Metal Film Resistors, Military/Established Reliability, MIL-PRF-55182 Qualified, Precision, Type RNC, Characteristics J, H, K

 FEATURES- Meets requirements of MIL-PRF-55182
- Very low noise (-40 dB)
- Verified failure rate (contact factory for current level)

- 100% stabilization and screening tests. Group A testing, if desired, to customer requirements
- Controlled temperature coefficient
- Epoxy coating provides superior moisture protection
- Standard lead on RNC product is solderable and weldable
- Traceability of materials and processing
- Monthly acceptance testing
- Vishay Dale has complete capability to develop specific reliability programs designed to customer requirements
- Extensive stocking program at distributors and factory on RNC50, RNC55, RNC60 and RNC65
- For MIL-PRF-55182 characteristics E and C product, see Vishay Angstrohm's HDN (Military RNR/RNN) datasheet

STANDARD ELECTRICAL SPECIFICATIONS

VISHAY DALE MODEL	$\begin{array}{\|c} \text { MIL-PRF-55182 } \\ \text { STYLE } \end{array}$		POWER RATING		$\begin{gathered} \text { TOLERANCE } \\ \pm \% \end{gathered}$	MAXIMUM WORKING VOLTAGE ${ }^{(2)}$ V	RESISTANCE RANGE Ω			LIFE FAILURE RATE ${ }^{(1)}$
			$P_{70}{ }^{\circ} \mathrm{C}$ W	$\underset{W}{P_{125}{ }^{\circ} \mathrm{C}}$			$\pm \begin{array}{\|c} \pm 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ \text { (K) } \end{array}$	$\pm \begin{gathered} 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ (\mathrm{H}) \end{gathered}$	$\pm \underset{\text { (J) }}{25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}}$	
$\begin{aligned} & \text { ERC50, } \\ & \text { ERC50.. } 31 \text { (3) } \end{aligned}$	RNC50, RNR50	07	0.10	0.05	0.1, 0.5, 1	200	10 to 796K			M, P, R, S
$\begin{aligned} & \hline \text { ERC55, } \\ & \text { ERC55.. } 65{ }^{(3)} \end{aligned}$	RNC55, RNR55	01	0.125	0.10	0.1, 0.5, 1	200	10 to 2M			M, P, R, S
$\begin{aligned} & \text { ERC55..200, } \\ & \text { ERC55..201 }(3) \end{aligned}$	RNC60, RNR60	03	0.25	0.125	0.1, 0.5, 1	250	10 to 2M			M, P, R, S
							2.01 M to 3.01 M			M
$\begin{aligned} & \hline \text { ERC65, } \\ & \text { ERC65.. } 65 \text { (3) } \end{aligned}$	RNC65, RNR65	05	0.50	0.25	0.1, 0.5, 1	300	10 to 3.01M			M, P, R
$\begin{aligned} & \text { ERC70 } \\ & \text { ERC70.. } 4 \end{aligned}$	RNC70, RNR70	06	0.75	0.50	0.1, 0.5, 1	350	10 to 3.01M			M, P, R

Notes

(1) Consult factory for current QPL failure rates.
(2) Continuous working voltage shall be $\sqrt{P \times R}$ or maximum working voltage, whichever is less.
(3) Hot solder dipped leads
${ }^{(4)}$ Standard resistance tolerances: $\pm 0.1 \%(B), \pm 0.5 \%(D)$ and $\pm 1 \%(F) . \pm 0.1 \%$ not applicable to characteristic K.

TECHNICAL SPECIFICATIONS

PARAMETER	UNIT	CONDITION
Voltage Coefficient, max.	$\mathrm{ppm} / \mathrm{V}$	$5 / \mathrm{V}$ when measured between 10% and full rated voltage
Dielectric Strength	V_{AC}	RNC50, RNC55 and RNC60 $=450 ;$ RNC65 and RNC70 $=900$
Insulations Resistance	Ω	$\geq 10^{11} \mathrm{dry} ; \geq 10^{9}$ after moisture test
Operating Temperature Range	${ }^{\circ} \mathrm{C}$	-65 to +175
Terminal Strength	Ib	2 lb pull test on RNC50, RNC55, RNC60 and RNC65; 4.5 Ib pull test on RNC70
Solderability		Continuous satisfactory coverage when tested in accordance with MIL-STD-202, Method 208
Weight	g	RNC50 $=0.11 ;$ RNC55 $=0.35 ;$ RNC60 $=0.35 ;$ RNC65 $=0.84 ;$ RNC70 $=1.60$

ERC (Military RNC/RNR)
Metal Film Resistors, Military/Established Reliability, MIL-PRF-55182 Qualified, Precision, Type RNC, Characteristics J, H, K

GLOBAL PART NUMBER INFORMATION

New Global Part Numbering: RNC55H2152FRR36 (preferred part numbering format)

DIMENSIONS in inches (millimeters)

Note
(1) $1.08 \pm 0.125(27.43 \pm 3.18)$ if tape and reel

VISHAY DALE MODEL	MIL-PRF-55182 STYLE	\mathbf{A}	\mathbf{B}	C (Max.)	D	
ERC50	RNC50,	0.150 ± 0.020	0.070 ± 0.010	0.187	0.016 ± 0.002	1.25 ± 0.266
	RNR50	(3.81 ± 0.51)	(1.78 ± 0.25)	(4.75)	(0.41 ± 0.05)	(31.75 ± 6.76)
ERC55	RNC55,	$0.250+0.031-0.046$	0.094 ± 0.012	0.300	0.025 ± 0.002	1.50 ± 0.125
	RNR55	$(6.35+0.79-1.17)$	(2.39 ± 0.30)	(7.62)	(0.64 ± 0.05)	(38.1 ± 3.18)
ERC55..200	RNC60,	0.280 ± 0.020	0.097 ± 0.012	0.350	0.025 ± 0.002	1.50 ± 0.125
	RNR60	(7.11 ± 0.51)	(2.46 ± 0.30)	(8.89)	(0.64 ± 0.05)	(38.1 ± 3.18)
ERC65	RNC65,	0.562 ± 0.031	0.180 ± 0.015	0.687	0.025 ± 0.002	1.50 ± 0.125
	RNR65	(14.27 ± 0.79)	(4.57 ± 0.38)	(17.45)	(0.64 ± 0.05)	(38.1 ± 3.18)
ERC70	RNC70,	0.562 ± 0.031	0.180 ± 0.015	0.687	0.032 ± 0.002	1.50 ± 0.125
	RNR70	(14.27 ± 0.79)	(4.57 ± 0.38)	(17.45)	(0.81 ± 0.05)	(38.1 ± 3.18)

MATERIAL SPECIFICATIONS	
Element	Vacuum-deposited nickel-chrome alloy
Core	Fire-cleaned high purity ceramic
Encapsulation	Specially formulated epoxy compound
Termination	Standard lead material is solder-coated copper Solderable and weldable per MIL-STD-1276, Type C

POWER RATING

Power ratings are based on the following two conditions:

1. $\pm 2.0 \%$ maximum ΔR in 10000 h load life
2. $+175^{\circ} \mathrm{C}$ maximum operating temperature

APPLICABLE MIL-SPECIFICATIONS
 MIL-PRF-55182:

The ERC series meets the electrical, environmental and dimensional requirements of MIL-PRF-55182.

MIL-R-10509:

MIL-PRF-55182 supercedes MIL-R-10509 on new designs. The ERC series meets or exceeds MIL-R-10509 requirements.

Documentation:

Qualification and failure rate verification test data is maintained by Vishay Dale and is available upon request. Lot traceability and identification data is maintained by Vishay Dale for five years.

CAGE CODE: 91637

ERC (Military RNC/RNR)

 MIL-PRF-55182 Qualified, Precision, Type RNC, Characteristics J, H, K

Vishay Dale ERC resistors have an operating temperature range of $-65^{\circ} \mathrm{C}$ to $+175^{\circ} \mathrm{C}$. They must be derated according to the following curve:

THERMAL RESISTANCE

MARKING

Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

