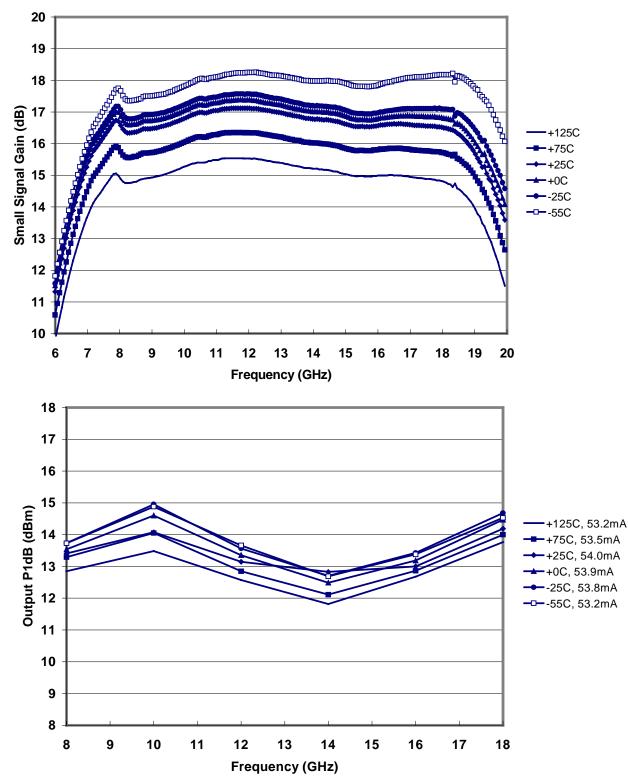
TABLE II DC PROBE TESTS ($T_A = 25 \ ^{\circ}C$, Nominal)

Symbol	Parameter	Minimum	Maximum	Value
V _P	Pinch-off Voltage	-1.5	-0.5	V
BVGS	Breakdown Voltage gate-source	-30	-8	V
BVGD	Breakdown Voltage gate-drain	-30	-8	V

TABLE III RF CHARACTERIZATION TABLE (T_A = 25 °C, Nominal) $V_d = 5 V$

Symbol	Parameter	Test	Limit		Units	
		Condition	Min	Nom	Max	
Gain	Small Signal Gain	F = 8 – 18 GHz	12	16		dB
IRL	Input Return Loss	F = 8 – 18 GHz		-18	-12	dB
ORL	Output Return Loss	F = 8 – 18 GHz		-20	-12	dB

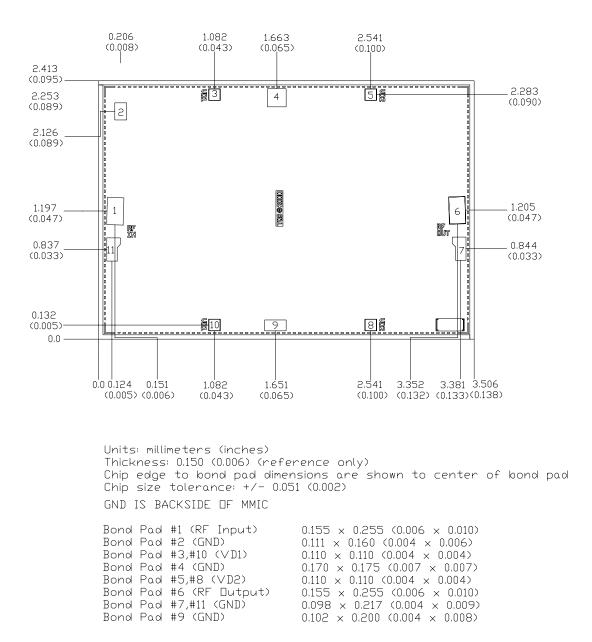
TABLE IV THERMAL INFORMATION


Parameter	Test Conditions	Т _{сн} (°С)	R _{θJC} (°C/W)	T _M (Hours)
R _{eJC} Thermal Resistance (channel to backside of carrier)	Vd = 4.5 V Id = 50 mA Pdiss = 0.225 W	89	85	4.1 E+8

Note: Assumes eutectic attach using 1.5 mil 80/20 AuSn mounted to a 20 mil CuMo Carrier at 70°C baseplate temperature. Worst case condition with no RF applied, 100% of DC power is dissipated.

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications.

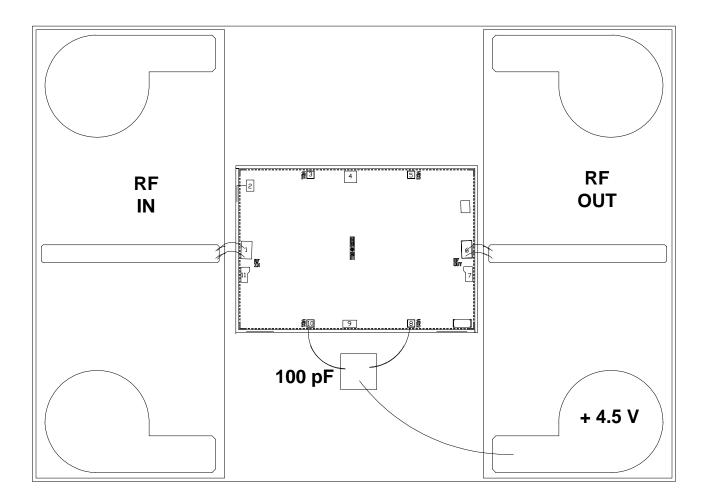
4



TGA8399C Performance vs. Temperature

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications.

Mechanical Drawing



GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications.

Recommended Assembly Layout

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications.

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300°C (for 30 sec max).
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Discrete FET devices with small pad sizes should be bonded with 0.0007-inch wire.
- Maximum stage temperature is 200°C.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Note: Devices designated as EPU are typically early in their characterization process prior to finalizing all electrical and process specifications.