Vishay Sfernice

Modular Potentiometers with Cermet (P11) or Conductive Plastic Elements (PA11)

FEATURES

- CECC 41300
- GAM T1
- P11 version for industrial and military applications
- PA11 version for professional audio applications

RoHS

- Trimmer version T11/TA11 (see document No. 51021)
- Miniature module size: 12.5 mm square - low current compatibility
- Five shaft diameters and 12 terminal styles
- Multiple assemblies - up to seven modules
- Shaft and panel sealed version
- Up to twenty-one indent positions
- Switch modules
- Concentric shafts
- Custom designs

VERSATILE MODULAR	COMPACT	ROBUST
ELECTRICAL SPECIFICATIONS		
	PA11	P11
Resistive Element	Conductive plastic	Cermet
Electrical Travel	$270^{\circ} \pm 10^{\circ}$	$270^{\circ} \pm 10^{\circ}$
Resistance Range* Linear Law	$1 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$	20Ω to $10 \mathrm{M} \Omega$
Non Linear Law	470Ω to $500 \mathrm{k} \Omega$	100Ω to $2.2 \mathrm{M} \Omega$
Tolerance Standard	± 20 \%	± 20 \%
On request	-	$\pm 5 \%$ or $\pm 10 \%$
Power Rating Linear Law	0.5 W at $+70^{\circ} \mathrm{C}$	1 W at $+70^{\circ} \mathrm{C}$
Non linear Laws	0.25 W at $+70^{\circ} \mathrm{C}$	0.5 W at $+70^{\circ} \mathrm{C}$
Multiple Assemblies	0.25 W at $+70^{\circ} \mathrm{C}$ per module	0.5 W at $+70^{\circ} \mathrm{C}$ per module
Temperature Coefficient (Typical)	$\pm 500 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Limiting Element Voltage	350 V	350 V
Contact Resistance Variation Linear Law	1 \%	2% or 3Ω
End Resistance (Typical)	2Ω	2Ω
Independent Linearity (Typical) Linear Law	$\pm 5 \%$	$\pm 5 \%$
Insulation Resistance	$10^{6} \mathrm{M} \Omega \mathrm{min}$.	$10^{6} \mathrm{M} \Omega \mathrm{min}$.
Dielectric Strength	$1500 \mathrm{~V}_{\text {RMS }} \mathrm{min}$.	$1500 \mathrm{~V}_{\text {RMS }} \mathrm{min}$.
Attenuation	90 dB max. and 0.05 dB min.	-
Mechanical Rotational Life	50000 cycles	50000 cycles

* Consult Vishay Sfernice for other ohmic values

MECHANICAL SPECIFICATIONS PA11 AND P11

Mechanical Travel:
Operating Torque (typical):
Single and Dual Assemblies: $3 \mathrm{~mm}, 4 \mathrm{~mm}$ (1/8") dia. Shafts 6 mm (1/4") dia. Shafts
Three to Seven Modules (per module)
End Stop Torque:
$3 \mathrm{~mm}, 4 \mathrm{~mm}$ (1/8") dia. Shafts
6 mm (1/4") dia. Shafts
Tightening Torque:
$6 \mathrm{~mm}, 7 \mathrm{~mm}$ (1/4") dia. bushings 10 mm (3/8") dia. bushings Weight
$300^{\circ} \pm 5^{\circ}$
0.5 to 1.3 Ncm max. (0.7 to 1.8 oz-inch max.)
0.7 to 1.5 Ncm max. (1 to 2.1 oz-inch max.)
0.2 to 0.3 Ncm max. (0.3 to 0.45 oz-inch max.)

25 Ncm max. (2.1 lb-inch max.)
80 Ncm max. (6.8 lb -inch max.)
150 Ncm max. (13 lb-inch max.)
250 Ncm max. (21 lb-inch max.)
7 g to 9 g per module (0.25 to 0.32 oz)

VARIATION LAWS

DIMENSIONS in millimeters [inches]
Tolerance unless otherwise specified ± 0.5

P11/PA11 71
P11/PA11 71H
P11/PA11 $72 \quad$ P11/PA11 72H with spindle baking nut

SWITCH: MOMENTARY PUSH OR PUSH-PUSH

THE POSITION OF EACH MODULE IS FREE

Shafts			T	Q	V	CC	7	71	72	2	0	7	
			dimensions $\mathrm{mm} \pm 0.5$				dimensions inches \pm (0.01)						
A	Shafts	\varnothing	3	4	6	3/6	1/8"	1/8"	1/8"	1/4"	1/8" $1 / 4 "$	0.07	1/8"
B	Bushing	\varnothing	6	7	10	10	1/4"	1/4"	1/4"	3/8"	3/8"	1/4"	
C		L	8	8	9.5	9.5	1/4"	3/8"	1/2"	3/8"	3/8"	1/4"	
J	$\begin{aligned} & \text { version } \\ & \mathrm{Y}, \mathrm{X}, \mathrm{X}_{1}, \mathrm{X}_{2} \end{aligned}$		5	5	7	7	0.200	0.200	0.200	0.278	0.278	0.200	
K			9.1	9.1	11.1	-	0.357	0.357	0.357	0.436	-	-	
E	version	Z	1.8	1.8	3.8	3.8	0.071	0.071	0.071	0.150	0.150	0.071	
E	version		1.6	1.6	3.6	3.6	0.063	0.063	0.063	0.14	0.14	0.0	
F			version Z : 5.08 (0.200)				versions $A-A_{1}-A_{2}-Z_{1}-Z_{2}: 3.81$ (0.150)						
G	Panel		5.2	6.2	8.2	8.2	0.197	0.197	0.197	0.323	. 323	0.197	
H	Cutout	\varnothing	6.5	7.5	10.5	10.5	0.268	0.268	0.268	0.394	0.394	0.2	
a			variable 5.08 (0.200)				7.62 (0.300)			10.16 (0.400)			
Thread			M 0.75				32 threads/inch						
Nut			8	10	12	12	0.313	0.313	0.313	0.500	0.500	0.313	
Shaft lengths L			Measurement from the mounting face, see ordering procedures										

ENVIRONMENTAL SPECIFICATIONS

	PA11	P11
Operating Temperature Range	$-55^{\circ} \mathrm{C}+125^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}+125^{\circ} \mathrm{C}$
Climatic Category	$55 / 125 / 21$	$55 / 125 / 56$
Sealing	IP64	IP64
Storage Temperature	$-55^{\circ} \mathrm{C}+125^{\circ} \mathrm{C}$	$-55^{\circ} \mathrm{C}+150^{\circ} \mathrm{C}$

STANDARD RESISTANCE ELEMENT DATA											
	P11 CERMET						PA11CONDUCTIVE PLASTIC LINEARLAW			$\begin{gathered} \text { TYPICAL TCR } \\ -55^{\circ} \mathrm{C} \\ +125^{\circ} \mathrm{C} \\ \hline \end{gathered}$	
STANDARD	LINEAR LAW			NON LINEAR LAW							
RESISTANCE VALUES	MAX. POWER AT $70^{\circ} \mathrm{C}$	MAX. WORKING VOLTAGE	MAX. CUR. THROUGH WIPER	MAX. POWER AT $70^{\circ} \mathrm{C}$	MAX. WORKING VOLTAGE	MAX. CUR. THROUGH WIPER	MAX. POWER AT $70^{\circ} \mathrm{C}$	MAX. WORKING VOLTAGE	MAX. CUR. THROUGH WIPER	P11	PA11
Ω	W	V	mA	W	V	mA	W	V	mA		${ }^{\circ} \mathrm{C}$
22	1	4.69	213.2								
47		6.85	145.8								
100		10	100								
200		14.8	67.4	0.5							
470		21.6	46.1		15.3	32.7					
1K		31.6	31.6		22.4	22.4	0.5	22.4	22.4		
2.2 K		46.9	21.3		33.2	15.1		33.2	15.1		
4.7K		63.5	14.5		48.5	10.3		48.5	10.3		
10K		100	10		79.7	7.07		79.7	7.07	± 150	± 500
22K		148.3	6.7		105	4.77		105	4.77		
47K	∇	216.7	4.6	1	153	3.26	∇	153	3.26		
100K	1	316.2	3.16	0.5	224	2.24	0.5	224	2.24		
220K	0.56	350	1.59	0.26	332	1.51	0.5	332	1.51		
470K	0.26	350	0.75	0.12	350	0.74	0.26	350	0.74		
1M	0.12	350	0.35		350	0.35					
2.2M	0.05	350	0.16								
4.7M	0.02	350	0.07								

P11, PA11

Modular Potentiometers with Cermet (P11) or

 Conductive Plastic Elements (PA11)
POWER RATING CHART

LINEARITY - CONFORMITY

INTERLINEARITY - INTERCONFORMITY

MULTIPLE ASSEMBLIES

Standard assemblies can comprise up to 7 modules in addition to the shaft and bushing module.

Detents module (CV)
Switch modules (RS or RSI)
Potentiometer modules

Spacer module (EV) to increase the distance between rows of pins from $5.06 \mathrm{~mm}(0.200)$ to $10.16 \mathrm{~mm}(0.400)$.

Screening module, with ground terminal.

The position of each module is free except the push/push, momentary push which has to be the last module.

The independent linearity (conformity for the non linear laws) is the maximum gap $\Delta \mathrm{V}$ between the actual variation curve and the theorical variation curve the nearest to it. The linearity and the conformity are expressed in percentage of the total applied voltage E

$$
\text { linearity conformity }=\frac{ \pm \Delta V \max }{E}
$$

They are measured over 90% of actual electrical travel (centered).
On request linearity can be guaranteed in linear law.
For example: linearity $\pm 2 \%+J 145$ option (see ordering procedure).

It is the maximum deviation between the actual voltage outputs of 2 or more pot modules in the same assembly. It is expressed as a percentage of the total applied voltage, or in dB attenuation.

Interlinearity is measured between 2 pot modules, over 10 to 90% of the attenuation.

The interlinearity or interconformity is expressed as a percentage of the total applied voltage :

$$
\mathrm{I} \%=\frac{\mathrm{ICl}}{\mathrm{E}}
$$

Or in decibels by comparison between outputs V1 and V2

$$
I d B=20 \log \frac{V_{1}}{V_{2}}
$$

PERFORMANCE				
TESTS	CONDITIONS	TYPICAL VALUES AND DRIFTS		
			P11 CERMET	PA11 CONDUCTIVE PLASTIC
Load Life	$\begin{gathered} 1000 \text { hours at }+70^{\circ} \mathrm{C} \\ \left(90^{\prime} / 30^{\prime}\right) \end{gathered}$	total resistance shift	± 2 \%	± 10 \%
		contact resistance variation	± 4 \%	$\pm 5 \%$
Temperature Cycle	5 cycles $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	total resistance shift	± 0.2 \%	± 0.5 \% typical
Moisture	$+40^{\circ} \mathrm{C}$ 93% relative humidity	total resistance shift insulation resistance	$\begin{gathered} 56 \text { days } \\ \pm 2 \% \\ >1000 \mathrm{M} \Omega \end{gathered}$	$\begin{gathered} 21 \text { days } \\ \pm 5 \% \\ >10 \mathrm{M} \Omega \end{gathered}$
Rotational Life	P11/PA11: 50000 cycles	total resistance shift contact resistance variation	$\begin{aligned} & \pm 5 \% \\ & \pm 5 \% \\ & \hline \end{aligned}$	$\begin{aligned} & \pm 6 \% \\ & \pm 4 \% \end{aligned}$
Climatic Sequence	Dry heat at $+125^{\circ} \mathrm{C} /$ Damp heat Cold - $55^{\circ} \mathrm{C} /$ Damp Heat 5 cycles	total resistance shift	$\pm 1 \%$	-
Shock	$\begin{gathered} 50 \mathrm{G} 11 \mathrm{~ms} \\ 3 \text { shocks }-3 \text { directions } \end{gathered}$	total resistance shift resistance setting change	$\begin{aligned} & \pm 0.2 \% \\ & \pm 0.5 \% \\ & \hline \end{aligned}$	$\begin{gathered} \pm 0.2 \% \\ \pm 0.5 \% \text { typical } \\ \hline \end{gathered}$
Vibration	$\begin{gathered} 10-55 \mathrm{~Hz} \\ 0.75 \mathrm{~mm} \text { or } 10 \mathrm{G} \\ 6 \text { hours } \end{gathered}$	total resistance shift voltage setting change	$\begin{gathered} \pm 0.2 \text { \% } \\ \pm 0.5 \% \text { typical } \end{gathered}$	$\begin{gathered} \pm 0.2 \% \\ \pm 0.5 \% \text { typical } \end{gathered}$

OPTIONS
 MODULES : RS ON/OFF SWITCH
 RSI CHANGEOVER SWITCH

The position of each module is free.
RS and RSI rotary switches are housed in a standard P11 module size $12.7 \times 12.7 \times 5.08 \mathrm{~mm}$ ($0.5^{\prime \prime} \times 0.5^{\prime \prime} \times 0.2^{\prime \prime}$). They have the same terminal styles as the assembled electrical modules.

CAUTION: Because of the switch actuation

travel, the potentiometer total electrical travel is reduced to $240^{\circ} \pm 10^{\circ}$

Switch actuation is described as seen from the shaft end.
D: means actuation in maximum CCW position
F: means actuation in maximum CW position
The switch actuation travel is 25° with a total mechanical travel of $300^{\circ} \pm 5^{\circ}$.

MODULES :
 PUSH/PUSH SWITCH RSPP MOMENTARY/PUSH SWITCH RSMP

The switches are manufactured by ITT, F.U. series (NE18 series available on request).

They have to be the last element of potentiometer and are linked to electrical module by an interface.
RSPP and RSMP switches are available only with P11/PA11
T-Q or 7 series not with P11/PA11 V or 2 series.
Options:
2 reversing switches F2 4 reversing switches F4
6 reversing switches F6 8 reversing switches F8
Available with shafts $R(T), G(Q), C R(7)$ others shafts on request.
Not available with panel sealed option.
Number of modules before the switch limited to 3 modules.

VALLEY DETENTS

The valley detents mechanism is housed in a standard P11 module. Up to 21 detents position available.
Count detents as follows : 1 for CCW position, 1 for full CW position, plus the other positions forming equal resistance increments (linear taper) - not equal angles.
Available now: CVID - CVIF - CVIM
CV3 - CV11 - CV21

RSD SINGLE POLE SWITCH, NORMALLY OPEN

In full CCW position, the contact between 1 and 3 is open. It is made at the beginning of the travel in CW direction.

RSF SINGLE POLE SWITCH, NORMALLY OPEN

In full CW position, the contact between 1 and 3 is open. It is made at the beginning of the travel in CCW direction.

RSID SINGLE POLE CHANGEOVER

In full CCW position, the contact is made between 3 and 2 and open between 3 and 1 . Switch actuation (CW direction) reverses these positions.

RSIF SINGLE POLE CHANGEOVER

In full CW position, the contact is made between 1 and 2 and open between 1 and 3 . Switch actuation (CCW direction) reverses these positions.

RSPP F2: PUSH/PUSH SWITCH WITH TWO REVERSING SWITCHES

Idle position : the contact is made between 1 and 2 and a and b . It is open between 2 and 3 and b and c .
Pushed position: the contact is made between 2 and 3 and b and c . It is open between 1 and 2 and a and b .
Not available on P11V and P11-2.
On request for P11Q and P11-7.

SWITCH MODULES

SWITCH SPECIFICATIONS			
MODEL		RS - RSI	F2 to F8
Switching Power max.		$\begin{gathered} 62.5 \mathrm{VA} \mathrm{v} \\ 15 \mathrm{VA}= \end{gathered}$	50 VA v
Switching Current max.		$\begin{aligned} & 0.25 \mathrm{~A} 250 \mathrm{Vv} \\ & 0.5 \mathrm{~A} 30 \mathrm{~V}= \end{aligned}$	0.5 A v
Max. Current Through Element		2 A	2 A
Contact Resistance		$30 \mathrm{~m} \Omega$	$100 \mathrm{~m} \Omega$
Dielectric Strength	Terminal to Terminal	$1000 \mathrm{~V}_{\text {RMS }}$	$1500 \mathrm{~V}_{\text {RMS }}$
	Terminal to Bushing	$2000 \mathrm{~V}_{\text {RMS }}$	$2000 \mathrm{~V}_{\text {RMS }}$
Max. Voltage Operation		$\begin{aligned} & 250 \mathrm{~V} \mathrm{v} \\ & 30 \mathrm{~V} \mathrm{=} \end{aligned}$	250 V v
Insulation Resistance Between Contacts		$10^{6} \mathrm{M} \Omega$	$10^{3} \mathrm{M} \Omega$
Life at P max.		$\begin{aligned} & 10000 \\ & \text { actuations } \end{aligned}$	100000 actuations
Minimal Travel		25°	$\begin{gathered} 3.3 \mathrm{~mm} \text { to } \\ 4.7 \mathrm{~mm} \\ \hline \end{gathered}$
Operating Temperature		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-20^{\circ} \mathrm{C}+70^{\circ} \mathrm{C}$

ELECTRICAL DIAGRAM

CENTER CURRENT TAP "J"

The extra terminal is a solder lug connected at 50 \% of electrical travel and situated in the potentiometer module opposite the terminals.
Center tap short circuit 11° of travel.

SHAFTS (see Ordering Information)

The shaft lengths are always measured from the mounting face.

Standard shafts are designed by a letter code (one or two digits). Shafts slots are aligned to $\pm 10^{\circ}$ of the wiper position.

CONCENTRIC SHAFTS

The CC or 0 or 77 concentric shaft versions allies the total flexibility of the P11/PA11 modular system to the advantage of having two separate shafts.
The outer 6 mm or $1 / 4^{\prime \prime}$ or $1 / 8^{\prime \prime}$ dia. shaft drives the modules situated immediately behind the panel, before the spacer module.

The inner 3 mm or $1 / 8^{\prime \prime}$ or 0.07 " dia. shaft drives the modules situated after the spacer module.

Spacer is available with a choice of two spacer thickness :
5.08 mm designations: CC, 0, 77
2.54 mm designations: CC-3, 0-3, and 77-3. See dimensional drawings on second page of this data sheet

CUSTOM SHAFTS

When special shafts are required - flat, threaded ends, special shaft lengths, etc. a drawing is required.

SPLINED SHAFT "I"

FLATTED SHAFT

Fig. 9

NEUTRAL MODULE "EN"

Neutral or screen module is housed in a standard P11 module. It is used as a screen between two electrical modules.

The leads can be connected to ground.

LOCATING PEGS (Anti-rotation lugs)

The locating peg is provided by a plate mounted on the bushing and positioned by the module sides. Four set positions are available, clock face orientation: 12, 3, 6, 9.
All P11 bushings have a double flat. When panel mounting holes have been punched accordingly, an anti-rotation log is not necessary.

CODE	P11-PA11					EFFECTIVE HIGH PEG
	VERSION	T-7	V-CC	Q	2-0	
B24	Ø D mm	6.5	10.5	7.5	10	0.7
	Ø d mm	2	2	2	2	
	L mm	6.2	6.2	6.2	6.2	
B30	Ø d mm	2	2	2	2	0.7
	L mm	7.75	7.75	7.75	7.75	
B53	Ø d mm	-	3.5	-	3.5	1.1
	L mm	-	13.5	-	13.5	

TRIMMERS T11
See data sheet document No. 51021

MARKING

POTENTIOMETER MODULE

VISHAY logo, nominal ohmic value ($\Omega, \mathrm{k} \Omega, \mathrm{M} \Omega$), two stars identify PA11 version, tolerance in \% - variation law, manufacturing date (four digits), " 3 " for the lead 3.

SWITCH MODULE

Version, manufacturing date (four digits), " c " for common lead.

INDENT MODULE
Version, manufacturing date (four digits).

ORDERING INFORMATION

Vishay Sfernice Conductive Plastic Elements (PA11)

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

