
Features

- ♦ UL Recognized File # E-96005
- ♦ Glass passivated junction
- Ideal for printed circuit board
- ♦ Reliable low cost construction
- ♦ High surge current capability
- High temperature soldering guaranteed: 260 °C / 10 seconds / 0.375" (9.5mm) lead length at 5 lbs. (2.3 Kg) tension
- Leads solderable per MIL-STD-202, Method 208

KBL401G - KBL407G

Single Phase 4.0 AMPS. Glass Passivated Bridge Rectifiers

<u>KBL</u>

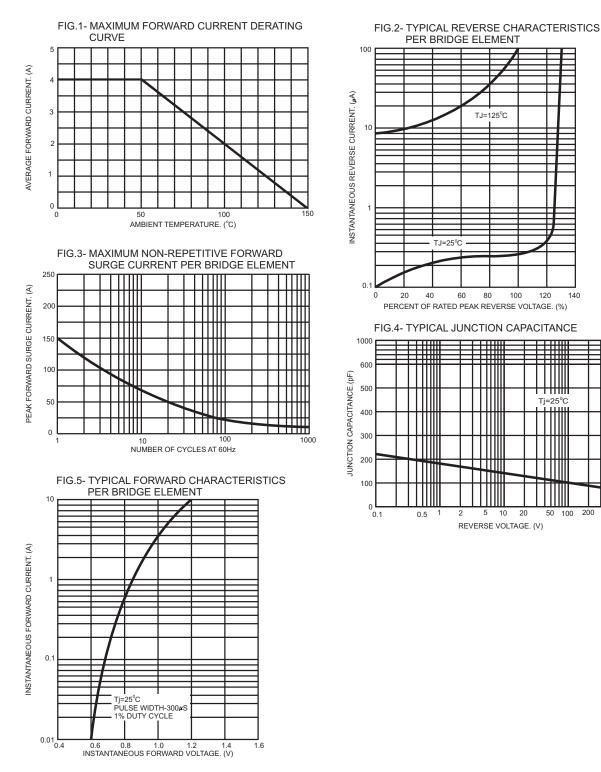
Dimensions in inches and (millimeters)

Maximum Ratings and Electrical Characteristics

Rating at 25 °C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%

Type Number	Symbol	KBL 401G	KBL 402G	KBL 403G	KBL 404G	KBL 405G	KBL 406G	KBL 407G	Units
Maximum Recurrent Peak Reverse Voltage	V _{RRM}	50	100	200	400	600	800	1000	V
Maximum RMS Voltage	V _{RMS}	35	70	140	280	420	560	700	V
Maximum DC Blocking Voltage	V _{DC}	50	100	200	400	600	800	1000	V
Maximum Average Forward Rectified Current @ $T_A = 50$ °C	I _(AV)				4.0				А
Peak Forward Surge Current, 8.3 ms Single Half Sine-wave Superimposed on Rated Load (JEDEC method)	I _{FSM}	150							A
Maximum Instantaneous Forward Voltage @ 2.0A @ 4.0A	V _F	1.0 1.1							V
Maximum DC Reverse Current @ $T_A=25$ °C at Rated DC Blocking Voltage @ $T_A=125$ °C	I _R	10 500						uA uA	
Typical Thermal Resistance (Note)	R _{θJA} R _{θJL}	19 2.4							°C/W
Operating Temperature Range	ТJ			-5	5 to +1	50			°C
Storage Temperature Range	T _{STG}	-55 to +150						°C	

Note: Thermal Resistance from Junction to Ambient and from Junction to Lead Mounted on P.C.B. With 0.6" x 0.6"" (16mm x 16mm) Copper Pads.


120

Tj=25°C

50 100 200 500 800

140

RATINGS AND CHARACTERISTIC CURVES (KBL401G THRU KBL407G)

