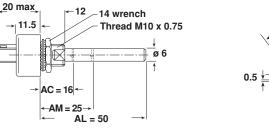
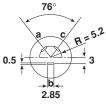


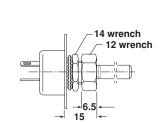
Vishay Sfernice

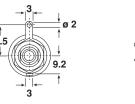
Fully Sealed Container Cermet Potentiometers Military and Professional Grade

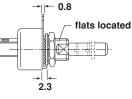

FEATURES

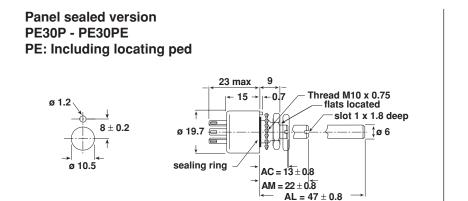

- 3 Watt at 70°C
- High power rating
- Low temperature coefficient
- Excellent stability
- Full sealing
- · Low contact resistance variation
- Mechanical strength
- Use of faston 2.86 connections

DIMENSIONS in millimeters


PE30






PE30 LPRP - WITH LOCATING PEG

DBAN SHAFT LOCKING

 $a \longrightarrow c \\ (1) \qquad b \\ (2) \qquad b \\ (2) \qquad (3)$

CIRCUIT DIAGRAM

Tolerance unless otherwise specified

Document Number: 51037 Revision: 05-Aug-04 **Vishay Sfernice**

Fully Sealed Container Cermet Potentiometers Military and Professional Grade

Length is measured from the mounting surface to the free end of the shaft. The screwdriver slot is aligned with the wiper within ±10°. Special shafts are available, in accordance to drawings supplied by customers. We recommend that customers should not machine shafts, in order to avoid damage. Bending or torsion of terminals should also be avoided.

PANEL SEALING: PE30P

The panel sealing device consists of a ring located in a slot on the potentiometer face. Sealing is obtained by tightening the ring against the panel when mounting the potentiometer.

LINEARITY

The typical linearity of linear variation law potentiometers is ±5%. Guaranteed linearity on request. Consult VISHAY.

SHAFT LOCKING: DBAN

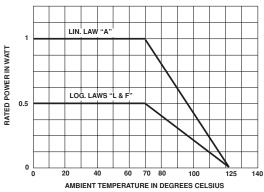
The shaft locking device consists of a tapered nut tightening a slotted notched washer against both bushing and shaft. DBAN tightening torque is 200 Ncm, shaft locking torque being 30 Ncm.

DBAN is also available with all special types.

This device is normally supplied in a separate bag. Can be pre-mounted on request.

LOCATING PEG: LPRP

Location is obtained by fitting a special washer in 2 holes drilled at 180° in the potentiometer face.


ELECTRICAL SPE	CIFICATIONS			
Resistive Element		cermet		
Electrical Travel		270° ± 10°		
Resistance Range Linear Law		22 Ω to 10M Ω		
	Logarithmic Laws	100 Ω to 2.2M Ω		
Standard series E3		1 - 2.2 - 4.7 and on request 1 - 2 - 5		
Tolerance	Standard	± 20%		
	On Request	± 10% - ± 5%		
Power Rating	Linear	3W at + 70°C		
	Logarithmic	1.5W at + 70°C		
Temperature Coefficient		See Standard Resistance Element Data		
Limiting Element Voltage	(Linear Law)	300V		
Contact Resistance Variation		3% Rn or 3Ω		
End Resistance (Typical)		1Ω		
Dielectric Strength (RMS)		2500V		
Insulation Resistance (500VDC)		10 ⁶ ΜΩ		

MECHANICAL SPECIFICATIONS

Mechanical Travel **Operating Torque (max. Ncm)** End Stop Torque (max. Ncm) 70 Max Tightening Torque of Mounting Nut (Ncm) Unit Weight (max. g) 23 to 32

 $300^{\circ} \pm 5^{\circ}$ 3 typical 250

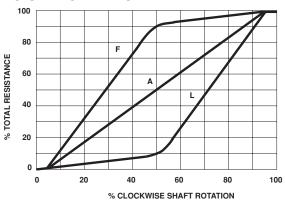
POWER RATING CHART

For technical questions, contact: sfer@vishay.com

- 55°C to + 125°C

55 / 125 / 56

container IP67


fully sealed

RESISTANCE LAWS

Temperature Range

Climatic Category

Sealing

ENVIRONMENTAL SPECIFICATIONS

Fully Sealed Container Cermet Potentiometers Vishay Sfernice Military and Professional Grade

PERFORMANCE

PERFORMANCE					
	NF C 83-253			TYPICAL VALUES AND DRIFTS	
TESTS	CONDITIONS	$\frac{\Delta RT}{RT}$ (%) REQUIREMENTS	$\frac{\Delta R_{1-2}}{R_{1-2}}$ (%)	<u>∆RT</u> (%)	<u>∆R1-2</u> (%)
Climatic Sequence	Phase A dry heat 125°C Phase B damp heat Phase C cold – 55°C Phase D damp heat 5 cycles	± 10%	± 10%		± 1%
Long Term Damp Heat	56 days	± 10% Insulation resistance: > 100M	2	± 0.5% Insulation resis	± 1% stance: > 10 ⁴ MΩ
Rotational Life	25000 cycles	± 10% Contact res. variation: < 7% Rr	± 3% Contact res. variation: < 2% Rn		
Load Life	1000 h at rated power 90'/30' - ambient temp. 70°C	± 10% Contact res. variation: < 7% Rr	± 1% Contact res. variation: < 3% Rn		
Rapid Temperature Change	5 cycles – 55°C at + 125°C	± 3%		± 0.5%	
Shock	50 g at 11 ms 3 successive shocks in 3 directions	± 2%		± 0.1%	± 0.2%
Vibration	10-55Hz 0.75mm or 10 g during 6 hours	± 2%		± 0.1 %	± 0.2%

STANDARD RESISTANCE ELEMENT DATA							
STAN- DARD	LINEAR LAW			LOGSLAW			-
RESIS- TANCE VALUES	Max Power At70C	Max Wofking Voltage	Maxcur Through Element	Max Power At70C	Max Wofking Voltage	Maxcur Through Element	TC. -55°C +125°C
Ω	W	V	mA	W	V	mA	ppm℃
22 47	33	8.12 11.87	369 252				200
100 220 470 1k 2.2k 4.7k 10k 22k 47k 100k 220k 470k 1M 2.2M 4.7M 10M	3 3 3 3 3 3 3 3 3 3 3 3 3 1.91 0.90 0.41 0.19 0.04 0.02 0.01	$\begin{array}{c} 17.32\\ 25.69\\ 37.55\\ 57.44\\ 81.24\\ 118.74\\ 173.20\\ 256.9\\ 300\\ 300\\ 300\\ 300\\ 300\\ 300\\ 300\\ 30$	$173 \\ 116 \\ 79 \\ 54 \\ 37 \\ 25 \\ 11 \\ 6.3 \\ 3 \\ 1.36 \\ 0.63 \\ 0.30 \\ 0.06 \\ 0.03 \\ 0.06 \\ 0.03 \\ 0.06 \\ 0.03 \\ 0.06 \\ 0.03 \\ 0.03 \\ 0.06 \\ 0.03 \\ 0.03 \\ 0.06 \\ 0.03 \\ 0.06 \\ 0.03 \\ 0.00 \\ 0.03 \\ 0.00 \\ 0.03 \\ 0.00 \\ 0.03 \\ 0.00 \\ 0.03 \\ 0.00 \\ 0.03 \\ 0.00 \\ 0.03 \\ 0.00 \\ 0.03 \\ 0.00 \\ 0.03 \\ 0.00 \\ 0.03 \\ 0.00 \\ 0.$	1.5 1.5 1.5 1.5 1.5 0.9 0.41 0.19 0.09	38.7 57.4 83.9 122 181.6 265 300 300 300 300 300	38.7 26.1 17.9 12.2 8.25 5.64 3 1.36 0.63 0.30	± 100

MARKING

- Printed: - VISHAY trademark
- series
- NF types if applicable
- ohmic value (in Ω , k Ω or M Ω)
- tolerance (in %)
- manufacturing date
- marking of terminals 1, 2, 3 or a, b, c

ORDI	ERING INFO	RMATION						
PE30	Р	AC	200 Κ Ω	± 20%	Α	BO		
SERIES	FEATURE	SHAFT LENGTH	OHMIC VALUE	TOLERANCE	LAW	PACKAGING		
	P Panel sealing*	AC 16 ± 0.5mm, slotted AM 12.5 mm, slotted AL 22 mm, plain		± 20% standard ± 10% on request	A LinearL clockwise logarithmic inverseF clockwise logarithmic			
* PE Par	nel sealing with loc	ating peg (former designatio	n E108)	LPRP and DBAN: se	parate ordering (see Accessorie	es)		
SAP I	SAP PART NUMBERING GUIDELINES							
Р	E 3	0 M 0	FG	2 0	4 M A	В		
	MODEL	BUSHING OPTION	SHAFT	PACKAGING	TOL LAW PA	CKAGING		
See the	end of this data bo	ook for conversion tables						

Document Number: 51037 Revision: 05-Aug-04

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.