

71M6521D/71M6521F
71M6521B

Energy Meter IC Family

SOFTWARE USER’S GUIDE

8/6/2008
Revision 1.7

TERIDIAN Semiconductor Corporation
6440 Oak Canyon Rd., Suite 100

Irvine, CA 92618-5201

Ph: (714) 508-8800 ▪ Fax: (714) 508-8878

Meter.support@teridian.com

http://www.teridian.com/

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 2 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

TERIDIAN Semiconductor Corporation makes no warranty for the use of its products, other than expressly contained in the
Company’s warranty detailed in the TERIDIAN Semiconductor Corporation standard Terms and Conditions. The company assumes
no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed
herein at any time without notice and does not make any commitment to update the information contained herein.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 3 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

71M652X
Energy Meter IC FAMILY

SOFTWARE USER’S GUIDE

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 4 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Table of Contents
1 INTRODUCTION 13

1.1 Using this Document ... 13
1.2 Related Documentation ... 14
1.3 Compatibility Statement .. 14

2 DESIGN GUIDE 15
2.1 Hardware Requirements .. 15
2.2 Software Requirements ... 15
2.3 Software Architecture .. 16
2.4 Utilities .. 17

2.4.1 D_MERGE 17

2.4.2 CE_MERGE 17

3 DESIGN REFERENCE 19
3.1 Program Memory .. 19
3.2 Data Memory ... 19
3.3 Programming of the 71M652X Chips .. 20
3.4 Debugging of the 71M652X Chips .. 20
3.5 Test Tools ... 20

3.5.1 Running the 652X_Demo.hex Program 21

3.5.2 CLI Commands 22

3.5.3 Command (Macro) Files 22

4 TOOL INSTALLATION GUIDE 23
4.1 Installing the Programs for the ADM51 Emulator .. 23
4.2 Installing the Wemu Program (Chameleon Debugger) ... 23
4.3 Installing the ADM51 USB Driver .. 24
4.4 Installing Updates to the Emulator Program and Hardware ... 25
4.5 Creating a Project .. 26
4.6 Installing the Keil Compiler ... 29
4.7 Creating a Project for the Keil Compiler .. 30

4.7.1 Directory Structure 30

4.7.2 Adjusting the Keil Compiler Settings 31

4.7.3 Manually Controlling the Keil Compiler Settings 32
4.8 Project Management Tools ... 35
4.9 Alternative Compilers .. 35
4.10 Alternative Editors ... 35
4.11 Alternative Linkers ... 36

5 Demo Code Description 37
5.1 80515 Data Types and Compiler-Specific Information .. 37

5.1.1 Data Types 37

5.1.2 Compiler-Specific Information 40
5.2 Demo Code Options and Program Size ... 41

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 5 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

5.3 Program Flow ... 46

5.3.1 Startup and Initialization 46
5.4 Basic Code Architecture .. 49

5.4.1 Initialization 49

5.4.2 Foreground 50

Timer Interrupt .. 51

CE_BUSY Interrupt ... 53

XFER_BUSY and RTC Interrupt ... 53

5.4.2.1 SERIAL Interrupt .. 55

5.4.3 Background Tasks 56

meter_run() ... 56

meter_LCD .. 57

Command Line Interpreter .. 58

Auto-Calibration .. 59

CE Default Calibration ... 60

Command Pending ... 62

EEPROM Read/Write .. 63

Battery Test ... 65

Power Factor Measurement .. 66

5.4.4 Watchdog Timer 66

5.4.5 Real-Time Clock (RTC) 66
5.5 Managing Mission and Battery Modes ... 67
5.6 Data Flow .. 68
5.7 CE/MPU Interface ... 69
5.8 Boot Loader .. 69
5.9 Source Files .. 69
5.10 Auxiliary Files ... 71
5.11 Include/Header Files .. 72

5.11.1 OPTIONS.H 72

5.11.2 Register Definitions 72

5.11.3 Other Include/Header Files 73
5.12 CE Image Files ... 74
5.13 Common MPU Addresses ... 74
5.14 Firmware Application Information .. 79

5.14.1 Sag Detection 79

5.14.2 Temperature Measurement 79

5.14.3 Temperature Compensation for Measurements 80

5.14.4 Temperature Compensation for the RTC 80

5.14.5 Validating the Battery 81
5.15 Alphabetical Function Reference ... 82
5.16 Errata ... 95
5.17 Porting 71M6511/6513 Code to the 71M6521 ... 96

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 6 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

5.17.1 Memory Use 96

5.17.2 CE Code Location 96

5.17.3 Battery Modes 96

5.17.4 Three-Wire EEPROM Hardware 98

5.17.5 Temperature Compensation 99
5.18 TEST Modules .. 99

5.18.1 6513 CE Example 99

5.18.2 Serial Port Tests 99

5.18.3 Timer Tests 99

5.18.4 EEPROM Tests 99

5.18.5 Generating DIO Pulses on Reset 99

5.18.6 Testing the Security Bit 99

5.18.7 Software Timer Test 100

5.18.8 Interrupt Test 100

6 80515 MPU REFERENCE 101
6.1 80515 Overview .. 101

6.1.1 80515 Performance 101

6.1.2 80515 Features 102
6.2 80515 Architectural Overview ... 103

6.2.1 Memory organization 103

Program Memory .. 103

External Data Memory .. 103

Dual Data Pointer .. 104

Internal Data Memory .. 104

Special Function Registers Location ... 105

Generic Special Function Register Overview .. 106

Generic Special Function Registers Location and Reset Values .. 107

Special Function Registers Specific to the 652X ... 108

6.2.2 The 80515 Instruction Set 109

Instructions Ordered by Function .. 110

Instructions Ordered by Opcode (Hexadecimal) ... 114

Instructions that Affect Flags ... 117
6.3 80515 Hardware description ... 117

6.3.1 Block Diagram 118

6.3.2 80515 MPU 119

Accumulator .. 119

The B Register .. 119

Program Status Word (PSW) .. 119

Stack Pointer ... 120

Data Pointer .. 120

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 7 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Program Counter... 120

Ports 120

Timers 0 and 1 .. 120

Timer/Counter Mode Control Register (TMOD) .. 121

Timer/Counter Control Register (TCON) ... 121

6.3.2.1 Allowed Combinations of Operation Modes .. 122

6.3.3 Serial Interface 0 and 1 122

Serial Interface 0 Modes ... 122

Serial Interface 1 Modes ... 124

6.3.3.1 Baud Rate generator .. 125

6.3.4 Software Watchdog Timer 126

Software Watchdog Timer structure .. 126

6.3.4.1 WD Timer Start Procedure ... 126

Refreshing the WD Timer .. 127

Special Function Registers for the WD Timer ... 127

Interrupt Enable 0 Register (IEN0): 127

Interrupt Enable 1 Register (IEN1): 127

Interrupt Priority 0 Register (IP0): 127

Watchdog Timer Reload Register (WDTREL): 128

6.3.5 The Interrupt Service Routine Unit 128

6.3.5.1 Interrupt Overview .. 128

6.3.5.2 Special Function Registers for Interrupts .. 128

Interrupt Enable 0 Register (IE0) 128

Interrupt Enable 1 Register (IEN1) 129

Interrupt Enable 2 Register (IEN2) 129

Timer/Counter Control Register (TCON) 130

Interrupt Request Register (IRCON) 130

6.3.5.3 External Interrupts .. 130

Interrupt Request register (T2CON) 131

6.3.5.4 Interrupt Priority Level Structure ... 131

Interrupt Priority 0 Register (IP0) 132

Interrupt Priority 1 Register (IP1) 132

6.3.5.5 Interrupt Sources and Vectors .. 133

External Interrupt Edge Detect 133

7 Appendix 135
7.1 ACRONYMS .. 135
7.2 Revision History ... 136

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 8 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

List of Figures
Figure 2-1: Software Structure ... 16
Figure 3-1: Port Speed and Handshake Setup ... 21
Figure 5-1: STARTUP.A51 ... 46
Figure 5-2: INIT.A51 ... 46
Figure 5-3: main() Program .. 47
Figure 5-4: main_init() Function ... 48
Figure 5-5: main_run() Function ... 49
Figure 5-6: Timer ISRs ... 52
Figure 5-7: stm_run() - Process Software Timers (non-ISR) .. 52
Figure 5-8: CE_BUSY ISR ... 53
Figure 5-9: XFER_BUSY/RTC ISR .. 54
Figure 5-10: Serial 0 and 1 isr .. 55
Figure 5-11: ce_update .. 56
Figure 5-12: meter_LCD... 57
Figure 5-13: Command Line Interpreter ... 58
Figure 5-14: Auto-Calibration ... 59
Figure 5-15: ce_default Calibration .. 60
Figure 5-16: Calibration, continued .. 61
Figure 5-17: cmd_pending() ... 62
Figure 5-18: Single-Byte Read/Write .. 63
Figure 5-19: Multi-Byte Read ... 64
Figure 5-20: Multi-Byte Write .. 65
Figure 5-21: Power-Up Sequence .. 67
Figure 5-22: Sag and Dip Conditions ... 79
Figure 5-23: Sag Event .. 79
Figure 5-24: Crystal Frequency over Temperature ... 80
Figure 5-25: Crystal Compensation .. 81
Figure 5-26: Operation Modes State Diagram .. 97
Figure 6-1: Memory Map .. 103
Figure 6-2: 80515 µC Block Diagram ... 118
Figure 6-3: Watchdog Block Diagram .. 126
 Figure 6-4: Interrupt Sources Diagram .. 134

List of Tables
Table 3-1: Memory Map ... 19
Table 5-1: Internal Data Memory Map .. 37
Table 5-2: Internal Data Types ... 40
Table 5-3: Demo Code Versions .. 41

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 9 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Table 5-4: Current Sensing Options ... 42
Table 5-5: Compensation Features .. 42
Table 5-6: Power Registers and Pulse Output Features .. 43
Table 5-7: Creep Functions .. 44
Table 5-8: Operating Modes ... 44
Table 5-9: Calibration and Various Services .. 46
Table 5-10: Interrupt Service Routines ... 50
Table 5-11: Interrupt Priority Assignment ... 51
Table 5-12: MPU Memory Location .. 78
Table 5-13: Frequency over Temperature .. 80
Table 6-1: Speed Advantage Summary ... 101
Table 6-2: Stretch Memory Cycle Width ... 104
Table 6-3: Internal Data Memory Map .. 105
Table 6-4: Special Function Registers Locations ... 105
Table 6-5: Special Function Registers Reset Values ... 107
Table 6-6: SFRs Specific to the 652X .. 109
Table 6-7: Notes on Data Addressing Modes ... 109
Table 6-8: Notes on Program Addressing Modes .. 109
Table 6-9: Arithmetic Operations .. 110
Table 6-10: Logic Operations ... 111
Table 6-11: Data Transfer Operations .. 112
Table 6-12: Program Branches .. 113
Table 6-13: Boolean Manipulations .. 113
Table 6-14: Instruction Set in Hexadecimal Order .. 114
Table 6-15: Instruction Set in Hexadecimal Order .. 115
Table 6-16: Instruction Set in Hexadecimal Order .. 116
Table 6-17: Instructions Affecting Flags ... 117
Table 6-18: PSW Register Flags .. 119
Table 6-19: PSW Bit Functions .. 119
Table 6-20: Register Bank Location ... 120
Table 6-21: The TMOD Register .. 121
Table 6-22: The TMOD Register Bits Description .. 121
Table 6-23: Timers/Counters Mode Description ... 121
Table 6-24: The TCON Register .. 121
Table 6-25: The TCON Register Bit Functions ... 122
Table 6-26: Timer Modes ... 122
Table 6-27: The S0CON Register .. 123
Table 6-28: The S0CON Bit Functions ... 123
Table 6-29: Serial Port 0 Modes ... 124

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 10 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Table 6-30: Serial 1 Modes .. 124
Table 6-31: The S1CON Register .. 124
Table 6-32: The S1CON Bit Functions ... 125
Table 6-33: The IEN0 Register ... 127
Table 6-34: The IEN0 Bit Functions ... 127
Table 6-35: The IEN1 Register ... 127
Table 6-36: The IEN1 Bit Functions ... 127
Table 6-37: The IP0 Register ... 127
Table 6-38: The IP0 Bit Functions .. 128
Table 6-39: The WDTREL Register ... 128
Table 6-40: The WDTREL Bit Functions .. 128
Table 6-41: The IEN0 Register ... 129
Table 6-42: The IEN0 Bit Functions ... 129
Table 6-43: The IEN1 Register ... 129
Table 6-44: The IEN1 Bit Functions ... 129
Table 6-45: The IEN2 Register ... 129
Table 6-46: The IEN2 Bit Functions ... 129
Table 6-47: The TCON Register .. 130
Table 6-48: The TCON Bit Functions ... 130
Table 6-49: The IRCON Register ... 130
Table 6-50: The IRCON Bit Functions .. 130
Table 6-51: The T2CON Register .. 131
Table 6-52: The T2CON Bit Functions ... 131
Table 6-53: Priority Level Groups ... 131
Table 6-54: External MPU Interrupts .. 132
Table 6-55: Control Bits for External Interrupts .. 132
Table 6-56: The IP0 Register ... 132
Table 6-57: The IP1 Register ... 132
Table 6-58: Priority Levels .. 132
Table 6-59: Polling Sequence .. 133
Table 6-60: Interrupt Vectors.. 133

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 11 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

LIMITED USE LICENSE AGREEMENT

Acceptance: By using the Application Programming Interface and / or other software described in this document
(“Licensed Software”) and provided by TERIDIAN Semiconductor Corporation (“TSC”), the recipient of the software
(“Licensee”) accepts, and agrees to be bound by the terms and conditions hereof.

Acknowledgment: The Licensed Software has been developed for use specifically and exclusively in conjunction with
TSC’s meter products: 71M6521D, 71M6521F, and 71M6521B. Licensee acknowledges that the Licensed Software
was not designed for use with, nor has it been checked for performance with, any other devices.

Title: Title to the Licensed Software and related documentation remains with TSC and its licensors. Nothing contained
in this Agreement shall be construed as transferring any right, title, or interest in the Licensed Software to Licensee
except as expressly set forth herein. TSC expressly disclaims liability for any patent infringement claims based upon
use of the Licensed Software either solely or in conjunction with third party software or hardware.

Licensee shall not make nor to permit the making of copies of the Licensed Software (including its documentation)
except as authorized by this License Agreement or otherwise authorized in writing by TSC. Licensee further agrees not
to engage in, nor to permit the recompilation, disassembly, or other reverse engineering of the Licensed Software.

License Grant: TSC grants Licensee a limited, non-exclusive, non-sub licensable, non-assignable and non-trans-
ferable license to use the software solely in conjunction with the meter devices manufactured and sold by TSC.

Non-disclosure and confidentiality: For the purpose of this Agreement, “Confidential Information” shall mean the
Licensed Software and related documentation and information received by Licensee from TSC. All Confidential
Information shall be maintained in confidence by Licensee and shall not be disclosed to any third party and shall be
protected with the same degree of care as the Licensee normally uses in the protection of its own confidential
information, but in no case with any less degree than reasonable care. Licensee further agrees not to use any
Confidential Information received from TSC except as contemplated by the license granted herein.

Disclaimer of Warranty: TSC makes no representations or warranties, express or implied, regarding the Licensed
Software, including any implied warranty of title, no infringement, merchantability, or fitness for a particular purpose,
regardless of whether TSC knows or has reason to know Licensee’s particular needs. TSC does not warrant that the
functions of the Licensed Software will be free from error or will meet Licensee’s requirements. TSC shall have no
responsibility or liability for errors or product malfunction resulting from Licensee’s use and/or modification of the
Licensed Software.

Limitation of Damages/Liability: IN NO EVENT WILL TSC NOR ITS VENDORS OR AGENTS BE LIABLE TO
LICENSEE FOR INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH,
OR ARISING OUT OF, THIS LICENSE AGREEMENT OR USE OF THE LICENSED SOFTWARE.

Export: Licensee shall adhere to the U.S. Export Administration Laws and Regulations (“EAR”) and shall not export or
re-export any technical data or products received from TSC or the direct product of such technical data to any
proscribed country listed in the EAR unless properly authorized by the U.S. Government.

Termination: TSC shall have the right to terminate the license granted herein in the event Licensee fails to cure any
material breach within thirty (30) days from receipt of notice from TSC. Upon termination, Licensee shall return or, at
TSC’s option certify destruction of, all copies of the Licensed Software in its possession.

Law: This Agreement shall be construed in accordance with the laws of the State of California. The Courts located in
Orange County, CA shall have exclusive jurisdiction over any legal action between TSC and Licensee arising out of this
License Agreement.

Integration: This License Agreement constitutes the entire agreement of the parties as to the subject matter hereof.
No modification of the terms hereof shall be binding unless approved in writing by TSC.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 12 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 13 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 1 INTRODUCTION
TERIDIAN Semiconductor Corporation’s (TSC) 71M652X single chip Energy Meter Controllers are a family of Systems-
on-Chip that supports all functionalities required to build a low-cost power meter. Demo Boards are available for each
chip (71M6521DE/FE, 71M6521BE) to allow development of embedded application, in conjunction with an In-Circuit
Emulator. Development of a 71M652X application can be started in either 80515 assembly language, or more favorably
in C using the Demo Boards. TSC provides, along with the 71M652X Demo Boards, a development toolkit that includes
a demonstration program (“Demo Code”) written in ANSI C that controls all features present on the Demo Boards. This
Demo Code includes functions to manage the low level 80515 core such as memory, clock, power modes, interrupts;
and high level functions such as the LCD, Real Time Clock, Serial interfaces and I/Os. The use of Demo Code portions
will help reduce development time dramatically, since they allow the developer to focus on developing the application
without dealing with the low-level layer such as hardware control, timing, etc. This document describes the different
software layers and how to use them.

The Demo Code should allow customers to evaluate various resources of the 652X ICs but should not be
regarded as production code. The Demo Code and all its components, with the exception of the CE code, are
only example code and the use of it is as is and without guarantees implied. Customers may use the Demo
Code as starting point at any given released revision level but should keep themselves informed about
subsequent revisions of the Demo Code. Demo Code revisions may not be directly compatible with previously
released revisions and/or embedded software used by customers. Customers need to adapt the Demo Code or
other example code supplied by TERIDIAN Application Engineering to their own code base, and in this context
TERIDIAN Semiconductor can only provide indirect assistance and support.

This Software User’s Guide provides information on the following separate subjects:

• General software architecture and minimum requirements (Design Guide)

• Memory model, programming, test tools (Design Reference)

• Demo code structure, flow-charts, data flow, functions (Demo Code Description)

• Installing and using the EEP, compiler, ICE (Tool Installation Guide)

• Understanding and using the 80515 micro controller (80515 Reference)

 1.1 USING THIS DOCUMENT
The reader should have a basic familiarity with microprocessors, particularly the 80515 architecture, firmware, software
development and power meter applications. Prior experience with, or knowledge of, the applicable ANSI and/or IEC
standards will also be helpful.

This document presents the features included in the 71M652X Demo Boards in terms of software and some hardware.
To get the most out of this document, the reader should also have available other 71M652X publications such as the
71M652X Demo Board User’s Manual, respective data-sheets, errata list and application notes for additional details
and recent developments.

1

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 14 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 1.2 RELATED DOCUMENTATION
Please refer to the following documents for further information:

• 71M6521 Demo Board User’s Manual

• 71M6521DE/FE or 71M6521BE Data Sheet

• Signum Systems ADM-51 In-Circuit Emulator Manual

• Keil Compiler Manual (Version 7.5 or later)

• μVision2 (Version 2.20a or later) Manual

TERIDIAN’s web site (http://www.teridian.com) should be frequently checked for updates, application notes and other
helpful information.

Questions to TERIDIAN Applications Engineering can be directed via e-mail to the address:

• meter.support@teridian.com

 1.3 COMPATIBILITY STATEMENT
Information presented in this manual applies to the following hardware and software revisions:

• 71M6521 Demo Code Revision 4.7a

• 71M6521 Demo Board D6521T12A1 (68-pin QFN) Revision 1.0 or later

• 71M6521 Demo Board D6521T4A8 (64-pin LQFP) Revision 8 or later

• Signum Systems Wemu51 Software 3.07.00 (2/14/2005) or later

• Signum Systems ADM51 firmware version 3 (2005/02/08) or later

The revision 4.7a of the Demo Board Code is the basis for all discussed sources, commands, register
addresses and so forth. Known issues with this revision are disclosed within the code description,
and workarounds or improvements are shown.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 15 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 2 DESIGN GUIDE
This section provides designers with some basic guidance in developing power meter applications utilizing the TSC
71M652X devices. There are two types of applications that can be developed:

• Embedded application using the sources provided by TERIDIAN, or

• Embedded application using only customer generated functions.

 2.1 HARDWARE REQUIREMENTS
The following are the minimum hardware requirements for developing custom programs:

• TERIDIAN 71M6521 Demo Board. This board interfaces with a PC via the RS232 serial interface (COM
port).

• AC Adaptor (AC/DC output) or variable power supply.

• PC with 512MB RAM and 10GB hard drive, 1 COM port and 1 USB port, running either Windows 2000, or
Windows ME or Windows XP.

• Signum Systems ADM-51 In-Circuit Emulator (for loading and debugging the embedded application) and
its associated cables (not included in the demo kit). Signum references this device as ADM-51.

 2.2 SOFTWARE REQUIREMENTS
The following are the minimum software requirements for embedded application programming:

• Keil Compiler version 7.5 or later.

• μVision2 version 3.05c (Note: this version comes with Keil Compiler version 7.5).

• Signum Systems software Wemu51 (comes with Signum Systems ADM-51 ICE hardware).

The following software tools/programs are included in the 71M652X development kit and should be present on the
development PC:

• Demo Code with Command Line Interface (CLI) - Used to interface directly to metering functions and to
the chip hardware.

• Source files

• Demo Code object file (hex file).

2

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 16 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

In order to generate and test software, the Keil compiler and the Signum in-circuit emulator (ICE) must be installed per
the instructions in section 4. The include files and header files must also be present on the development PC. Typically,
a design session consists of the following steps:

• Editing C source code using µVision2

• Compiling the source code using the Keil compiler

• Modifying the source code and recompiling until all compiler error messages are resolved

• Using the assembler and linker to generate executable code

• Downloading the executable code to the ICE

• Executing the code and watching its effects on the target

 2.3 SOFTWARE ARCHITECTURE
The 71M652X software architecture is partitioned into three separate layers:

1. The lowest level is the device or hardware layer, i.e. the layer that directly communicates with the discrete
functional blocks of the chip and the peripheral components (“hardware”), such as serial interfaces, AFE, LCD
etc.

2. The second layer consists of buffers needed for some functions.

3. The third layer is the application layer. This layer is partially implemented by the Demo Code for evaluation
purposes, but extensions and enhancements can be added by the application software developer to design
suitable electronic power meter applications.

Figure 2-1: shows the partitions of each software component. As illustrated, there are many different designs an
application can develop depending on its usage. Section 5 describes in more detail the functions within each
component.

Application
Layer

Hardware

Hardware
Layer

Buffer
Layer

Meter

Totals (Meter Data)

CLI

SerCLI FLAG

Ser0 Ser1LCD

LCD

AFE

CE RAM

UART0 UART1

CE

Display Sensors Terminal/
PC

AMR

Figure 2-1: Software Structure

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 17 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

The Demo Code is highly modular. Each device in the chip and on the Demo Board has a corresponding set of driver
software in the Hardware Layer. These driver software modules are very basic, enabling customers to easily locate and
reuse the logic. For the serial devices and for the CE, the buffer handling has been abstracted and separated from the
driver modules.

Where there are several similar devices (e.g. ser0, ser1, or tmr0, tmr1), the Demo Code simulates a virtual object base
class using C preprocessor macros. For example, to initialize the first serial interace, ser0, the source file can include
ser0.h, and then call ser_initialize(). To transmit a byte on ser0, the file can include ser0.h, and then call ser_xmit().
The convenience is that high-level code can be ported to another device by just (for example) including ser1.h, rather
than ser0.h. Just by making variables static, entire high-level protocols can be written and maintained by copying the
code debugged on one device, and having it include the other device’s .h file.

The demo firmware uses this technique for the command line interface (ser0cli.c, ser1cli.c), the FLAG AMR interface
(flag0.c, flag1.c) and for the software timer module (stm.c). The base-class emulation uses macros because on the
80515 MPU macros execute faster and are also more compact than the standard C++ (object-oriented) design with an
implicit structure containing function pointers.

The Demo Code is also designed with an “options.h” file, which enables and disables entire features in the firmware.

The macro approach combined with the “options.h” file permitted the firmware team to adapt the same Demo Code to
8k, 16k, and 32k versions.

 2.4 UTILITIES
Two utilities are offered that make it possible to perform certain operations on the object (HEX) files without having to
use a compiler:

• D_MERGE.EXE allows combining the object file with a text script in order to change certain default settings of
the program. For example, modified calibration coefficients resulting from an actual calibration can be inserted
into the object file.

• CE_MERGE.EXE allows combining the object file with an updated image of the CE code.

Both utilities are executed from a DOS window (DOS command prompt). To invoke the DOS window, the “command
prompt” option is selected after selecting Start – All Programs – Accessories.

The GUI subdirectory contains an unsupported MS Windows .NET implementation of a FLAG hand-held unit.

 2.4.1 D_MERGE

Any changes to I/O RAM (Configuration RAM) can be made permanent by merging them into the object file. The first
step for this is to create a maco file (macro.txt) containing the commands adjusting the I/O RAM, such as the following
commands affecting calibration:

]8=+16381

]9=+16397

]E=+237

The d_merge program updates the 6521_demo.hex file with the values contained in the macro file. The d_merge
program must be in the same directory as the source files, or a path to the executable must be declared. Executing the
d_merge program with no arguments will display the syntax description. To merge the file macro.txt and the object file
old_6521_demo.hex into the new object file new_6521_demo.hex, use the command:

d_merge old_6521_demo.hex macro.txt new_6521_demo.hex

 2.4.2 CE_MERGE
The ce_merge program updates the 6521_demo.hex file with the CE program image contained in the CE.CE file
and the data image CE.DAT. Both CE.CE and CE.DAT must be in Intel HEX format, i.e. both files are not in the
source format but in the compiled format (Verilog HEX). These files will be made available from Teridian in
the cases when updates to the CE images are necessary.
To merge the object file old_6521_demo.hex with CE.CE and CE.DAT into the new object file new_6521_demo.hex,
use the command:

ce_merge old_6521_demo.hex ce.ce ce.dat 6521_demo.hex

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 18 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 19 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 3 DESIGN REFERENCE
As depicted in Figure 1 of section 2, the 71M652X provides a great deal of design flexibility for the application de-
veloper. Programming details are described below.

 3.1 PROGRAM MEMORY
The embedded 80515 MPU within the 71M652X has separate program (32K, 16K, or 8K bytes) and data memory (2K
bytes). The code for the Compute Engine program resides in the MPU program memory (flash).

The Flash program memory is addressed as a 64KB block, segmented in 512-byte pages. Selection of these individual
blocks is accomplished using the function calls related to flash memory, which are described in more detail below.

 3.2 DATA MEMORY
The 71M652X has 2K bytes of Data Memory for exclusive use of the embedded 80C515 MPU. In addition, there are
512 bytes for the Compute Engine. See Table 3-1: for a summary.

Address

(hex)
Memory

Technology Memory Type Typical Usage
Wait States
(at 5MHz)

Memory Size
(bytes)

0000-7FFF
0000-4FFF
0000-2FFF

Flash Memory Non-volatile Program and non-volatile
data 0

32KB
16KB
8KB

0000-07FF Static RAM Volatile MPU data XRAM, 0 2KB
1000-11FF Static RAM Volatile CE data 6 512

2000-20FF Static RAM Volatile Miscellaneous I/O RAM
(configuration RAM) 0 256

Table 3-1: Memory Map

3

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 20 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 3.3 PROGRAMMING OF THE 71M652X CHIPS
There are two ways to download a hex file to the 71M652X Flash Memory:

• Using a Signum Systems ADM-51 ICE.

• Using the TERIDIAN Semiconductor Flash Programmer Module (FDBM) or the TERIDIAN Semiconductor
Flash Download FDBM-TFP1 Stand-Alone Module

Note: For both programming and debugging code it is important that the hardware watchdog timer is
disabled. See the Demo Board User’s Manual for details.

Before downloading code to a 71M6521:

• Stop the MPU

• Disable the CE by writing a 0 to XDATA at address 0x2000.

• Erase the flash memory.

 3.4 DEBUGGING OF THE 71M652X CHIPS
When debugging with the ADM51 in-circuit emulator, the CE continues to run, and this disables flash memory access
because the code of the CE is located in flash memory.

When setting breakpoints, only two breakpoints can be used, because the first two breakpoints are
“hardware” breakpoints, while the rest attempt to write to flash memory.

 3.5 TEST TOOLS
A command line interface operated via the serial interface of the 71M652X MPU provides a test tool that can be used
to exercise the functions provided by the low-level libraries. The command-line interface requires the following
environment:

1) Demo Code (652X_demo.hex) must be resident in flash memory

2) The Demo Board is connected via a Debug Board to a PC running Hyperterminal or another type of terminal
program.

3) The communication parameters are set at 300 bps, 7N2, XON/XOFF flow control, as described in section
3.5.1 .

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 21 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 3.5.1 Running the 652X_Demo.hex Program

This object file is the 71M652X embedded application developed by TERIDIAN to exercise all low-level function calls
using a serial interface. Demo Boards ship pre-installed with this program. To run this program:

• Connect a serial cable between the serial port of the Debug Board RS232 and a COM port of a Windows
PC.

• Open a Windows’ Hyperterminal session at 9600 or 300 bps (depending on the setting of jumper
connected to DIO_08 – see the 71M6521 Demo Board User’s Manual), 8N1, one stop bit, with
XON/XOFF flow control enabled. The setup dialog box is shown in Figure 3-1:

• Power on the Demo Board and hit <CR> a few times on the PC keyboard until ‘>’ is displayed on the
Hyperterminal screen.

• Type a command from the CLI Reference documented in the 71M6521 Demo Board User’s Manual.

• All references to ‘c’ (lower case c) indicate any ASCII character, all other lowercase letters are one-byte
numbers

• Numbers can be entered in decimal by preceding them with a plus-sign (e.g. hex 20 = +32)

The 71M6521 Demo Board User’s Manual contains instructions on how to connect the serial cable.

Figure 3-1: Port Speed and Handshake Setup

Note: HyperTerminal can be found by selecting Programs Accessories Communications from the Windows© start
menu. The connection parameters are configured by selecting File Properties and then by pressing the
Configure button. Port speed and flow control are configured under the General tab, bit settings are configured
by pressing the Configure button (Figure 3-1:), as shown below.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 22 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 3.5.2 CLI Commands

The Demo Board User’s Manual (DBUM) for the 71M6521 contains a complete list of the available commands.

Note: Only the 71M6521FE chip has enough memory to support a serial command line interface in addition to its
metering functions. Communication with the 71M6521BE and 71M6521DE chips is implemented with a simpler
interface, based on Intel hex records. This interface is also described in the Demo Board User’s Manual.

 3.5.3 Command (Macro) Files

Commands or series of commands may be stored in text (ASCII) files and sent to the 71M652X using the “Transfer –
Send Text File” command of Hyperterminal or any other terminal program.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 23 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 4 TOOL INSTALLATION GUIDE
This section provides detailed installation instructions for the Signum ADM-51 in-circuit emulator and for the Keil
compiler.

 4.1 INSTALLING THE PROGRAMS FOR THE ADM51 EMULATOR
The AMD51 ICE interfaces with the PC is via the USB serial interface.

The installation process consists of the following steps:

1. Installing the Chameleon Debugger used with the Signum ICE
2. Installing the ADM51 USB driver
3. Installing updates
4. Creating a project

 4.2 INSTALLING THE WEMU PROGRAM (CHAMELEON DEBUGGER)
Insert the CD from Signum Systems and connect the ICE ADM51 to the PC with the provided USB cable.

The following dialog box will appear (this dialog box also shows the release date of the program):

 Click on “Chameleon Debugger” and then select “ADM51 Emulator”.

Follow the instructions given by the installation program.

4

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 24 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 4.3 INSTALLING THE ADM51 USB DRIVER
The Wemu51 program communicates with the emulator ADM51 via the USB interface of the PC. The USB driver for
the ADM51 has to be installed prior to using the emulator. After plugging in the USB cable into the PC and the ADM51
ICE the status light of the ADM51 emulator should come on.

A dialog box will appear, asking you to install the ADM51 driver.

 Click Next. Another dialog box will appear, asking how to search for the driver. Use the recommended method.

 Click Next.

Another screen (not shown) will appear asking to locate the driver. Select Specific Path and browse to:

C:\Program Files\Signum Systems\Wemu51\Drivers\USB. Click Next.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 25 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Click Finish.

Click Finish again.

Note: USB 1.1 is sufficient for operation of the ADM51. If higher performance is desired and no USB 2.0 port is
available on the host PC, a USB 2.0 card can be installed as an option.

 4.4 INSTALLING UPDATES TO THE EMULATOR PROGRAM AND HARDWARE
If the Wemu51 program is revision 3.07 or later, no special precautions have to be taken. Otherwise, the program
should be updated using the Signum Systems web site (www.signum.com).

When running the Wemu51 program revision 3.07 or later, the firmware in the ADM51 will be checked automatically.
ADM51 emulators with outdated firmware will not function properly. The Wemu51 will offer an automatic update for the
ADM51, if necessary. For a successful upgrade it is vital to follow the instructions on screen precisely.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 26 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 4.5 CREATING A PROJECT
Double click on the WEMU51 icon to start the Chameleon debugger.

Click Project/Create New Project. The following screen will appear:

Follow the instructions of the Create Project Wizard by selecting Next.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 27 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

When prompted for the project name to be used, type a convenient project name. Click Next.

When prompted for the project directory to be used, select an existing folder on the PC. Do NOT select any folder in
the Wemu51 installation directory! Click Next.

When prompted for the emulator to be used, select ADM51 Emulator. Click Next.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 28 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

When prompted for the communication device to be used, select USB ADM51. Click Next.

When prompted for the processor to be used, select either 71M6521. Click Next.

Click Finish.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 29 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 4.6 INSTALLING THE KEIL COMPILER
After inserting the Keil CD-ROM into the CD drive of the PC, the on-screen instructions should be followed to install the
Keil compiler.

Note: For PCs that can only use one type of drive at a time (CD-ROM drive, floppy drive, such as certain laptops), it is
helpful to copy the contents of the floppy labeled “Add-On Disk” to the hard drive of the PC. That way, drives do not
have to be swapped out during the installation.

The installer will display the following screen:

Select Install Products & Updates

Select C51 Compiler and Tools

Follow the on-screen instructions of the installation program. When prompted for the add-on disk, insert the disk in the
floppy drive and click Next or browse to the location of the files (if they were previously copied to the hard drive of the
PC) by clicking Browse.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 30 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 4.7 CREATING A PROJECT FOR THE KEIL COMPILER

 4.7.1 Directory Structure

The following directory structure is established when the files from the archive 652X_Demo.zip are unpacked while
maintaining the structure of subdirectories:

<drive letter>:\…\meter project\

<drive letter>:\…\meter project\CE

<drive letter>:\…\meter project\CLI

<drive letter>:\…\meter project\CLI_652X

<drive letter>:\…\meter project\docs

<drive letter>:\…\meter project\flag

<drive letter>:\…\meter project\IO

<drive letter>:\…\meter project\Main_6521

<drive letter>:\…\meter project\Main_6521_CLI

<drive letter>:\…\meter project\Meter

<drive letter>:\…\meter project\Util

The project control file 652X_demo.uv2 will be in the directory <drive letter>:\…\meter project. The Keil compiler can be
configured easily by loading the file 652X_demo.uv2, using the Project Menu and selecting the Open Project
command.

The window shown below should appear when the project control file is opened.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 31 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

The Project Workspace screen on the left side of the window shows the main components of the source (CE, CLI, IO,
Main, Meter, Utils) in folders. Folders can be opened by clicking on the plus sign next to them. Opening the folders will
display the source files associated with them.

It should be noted that not all header files are physically present in the project directory. The files absacc.h, string.h,
ctype.h, and setjmp.h are provided by the compiler manufacturer, and they are located in the Keil\C51\INC directory.

 4.7.2 Adjusting the Keil Compiler Settings

Once, the Keil compiler is installed, the most convenient method to start the project is to double-click on the file
6521.UV2 (or 6521UV3). This will start the Keil compiler with the proper settings stored in the 6521.UV2 file.

Directory structures and drive names vary from PC to PC. The settings for the compiler can be adjusted using the
following method:

1. Select “target1” in the leftmost window.

2. Select “project” from the top menu and then select “options for target 1”.

3. Select the “C51” tab.

4. Click the button right next to the “Include Paths” window. Three paths will be listed, pointing to meter
projects, meter projects\demo, and meter projects\demo\header files.

5. If necessary, delete these path entries (X button) and replace them with the corresponding path
entries for your PC (� button).

The dialog box should look like shown below. After making the necessary changes, the project file (652X_demo.UV2)
should be stored.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 32 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 4.7.3 Manually Controlling the Keil Compiler Settings

If the method described in section “Adjusting the Keil Compiler Settings” is not used, the Keil compiler settings can also
be controlled manually.

The target options should be selected in order to adapt the compiler controls properly to the target. The uVision
compiler environment is started by selecting Programs Keil uVision2. uVision should start up and present the
following window:

Under Project Options for Target1, select the Device tab and check the selected device. Newer versions of the Keil
Compiler offer selection of TERIDIAN (labeled “TDK”) 71M6511 devices:

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 33 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

For older versions of the Keil compiler, select the TERIDIAN folder (labeled “TDK”), open it by clicking on the + sign
and select 73M2910L as the target device. Confirm by clicking OK.

Under Project Options for Target1, select the Target tab and enter the values in the fields as shown above. Confirm
by clicking OK.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 34 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Under the Output tab, select a name for the executable (object) file with .abs extension’ in the field labeled “Name of
the executable” and check the fields by “Debug Information”, “Browse Information” and “Create HEX File”. This will
guarantee that high-level source information will be embedded in the output file. Select HEX-80 as the output format,
as shown below:

Under the C51 tab, provide path names for the source files to be included, as shown below.

Click OK to set all the options selected for project and return to the main menu.

With the source and header files now existing in the newly created project, the files can be compiled using the Build
Target option under the Project menu.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 35 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 4.8 PROJECT MANAGEMENT TOOLS
With large software projects involving a multitude of source, object, list and other files in various revisions, it is very
helpful to use a version control tool.

To manage file versions under Windows, Tortoise CVS, a free version control utility, might be useful. This utility can be
found at http://www.tortoisecvs.org/ .

 4.9 ALTERNATIVE COMPILERS
The Demo Code was written for the Keil compiler. However, alternative compilers may be used if the code is modified
to ensure compatibility with the alternative compiler. One example of an alternative compiler is SDCC, a free compiler
available from www. Sourceforge.net.

Note: The Keil extensions for the 8051 are not compatible with the 8051 extensions used by the SDCC.

The batch file BUILD6521.BAT is provided with the Demo Kit to support building object files using alternative compilers.
This batch file uses the Keil compiler calls with the applicable compiler options and can therefore serve as examples on
how to invoke alternative compilers. The linker control file LINK6521.TXT called by the batch files can show how to
properly invoke linkers.

To compile with DOS-style tools, arrange for a DOS batch file to invoke the tools and set the properties of the batch file
to leave the window open, so that errors can be seen. Then, to compile, double click on this batch file in Windows
explorer.

 4.10 ALTERNATIVE EDITORS
Many modern text editors have a feature called “tag jumping” that helps a programmer to read and understand unfa-
miliar code. TERIDIAN Semiconductor recommends using such an editor to read, understand and modify
demonstration code. Tag jumping is a feature that is not supported by the Keil uVision editor.

This is how tag jumping works:

1. A “tag file generator” program is run on some directories full of .c or .h files. TERIDIAN Semiconductor
recommends placing the tag file generator in a DOS batch file in the same directory as the project’s make file.
Wattmeter demonstration code includes such a batch file: “T.BAT”. To run a batch file, double-click it in
windows explorer. A DOS batch file is just an ASCII file (like a .C file) containing DOS commands. DOS
commands are described at http://www.computerhope.com/msdos.htm .

2. The tag file should then be copied to convenient places for a text editor. TERIDIAN Semiconductor
recommends copying the tag file into each source code directory. In that way, the default tag file location for
most editors becomes just “.\tags” for all projects, and multiple projects do not conflict. Copying the tag file
can be an automatic part of the DOS batch file that generates the tag file.

3. It is easiest if Windows explorer opens .C files automatically with the editor when they are clicked. To do this,
change file associations. (See Windows help.)

4. Inside the editor, select a subroutine name or variable, then use the editor’s “tag jump” feature. The editor
immediately opens the file at the line where the subroutine or variable is defined. Or, if the same symbol is in
several places, it offers a choice of files.

TERIDIAN Semiconductor recommends the “exuberant CTAGs utility” for generating tag files. The code can be found
for free at: http://ctags.sourceforge.net/. The choice of a text editor is very personal. Many editors support Exuberant
CTAGS. See the list of supporting tools at http://ctags.sourceforge.net/tools.html.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 36 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Some editors to be considered are:

• VIM, see http://www.vim.org/ a free VI editor. VIM is available in full-featured versions for Windows. VI is part
of the POSIX standard, so using it is a portable skill. VIM wins awards for usability.

• UltraEdit http://www.ultraedit.com/ , an inexpensive (not free), professional Windows programming editor.
This editor works like all other Windows applications, with extra features to support programming languages.
NEDIT (The Nirvana Editor) is very similar, at http://www.nedit.org/. NEDIT runs on Unix with Motif, and also
supports exuberant CTAGs.

• GNU Emacs, a free editor, also supports exuberant CTAGs. See:
http://www.gnu.org/software/emacs/emacs.html

 4.11 ALTERNATIVE LINKERS
Compiled and linked code can be significantly compacted by using the linker available with the Professional Compiler
Kit PK51 from Keil (www.keil.com).

The LX51 Enhanced Linker supplied with the PK51 kit (http://www.keil.com/c51/lx51.asp) is capable of code
compression by up to 8% by rearranging code segments for AJMP and ACALL usage.

All executables supplied with the Demo Boards were generated using the conventional compilers and linkers from Keil.
That way, the supplied sources compile and link to the same code size as the pre-compiled object files.

If it is desired to add more options to the source code than the conventional linker can pack into a given code
space, the LX51 Enhanced Linker should be considered.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 37 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 5 DEMO CODE DESCRIPTION

 5.1 80515 DATA TYPES AND COMPILER-SPECIFIC INFORMATION

 5.1.1 Data Types

The 80515 MPU core is an 8-bit micro controller (MPU); thus operations that use 8-bit data types such as “char” or
“unsigned char” work more efficiently than operations that use multi-byte types, such as “int” or “long”. The Keil C51
compiler supports ANSI C data types as well as data types that are unique to the generic 8051 controller family. Table
5-2 lists available data types. Please refer to the Keil Cx51 Compiler User’s Guide for more details.

Various types of address spaces are available for the 80515 MPU core of the 71M652X, and in order to utilize the
various memory space types efficiently, the Demo Code uses variable type definitions (typedefs.) presented in this
chapter.

To understand the data types, it helps to examine the internal data memory map of the 80515 MPU core, as shown in
Table 5-1: .

Address Direct addressing Indirect addressing
0xFF Special Function Registers

(SFRs) RAM
0x80
0x7F

Byte-addressable area
0x30
0x2F

Bit-addressable area
0x20
0x1F

Register banks R0…R7
0x00

Table 5-1: Internal Data Memory Map

5

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 38 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

General data type definitions:

typedef unsigned char uint8_t;

typedef unsigned short uint16_t;

typedef unsigned long uint32_t;

typedef signed char int8_t;

typedef signed short int16_t;

typedef signed long int32_t

Type definitions for internal data, lower 128 bytes, addressed directly:

typedef unsigned char data uint8d_t;

typedef unsigned short data uint16d_t;

typedef unsigned long data uint32d_t;

typedef signed char data int8d_t;

typedef signed short data int16d_t;

typedef signed long data int32d_t;

This is the fastest available memory (except registers), not battery-backed-up, but competes with stack, registers,
booleans, and idata.

Note: For portability, see uint_fast8_t and its sisters, which are POSIX standard.

Type definitions for internal data, 16 bytes (0x20 to0x2F), addressed directly, and bit addressable:

typedef unsigned char bdata uint8b_t;

typedef unsigned short bdata uint16b_t;

typedef unsigned long bdata uint32b_t;

typedef signed char bdata int8b_t;

typedef signed short bdata int16b_t;

typedef signed long bdata int32b_t;

This is the fastest available memory, but it is not battery-backed-up. It competes with stack, registers, bools, data, and
idata. The space is valuable for boolean globals and should not be wasted.

Booleans are not a normal part of stdint.h, but fairly portable. When using the Keil compiler, the Booleans are stored in
the address range 0x20 to 0x2F. Keil functions return bools in the carry bit, which makes code that's fast and small.

typedef bit bool;

#define TRUE 1

#define FALSE 0

#define ON 1

#define OFF 0

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 39 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Type definitions for internal data, 256 bytes, in the upper 128 bytes addressed indirectly:

typedef unsigned char idata uint8i_t;

typedef unsigned short idata uint16i_t;

typedef unsigned long idata uint32i_t;

typedef signed char idata int8i_t;

typedef signed short idata int16i_t;

typedef signed long idata int32i_t;

This is fairly fast, not battery-backed-up memory, slower than the data in the lower 128 bytes of internal memory.
Competes with data for space.

Type definitions for external data, 256 bytes of 2K of CMOS RAM:

typedef unsigned char pdata uint8p_t;

typedef unsigned short pdata uint16p_t;

typedef unsigned long pdata uint32p_t;

typedef signed char pdata int8p_t;

typedef signed short pdata int16p_t;

typedef signed long pdata int32p_t;

The upper byte of the XDATA address is supplied by the SFR 0xBF (ADRMSB) on the 71M6521 meter ICs. On other
8051 processors, P2 is used for this purpose. This memory range is accessed indirectly, still fairly fast, not battery
backed-up. This is a logical place for nonvolatile globals like power registers and configuration data.

Type definitions for external data, 2Kbytes of CMOS RAM, accessed indirectly via a 16-bit register:

This is the slowest but largest memory are, not battery backed-up. It can be used for everything possible. On Keil's
large model, this is the default.

typedef unsigned char xdata uint8x_t;

typedef unsigned short xdata uint16x_t;

typedef unsigned long xdata uint32x_t;

typedef signed char xdata int8x_t;

typedef signed short xdata int16x_t;

typedef signed long xdata int32x_t;

Type definitions for external read-only data, located in code space:

typedef unsigned char code uint8r_t;

typedef unsigned short code uint16r_t;

typedef unsigned long code uint32r_t;

typedef signed char code int8r_t;

typedef signed short code int16r_t;

typedef signed long code int32r_t;

Access is indirect via a 16-bit register. This is the slowest but largest space, nonvolatile programmable flash memory. It
should be used for constants and tables

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 40 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Note: Throughout the Demo Code, an attempt has been made to put the most frequently used variables in the
fastest memory space.

Data Type Notation Bits Bytes Comments
Bit Bbool 1 Unique to 8051
Sbit 1 Unique to 8051
SFR 8 1 Unique to 8051
SFR16 16 2 Unique to 8051
signed/unsigned char U08 8 1 ANSI C
enum enum 8 or 16 1 or 2 ANSI C
unsigned short U16 16 2 ANSI C
signed short S16 16 2 ANSI C
signed/unsigned int U16 16 2 ANSI C
signed int S16 16 2 ANSI C
unsigned long U32 32 4 ANSI C

Float F32 32 4 ANSI C

Table 5-2: Internal Data Types

 5.1.2 Compiler-Specific Information

The 8051 has 128 bytes of stack, and this motivates Keil C's unusual compiler design. By default, the Keil C compiler
does not generate reentrant code. The linker manages local variables of each type of memory as a series of overlays,
and uses a call-tree of the subroutines to arrange that the local variables of active subroutines do not overlap.

The overlay scheme can use memory very efficiently. This is useful because the 71M652X chips only have 2k of RAM,
and 256 bytes of internal memory.

The compiler treats uncalled subroutines as possible interrupt routines, and starts new hierarchies, which can rapidly
fragment each type of memory and interfere with its reuse.

To combat this, the following measures were taken when generating the Demo Code:

• The code is organized as a control loop, keeping most code in a single hierarchy of subroutines,

• The programmers eliminated unused subroutines by commenting them out when the linker complained
about them. Also, the Demo Code explicitly defines interrupt code and routines called from interrupt code
as "reentrant" so that the compiler keeps their variables on a stack.

• When data has a stable existence, the Demo Code keeps a single copy in a shared static structure.

With these measures applied, the Demo Code uses memory efficiently, and normally no memory issues are en-
countered. The Demo Code does not have deep call trees from the interrupts, so "small reentrant" definitions can be
used, which keep the stack of reentrant variables in the fast (small) internal RAM.

The register sets are also in internal memory. The C compiler has special interrupt declaration syntax to use them. The
"noaregs" pragma around reentrant routines stops the compiler from accessing registers via the shorter absolute
memory references. This is because the Demo Code uses all four sets of registers for different high-speed interrupts.

Using "noaregs" lets any interrupt routine call any reentrant routine without overwriting a different interrupt's registers.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 41 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

There is a known defect in version 7.50a of the Keil compiler:

Memory types must be explicitly defined in local variables. Using a predefined type is not explicit
enough, i.e. "char xdata c;" is ok. "typedef char int8_t; ... int8_t data c;" is OK,

but "typedef char data int8d_t; ... int8d_t c;" is not OK.

 5.2 DEMO CODE OPTIONS AND PROGRAM SIZE
Since the 71M6512 is available with three different memory sizes, different versions of the Demo Code are provided
that take into account the available memory size (see Table 5-3). An attempt has been made to provide the most
common features in each version of the Demo Code. Flexibility is provided by the source code for users when re-
compiling the source code: If a certain feature is not required, it can be left out and replaced with a different feature of
equal or smaller code size.

The object files contained in the Demo Kits have been generated with the following Keil compiler versions:
• C compiler: C51.exe, V8.02
• Assembler: A51.exe, V8.00
• Linker/Locator: BL51.exe, V6.00
• Librarian: LIB51.exe, V4.24
• Hex-converter: OH51.exe, V3.03
• Dialog DLL: DP51.dll, V2.47
• Target DLL: bin\mon51.dll, V2.40
• Dialog DLL: TP51.dll, V2.47

Version Flash
Code Size Description

Basic
Wattmeter

8KB Demonstrates a meter with 8KB of code space. The software offers tamper protection,
calibration and nonvolatile energy registers. It utilizes special CE code.
This implementation has a 0.82KB margin of empty code space.

Intermediate
Meter

16KB Demonstrates a meter with 16KB of code space. The software is easy to reconfigure by
recompiling, and offers full tamper protection, calibration and nonvolatile energy
registers.
This implementation has a 3.2KB margin of empty code space

Demonstration
Meter

32KB Demonstrates a meter with 32k of code space. The software is easy to reconfigure by
recompiling. It shall has full tamper protection, calibration and nonvolatile energy
registers. The software demonstrates a full feature set.
This implementation has a 6.4KB margin of empty code space, not including the
command line interpreter, but including a calibration interface

Table 5-3: Demo Code Versions

In addition to providing flexibility, an attempt has been made to leave a certain amount of unoccupied memory space
when generating the Demo Code. This should provide some room for users who want to modify the Demo Code and
experiment with small changes.

The tables presented below show the features available for the three versions of the Demo Code plus the code size
required for each feature. Entries for code size are approximated and depend on code module combination.

Y means that the feature is implemented, N means that it is not. N/opt means that the feature may be implemented if
enough memory space is available.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 42 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Feature Code

Size
8KB 16KB 32KB Description

CT and shunt
resistors

1KB to
2.5KB

Y Y Y Configurations include one element, one phase, and
neutral current, as well as two elements with two
phases

Rogowski coils 2.5KB N N N Needs special CE code

Table 5-4: Current Sensing Options

Feature Code

Size
8KB 16KB 32KB Description

Chopping of
VREF

0.06KB Y Y Y Control of the chopping bit

Temperature
compensation of
VREF

0.1KB Y Y Y Digital compensation using the GAIN_ADJ input of
the CE, based on linear and quadratic temperature
coefficients

RTC compensa-
tion using mains
frequency

0.2KB N/opt N/opt N/opt Optional compensation of RTC by counting cycles on
mains.
Correction does not occur when frequency
measurement is inhibited by low voltages.

RTC constant
compensation

0.1KB Y N/opt Y Constant rate compensation only.

Full RTC
compensation

0.2KB N N/opt N/opt 2nd-order compensation of RTC to 1ppb, using
temperature.
Correction does not occur when the ADC mux is off-
line.

Temperature
measurement

0.0K Y Y Y Provides difference from calibration temperature to
0.1 C when calibrated

Table 5-5: Compensation Features

Feature Code

Size
8KB 16KB 32KB Description

Wh absolute
value

 Y Y Y Standard option of kilowatt hours, “3. 999999” The
annunciator 3 at the beginning is optional if no other
registers are supported.

Pulse output for
Wh absolute
value

0.23KB Y Y Y Standard option of 1 kh/pulse on both DIO 6 and DIO
2. 8K version’s pulse output is controlled by the CE
without MPU intervention.

VAn register 1KB N N/opt N/opt Optional volt-amperes, “ 999999”, replaces Wh
options

VAn pulse output 0.25KB N N/opt N/opt Optional volt-amperes, 1 kh/pulse, replaces Wh
options

Wh equation 0 0.2KB Y Y Y

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 43 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Feature Code
Size

8KB 16KB 32KB Description

Wh equation 1 0.2KB N N/opt N/opt

Wh equation 2 0.2KB N/opt N/opt N/opt

Frequency
register

0.1KB N Y Y Inhibited if freq > 70Hz or voltage is below the
threshold

Wh net metering 0.4KB N N/opt Y Used only for automatic calibration. No display is
provided.

Wh export register 0.25KB N N/opt N/opt Wh exported, display reads “3 999999”

Wh export pulse
output

0.25KB N N/opt N/opt Wh exported, display reads “3 999999”

VARh register 0.1KB N N/opt Y For autocalibration, and power factor calculation,
signed (net metering).

VARh pulse
output

0.25KB N N/opt Y

VARh import
register

0.4KB N N/opt Y

VARh import
pulse output

0.25KB N N/opt Y

VARh export
register

0.4KB N N/opt Y

VARh export
pulse output

0.25KB N N/opt Y

Operating hours
register

0.36KB N N/opt N/opt “5 99999.9” Nonvolatile count of tenths of hours of
powered operation since first cold start.

RCT time register 0.18KB N/opt Y Y

RCT date register 0.21KB N/opt Y Y

Pulse source
selection

0.4KB N N/opt Y This is the ability to route most calculated energy
values to a pulse output. The 8K code provides only
Wh pulses.

Dual IMAX
registers

0.2KB Y Y Y IMAX2 adjusts current, Wh and VARh from channel B
to same units as A. Creep thresholds are required,
but need not be adjusted when IMAX2 changes.

RMS current
register

0.2KB N N/opt Y Implemented for two phases “P”, 1 & 2 “1.P 000.000”

RMS voltage
register

0.2KB N N/opt Y Implemented for two phases “P”, 1 & 2 “1.P 000.000”

Power factor
register

0.3KB N N/opt N/opt Two phases are displayed with sign. Reset at reset
and the start of each minute. Volatile.

Table 5-6: Power Registers and Pulse Output Features

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 44 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Feature

Feature Code
Size

8KB 16KB 32KB Description

Creep mode 0.37KB Y Y Y Adjustable at calibration.
If abs(W) < Creep threshold, then creep mode.

Zero accumulator
of CE

N/A Y Y Y The pulse accumulation register in the CE is cleared
to prevent spurious pulses from low current noise.

Current threshold N/A Y Y Y Adjustable at calibration.

Set If max(abs(IA2), abs(IB2)) < Current threshold
then creep mode.
Current is calculated from RMS if possible, or, if
below 0.1A, from VA / V, where VA is calculated as
sqrt(Wh^2 + VARh^2)
For all elements.

Voltage threshold 0.12KB N Y Y Adjustable at calibration.

If max(abs(VA2), abs(VB2)) < Volt threshold
inhibit frequency measurement, (frequency of zero)
Inhibit use of zero crossing counts, (main edge count
is zero), iInhibit voltage phase measurement (if any)
This feature is needed only if frequency or mains
edge count is present.

Table 5-7: Creep Functions

Feature Code

Size
8KB 16KB 32KB Description

Brownout mode 0.1KB Y Y Y Used to enter sleep and LCD modes. Command line
interface is available (32KB) when resetting into this
mode. Command prompt in this mode to be “B>”.

LCD mode 0.5KB Y Y Y Is entered automatically when a sag event occurs.
Displays the Wh register, waits 7 sec using wakeup
timer, then initiates sleep mode.

Wake button 0.5KB Y Y Y When in sleep mode, enters LCD mode.

Wake timer 0.5KB Y Y Y Used to exit the LCD mode, and enter sleep mode.

Table 5-8: Operating Modes

Note: The sleep mode does not require any support by MPU code. The mission mode is represented by the sum of the
other code features.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 45 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Feature

Feature Code
Size

8KB 16KB 32KB Description

FLAG interface
protocol

2.5KB N N/opt N/opt Implements the FLAG protocol stack (see the FLAG
specification). The FLAG protocol reads and writes
registers in the meter and responds to all ports.

Reception of
calibration
parameters via
the serial interface

2.0KB Y Y Y Simple serial calibration system that supports reading
data and writing calibration values, including CE data,
MPU calibration and RTC settings. Meter operation is
not required when this feature is in use. Intel hex
records are used.

Count of
calibrations since
first cold reset.

01.KB Y Y Y Counts calibrations. 0..254, 255 = “many”. The count
is protected by a checksum. The first cold reset is
detected by an invalid EEPROM. This is a tamper-
detection feature.

Auto-calibration 3.5KB N N/opt Y Internal automatic calibration, from command line
interface if available, or DIO state at start. Calibration
adjusts phase, as in the “fast calibration” described in
the DBUM.

Command Line
Interface (CLI)

14KB N N Y Text-based commands give access to CE data, RAM,
IO registers. No help, profile or load features.
Versions without CLI can be controlled with
IOMERGE. The command line interface’s space is to
be counted as “unused” when calculating code space
margin.

Optical FLAG 1.2KB N N/opt N/opt Implementation of the physical FLAG layer on UART
1, 300 BAUD, using pulse output

Wired FLAG 1.2KB N N/opt N/opt Implementation of the physical FLAG layer on UART
0, 9600 BAUD,

Save registers
when sag occurs

0.75KB Y Y Y Saves power and error registers on sag detection.

Save to flash
memory

0.9KB N/opt N/opt N/opt Compilation option to save calibration, error and
power register data to internal flash.
When a flash area is used-up, it is marked, and the
next one is used. When all areas are used up, an
error is recorded and write operations are inhibited.

Save to and
restore from
EEPROM

0.7KB Y Y Y Saves and restores calibration, error and power
register data to and from EEPROM.
When an EEPROM area is used-up, it is marked, and
the next one is used. When all areas are used up, an
error is recorded and write operations are inhibited.

Checksum 0.2KB Y Y Y Each revenue-affecting data area is protected by a
simple checksum

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 46 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Feature Code
Size

8KB 16KB 32KB Description

Error recording
and saving

0.4KB N/opt N/opt N/opt Errors are recorded in 16 bit words, one bit per error.
All error collection is reset when the magnetic tamper
DIO is asserted for 1 second. Error data is protected
by a checksum. The time stamp (hour, day and
month of assertion) and the bit number of the five
most recent errors are saved.

Microwire
EEPROM

0.2KB N/opt N/opt N/opt

I2C EEPROM 0.2KB Y Y Y

Table 5-9: Calibration and Various Services

 5.3 PROGRAM FLOW

 5.3.1 Startup and Initialization

The top-level functionality of the Demo Board is controlled by the high-level functions. As with every C program, the
core of the function is in the main() program. The main() program is contained in the main.c source file. It performs the
following steps (see Figure 5-1, Figure 2-1, and Figure 5-2):

1. Reset watchdog timer

2. Process the pushbutton (PB) when in BROWNOUT mode.

3. Initialization for hardware, pointers, metering variables, UART buffers and pointers, CE, restoration of
calibration coefficients, initialization of LCD w/ “HELLO” message), enabling CE and pulse generators.

4. Execute the main_run() routine in an endless loop. In this loop, the background tasks, such as metering,
processing of timers, etc. are performed. Afterwards, if a command is pending, the command line interface
(CLI) is serviced.

Disable All
Interrupts

Disable 651x
Watchdog

Init IDATA

Init STACK

JUMP
to Init

RESET

 Figure 5-1: STARTUP.A51

Figure 5-2: INIT.A51

J U M P
t o

M A I N

I N I T

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 47 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Before the MPU gets to execute the main() program, it will execute the startup instructions contained in the
STARTUP.A51 assembly program (Figure 5-1). Upon completion, STARTUP.A51 causes a jump to the label
C_START, which is contained in the second startup assembly program named init.A51 (Keil/C51/LIB directory, see
Figure 5-2). Init.A51 finally causes the jump to main(). The startup files are described in section 5.10 .

Reset Watchdog

Process WD Overflow flag

main()

Set WAKE timer to 7s

BROWNOUT mode?

Clear PB and WAKE flags

Enter LCD mode

PB pressed?

Clear PB and WAKE flags

main_init()

main_run()

Enter SLEEP mode

no

yes

yes

no

Figure 5-3: main() Program

The stack is located at 0x80, growing to higher values, while the reentrant stack is located at 0xFF, growing down-
wards.

Once operating, the main() program (Figure 5-4)expects regular interrupts from the CE. If no interrupts occur, the
main() program will cease to trigger the watchdog timer, resulting in a reset condition, if the watchdog timer is enabled.

The main() program calls the main_init() (Figure 5-4) and the main_run() (Figure 5-5) routines. main_init() is used for
hardware and software initialization, main_run() is the routine that is executed in an endless loop and that takes care of
background and foreground processing.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 48 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Initialize battery mode
management

Remove software watchdogs

main_init()

Restore calibration values

Perform autocal

Apply calibration defaultsyes

no
restore OK?

Reset RTC

Set default values

autocal request?

yes

no

meter_initialize()

Display "HELLO"

Initialize LCD

Enable RTC interrupt

Initialize pulse counting

Enable CE

Create SW watchdog for
main loop

Enable interrupts

END

Figure 5-4: main_init() Function

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 49 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

main_background()

main_run()

Process flag protocol (0)

yes

no

Run software timers

Neutralize potential flash
erase from EMI

Reset SW watchdog for
main loop

Run metering

Detect and manage battery
modes

Command pending?

Process command

Process flag protocol (1)

END

main_background()

END

Figure 5-5: main_run() Function

 5.4 BASIC CODE ARCHITECTURE
The TERIDIAN 71M652X firmware can be divided into two code parts. One is the Background task that is executed
whenever there are no other higher priority exceptions such as the servicing of interrupts. The second part consists of
the interrupt-driven code (Foreground) tasks, such as the CE_BUSY Interrupt, Timer Interrupt, and other Interrupt
service routines. The background code takes care of the non time-critical functions starting with the system reset, and
this code is executed every time when there are CPU resources available after taking care of all interrupt-driven tasks.
The background of the 71M652X firmware is implemented as a very simple state machine. One state is serving the
command inputs and the other is idle/Display control.

 5.4.1 Initialization

When the power applied for the first time or RESETZ is asserted, the 71M652X device executes the code pointed to by
the reset vector.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 50 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 5.4.2 Foreground

There are total 12 interrupts available for the 80515, and the revision 4.7a Demo Code uses a total of 11 interrupts.
Table 5-10 shows the interrupt service routines (ISRs), the corresponding vectors (Table 6-58 in section 6.3.5.4) and
their priority, as assigned by the MPU using the IP0 and IP1 registers (see section 6.3.5.2).

Interrupt Source Interrupt Service

Routine
External or

Internal
Interrupt

In source file Vector Priority
(3 =

highest)
Pulse count pcnt_w_isr() EXT0 pcnt.c 0x03 0
Pulse count pcnt_v_isr() EXT1 pcnt.c 0x13 3
Flash-Write collision
fwcol0

fwcol_isr() EXT2 flash.c 0x4B 0

Flash-Write collision
fwcol1

fwcol_isr() EXT2 flash.c 0x4B 0

CE Busy ce_busyz_int() EXT3 ce.c 0x53 3
Power fail/power return pll_isr() EXT4 batmodes_20.c 0x5B 3
EEPROM eeprom_isr() EXT5 eeprom.c 0x63 0
XFER busy ce_xfer_busyz_rtc_int() EXT6 (shared

w/ RTC)
ce.c 0x6B 2

RTC rtc_isr() EXT6 (shared
w/ XFER)

rtc.c 0x6B 2

Timer0 tmr0_isr() tmr0.c 0x0B 0
Timer1 tmr1_isr() tmr1.c 0x1B 3
UART 0 es0_isr serial.c 0x23 0
UART 1 es1_isr serial.c 0x83 0

Table 5-10: Interrupt Service Routines

In general, a higher priority interrupt can preempt lower-priority interrupt code. The interrupt priority hardware is
controlled by two registers, IP and IP1 (named IPL and IPH in the demo code). The MPU supports four priorities, and a
fifth is possible with a small amount of software support.

The best practice is to set priorities once, near the start of initialization. Setting priorities dynamically while interrupts
occur can have undefined results. Since some of the interrupts detect power failures that can occur at any time,
changing interrupt priorities in the middle of the code is not recommended.

In the 6521 demo code, interrupt priorities are set higher for urgent tasks. Among equally-urgent tasks, priorities are set
higher for faster interrupts. The following describes interrupt priorities for the version 4.3.3 of the Demo Code:

The priority is set once, in main_init() of main\Main.c. It is also cleared to 0s in the soft reset routine, but this is followed
by logic that calls four RTIs to reset the interrupt acknowledge logic for all four hardware interrupt levels. The system
priority value is assembled from constants in Main\options_gbl.h. The constants are defined in Util\priority2x.h.

The highest priority interrupt group are the PLL_OK interrupt (external interrupt 4, see Main\batmodes_20.c), and timer
1. PLL_OK is urgent because it indicates power supply failure, and the software must start battery modes. Timer 1
shares the same priority bits, and is currently unused (sample code is in Io\tmr1.c, &.h), though earlier versions used it
to set the real-time-clock.

The high-priority interrupt group is used for CE_BUSY (external interrupt 3, see Meter\ce.c), pulse counting (external
interrupts 0 and 1, Meter\pcnt.c) and Serial 1 (Io\ser1.c&.h). External interrupt 3 and 1 share priority bits, as does
external interrupt 0 and serial 1. CE_BUSY is urgent because it occasionally reads the CE's status to detect sag. The
pulse counting interrupts are less urgent, but they are small and run very quickly. Serial 1 is intended for AMR, so
making its interrupts high priority should help its data transfer timing to be more reliable.

The low priority group contains Serial 0 and Timer 0. These can generally wait a millisecond, and if necessary, can
afford to miss fast interrupts. Serial 0 is the command line interface (See the directory Cli), and Timer 0 is run at a 10
millisecond interval as the timebase for the software timers (Util\tmr.c, Io\tmr0.c&.h). Serial 0 shares its priority bits with

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 51 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

the interrupt of the EEPROM (external interrupt 5), currently unused (code is available in Io\eeprom.c). Timer 0 shares
its interrupt priority bits with FWCOL, the flash write timing interrupt, also unused (flash code is in Util\flash.c).

The lowest priority is xfer_busy_isr() (Meter\ce.c) and the rtc_isr() interrupts (Io\rtc.c; both share external interrupt 6,
Meter\io652x.c). These can usually wait up to half a second. The XFER_BUSY interrupt, in particular, takes up to 4
milliseconds to copy data from the CE, so though it is very important, it needs to be low priority in order to let other
interrupts run.

The RTC can be calibrated by using the RTC-1-Second interrupt to toggle a DIO pin, and measuring the external
square wave against a traceable time standard. In this case, a calibration mode must temporarily turn off the CE (it
shares the interrupt) set external interrupt 6 to the highest priority and the code leading from the vector to the RTC's
DIO-toggle should have an unchanging execution time.

Although the demo code does not do this, it is possible to run preemptive code at the same interrupt priority as the
main loop. This creates a fifth priority below the lowest priority. To do this, set an interrupt to the lowest priority. This
interrupt's service routine must push the address of the fifth-priority code on the stack, and run RTI. RTI clears the
fourth-priority hardware, and then returns into the fifth-priority code, running it at the same interrupt level as the main
loop. For example, this permits preemptive software timers that run at the same priority as the main loop.

All interrupt service routines (ISRs) must be declared “small reentrant”. Also, all routines called by ISRs must be re-
entrant as well. Priorities are set using the IP0 and IP1 SFRs, as follows:

• IP0 (SFR 0xA9) = 0x1A = 0001 1010
• IP1 (SFR 0xB9) = 0x2C = 0000 1100

This results in the priority assignment shown in Table 5-11.

Group IP1 Bit IP0 Bit Priority Affected Interrupts
0 0 0 0 External interrupt

0 (DIO)
UART 1 interrupt -

1 0 1 1 Timer 0 interrupt - Ext 2 (comparators)
2 1 0 2 External interrupt

1 (DIO)
- Ext 3 (CE_BUSY)

3 1 1 3 Timer 1 interrupt - Ext 4 (comparators)
4 0 1 1 UART 0 interrupt - Ext 5 (EEPROM)
5 0 0 0 - - Ext 6 (XFER_BUSY,

RTC_1S

Table 5-11: Interrupt Priority Assignment

Timer Interrupt

timer0 of the MPU is the main system timer, and it is used to generate a 10ms timer tick, which is adjusted for MPU
clock speed. The timer tick (variable tick_count) is used to control the software timers. The software timers are updated
by the stm_run() function in the main loop of the background task. Eight software timers can be simultaneously running.

If it is desired to change the system timer to timer1, the include file called out in stm.c has to be changed to tmr1.h.

timer1 is used for delay functions, e.g. for EEPROM or RTC access control. Timer 1 is enabled and starts functioning
by calling the “Add_Delay_Func()” function as defined in the timer.c module.

Various macros are available to control the timers:

• tmr_start(A, B, C) has three parameters: A is the timer time, the number of ticks to reload on each interrupt. B
is true if the timer should restart itself when it expires. C is a pointer to a reentrant function.

• tmr_stop() stops the timer.

• tmr_running() returns TRUE if the timer is running.

These routines are very similar to the software timer commands, in stm.h.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 52 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

tmr0_isr()

Reset tmr0 SW watchdog

yes

noRestart timer?

Reload with TH0, TL0

Run timer routine for
application

END

Stop timer

application needs
timer0?

no

yes

tmr1_isr()

Reset tmr1 SW watchdog

yes

noRestart timer?

Reload with TH1, TL1

Run timer routine for
application

END

Stop timer

application needs
timer1?

no

yes

Figure 5-6: Timer ISRs

pTimers =
&Timers[NUM_TIMERS)

i = NUM_TIMERS

stm_run()

N

tick_cnt<>0

Timer present?

Timer expired?

Timer expired
function?

execute Timer expired
function.

N

N

--i == 0

N

pTimers =
&Timers[NUM_TIMERS)

i = NUM_TIMERS

tmr_stop

i == 0 ?

Timer present?

N

--i == 0 ?

N

N

END

Y

Figure 5-7: stm_run() - Process Software Timers (non-ISR)

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 53 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

CE_BUSY Interrupt

CE_BUSY interrupt is used for handling the outputs of the CE that are refreshed every 396µs, i.e. SAG detection.

ce_busy_isr()

Disable CE interrupts

 (sag_data & 0x0E) !=
0

Read CE status

User code handling SAG
goes here

sag_data = 0

EX_CE_BUSY = 0

END

disable interrupt

Stretch clock 5 times

Normal clock

Execute Timer Expired
function.

no

yes

Figure 5-8: CE_BUSY ISR

XFER_BUSY and RTC Interrupt

The XFER Busy interrupt is requested by the CE at the conclusion of every accumulation cycle. The interrupt service
routine copies the CE output data to the MPU internal data RAM for further processing by the MPU, which is performed
by the background task. The handling of data for the generation of pulses is also managed in this ISR.

Processing of CE data waits until the second interrupt after one second has elapsed, since it takes roughly one second
for the PLL in the CE to settle and (therefore) for the filtering to be reliable (variable ce_first_pass). Thus, the first
samples from the CE are discarded.

The copy operations stated in the flow chart are implemented with the MEMCPY_MCE macro, which moves data
between internal RAM and CE DRAM or vice versa. Due to the wait states that apply to accesses of CE DRAM, this
operation cannot be done directly.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 54 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

XFER_busy_rtc_int()

Clear IE_XFER

IE_XFER?

END

alt mux cycle?

yes

yes

Configure for alt mux cycle

Not first CE pass?

Copy data from CE DRAM to
IRAM Decrement ce_first_pass

yes

no

no

yes

yes

Apply creep threshold ce_first_pass = 0?

Enable pulses

Reset XFER_BUSY watchdog

IE_RTC?

no

Clear IE_RTC

Accumulate pulse counts

Clock compensation

Watchdog reset

IE_RTC or IE_XFER?

yes

no

no

yes

Figure 5-9: XFER_BUSY/RTC ISR

The interrupt service routine includes a loop. Without this loop, there is the chance of a rare, subtle timing error
because interrupt EXT6 is edge-triggered and the two interrupt sources "or" into it. The timing error will occur if the

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 55 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

RTC interrupt happens, and then the XFER interrupt happens after the IE_XFER flag is already tested, but before the
RTC interrupt is cleared. In this case, the signal to EXT6 will remain set, and never have an edge to cause another
interrupt 6. Therefore, the XFER_BUSY interrupt will hang forever, thus preventing delivery of the data to the meter.

To prevent this error condition, at the end of the XFER_BUSY_RTC service routine, both interrupt flags are again
checked, and when at least one of them is active, the processing starts again.

Both interrupts have a backup check - the main watchdog timer is never reset unless both interrupts run.

 5.4.2.1 SERIAL Interrupt

es0_isr is the ISR servicing UART 0. In this ISR, the UART data is sent and received along using flow control, if
enabled. Parity and other serial controls are managed in this ISR. The alternative serial port, UART 1 uses an ISR with
identical code structure (es1_isr).

es0_isr()

RX interrupt
RI == TRUE?

Call high-level protocol to
receive byte

no

yes

END

TI == TRUE?
TX interrupt

yes
Call high-level protocol to

transmit byte

no

es1_isr()

RX interrupt
RI == TRUE?

Call high-level protocol to
receive byte

no

yes

END

TI == TRUE?
TX interrupt

yes
Call high-level protocol to

transmit byte

no

Figure 5-10: Serial 0 and 1 isr

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 56 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 5.4.3 Background Tasks

meter_run()

gain_compensation()

meter_run()

Wh_accumulate()

xfer_update = TRUE?

Compute_Phase_Angle()

RTC_Compensation ()

Determine_Frequency()

 Determine_Peaks ()

Calc_Voltage_Phase ()

 totals_ready = TRUE

no

yes

Compute_RMS()

SelectPulses()

VARh_accumulate()

VAh_accumulate()

Calculate operating time

Calibration requested?

calibrate()

yes

no

Flag interface not
signed on?

Update registers for AMR

yes

END

pcnt_update()

meter_LCD()

Figure 5-11: ce_update

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 57 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

meter_LCD

meter_lcd()

ce_active = FALSE &
RTC_Tic() =TRUE?

no

yes

LCD Clear
Display " CE OFF"

my_beat = beat

beat != my_beat?

END

ce_totals_rdy() = TRUE

ce_totals_ready=FALSE

Save accumulated energy to
BROWNOUT cache

select_scroll = 0

select_total >=
MAX_TOTAL?

Clear display

M_DATE !=
select_scroll?

LCD_mode (select_scroll)

meter_totals (select_scroll,0)

yes

no

no

meter_totals (select_total,
select_phase)

BROWNOUT mode?

yes, display
other than date

no

MAX_SCROLL ==
select_scroll?

increment select_scroll

yes

no

beat?

decimal point on

yes

yes

decimal point off

no

decimal point on

yes

no

date
display

display selected
quantity on LCD

reset selector after it
reached maximum

no

arrange for blinking
of decimal point

yes

Figure 5-12: meter_LCD

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 58 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Command Line Interpreter

cli()

END

cli_result = NULL &
done(&d) = FALSE?

N

Y

U08 data d;
cli_result = NULL

toupper(d) = '/' ? cli_result = OK_ID

toupper(d) = 'I' ?

toupper(d) = 'E' ?

toupper(d) = 'C' ?

toupper(d) = ')' ?

toupper(d) = ']' ?

toupper(d) = 'PS' ?

toupper(d) = 'R' ?

toupper(d)= 'P' ?

toupper(d) = 'M' ?

cmd_ce_data_access()

cmd_mpu_data_access()

cmd_ce()

cmd_eeprom()

cmd_i()

cmd_meter)

cmd_power_save()

toupper(d) = 'RT' ?

toupper(d) = 'T' ?

toupper(d) = '?' ?

toupper(d) = 'Z' ?

cmd_mpu_data_access()

cmd_ce()

send_help(Usage)

cmd_i()

cmd_meter)

cmd_profile()

cmd_rtc()

cmd_sfr()

Y

Y

Y

Y

Y

Y

Y

Y Y

YY

Y

Y

Y

N

N

N

N

N

N

NN

N

N

N

N

N

N

toupper(d) = '~' ?

toupper(d) = '?\0' ?

cmd_H(d)

Figure 5-13: Command Line Interpreter

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 59 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Auto-Calibration

The auto-calibration option (not compiled in the executable Demo Code) is a simplified calibration procedure based on
voltage, real energy and reactive energy measurements.

Before the calibration starts, the desired accumulation time (SCAL) and the applied (ideal) voltage and current have to
be entered by the user in the MPU memory locations VCAL and ICAL.

The procedure of this calibration method is the same as for the fast calibration procedure, as described in the DBUM:
The tangens of the ratio of VARh and Wh determines the phase angle. The ratio between applied (ideal) and measured
voltage determines the voltage gain. However, whereas the calibration spreadsheet uses extensive trigonometric
functions, the auto-calibration procedure implemented in the Demo Code utilizes much simpler mathematical
operations that are closer to the capabilities of the MPU.

As with the procedure presented in the DBUM, the target values should be applied to the meter and held constant
during the auto-calibration process.

The routines shown in Figure 5-14 show how the auto-calibration is started. The cal_begin() routine starts a state-
machine by setting the flag cal_flag to YES, after setting the calibration factors to default values, recording the
calibration temperature, calculating the temperature compensation coefficients and setting the counter cs for calibration
cycles.

The actual stabilization delay, measurement and adjustment phases are managed by separate routines that are
activated by cal_flag being YES and controlled by the variable cs which counts down accumulation intervals.

cal_begin()

END

set calibration values to unity

record calibration
temperature

start count down sequence

calculate PPMC and PPMC2
and write to CE

cal_flag = YES

set calibration values to
unity

END

copy table of starting values
to CE data area

calculate PPMC and PPMC2
and write to CE

populate table with unity
values

Figure 5-14: Auto-Calibration

The processing of the calibration steps is performed by the routine calibration(), which is called in ce_update() when
new data becomes available, i.e. once per accumulation interval. The auto-calibration mechanism functions as a state-
machine, sequenced by the variable “cs”, which is used to count down accumulation intervals:

1) If cs > Scal: The state machine waits for the CE to settle after the unity gain and temperature
compensation data are loaded in the routine cal_begin().

2) If cs = Scal: The variables for each cumulative voltage and current measurement are cleared.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 60 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

3) If 0 <= cs <= Scal: For two accumulation intervals, prorated measurements of current and voltage are
added to the variables. Using two accumulation intervals covers both chop polarities of temperature
measurements.

4) If cs = 0: This signals the end of the calibration. Cumulative current and voltage measurements are then
used to calculate and set the calibration coefficients for voltage and currents in CE DRAM.

See the source file calphased.c for details.

CE Default Calibration

ce_def_calibration()

END

set_tc1_tc2 ()

Copy
CE_DATA

image to RAM

Figure 5-15: ce_default Calibration

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 61 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

set_tc1_tc2()

END

fppmc1 = ppmc1 from CE
fppmc2 = ppmc2 from CE

tn = calibration temperature
from CE

tppmc1 = 0;
tppmc2 = 0;

tn==0?

a calibration temperature
exists?

trimbgb = Read_Trim
(_TRIMBGB)

tppmc1 == 0L &&
tppmc2 == 0L

constants are not set?

a = -6680; b = -341000

trimbgb == 0

trimm = Read_Trim
(_TRIMM);

trimbga = Read_Trim
(_TRIMBGA); // -128..127

#ifdef M6511

td = ((tn * 27L) + 64L) / 128L;
th = ((S32)trimbga) * -500;

tj = th - 370000L;
 tf = td + tj;

 c = (tf + 5L)/9L;

 td = ((S32)trimbgb) * 100L;
 th = (((S32)trimm) * 100L) + 50L;
tj = ((th * 14L) + 5L)/10L;
d = td - tj;

td = -28L * c;
 tf = (td + (330000L + 5L))/10L;
th = ((tf * d) + 5000L)/10000L;

 tl = ((33L * c) + 50L)/100L;
tn = tl + 790L;

a = th + tn;

td = -2L * c;
 tf = td + 20000L;

 th = ((tf * d) + 500L)/1000L;
b = th - 460000L;

Write values to CE:
ppmc1 = tppmc1;
ppmc2 = tppmc2;

Y

tppmc1 = ((22463L * a) +
50000L) /100000L;

tppmc2 = ((1150L * b) +
500000L) /1000000L;

temperature compensation for adc

no temperature
compensation

N

untrimmed?

untrimmed?

read a trim value

d = (bgb /10) - [(m +
0.5)*0.14]

 a = (-0.28c+33)d +
0.33c+7.9

b = (-0.0002c+0.02)d-0.46

c = [(temp_nom/2) - (bga *
500) - 370000]/900

c = [(temp_nom/4.74074) -
(bga * 500) - 370000]/900

Figure 5-16: Calibration, continued

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 62 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Command Pending

cmd_pending()

UART0 echo

no entry
len = 0?

c = len

cli_buff[cli_index] = NUL_

cp = cb

return (FALSE)

echo0?

S_EMPTY != *status

status = Serial_Tx (port, cb, len)

call_when_waiting()

Y

Y

Y

N

N

cli_index--

Y
BS_ == c ?

CLI_BASE != cli_index CTRL_X == c)

cli_index = CLI_BASE

c >= ' '

(CLI_BASE == cli_index) && (','
== c)

cli_index++

cli_buff[cli_index] && cli_index
< CLI_BUFF_SIZE

status=Serial_Tx(port,cli_buff,cli_idx)

cli_index<CLI_BUFF_SIZE

call_when_waiting ()

S_EMPTY != *status ?

 send_crlf ();

put_char (&c)

return (TRUE)

(CR_ == c) || (LF_ == c) ?

END

!(len = Serial_CRx (port, cb,
CMD_BUFF_SIZE))

i < c ?

Y

i = 0

memcpy_xx(cp+1,cp, len-i- 1)
*cp++ = CR_

 (CR_== *cp || LF_==*cp)

len++
*cp = LF_

cp++
i++

cp = cb

Y

N

N

len?

len --
Y

c = *cp++

Find end of command

*cli_buff = NUL_

cli_index = CLI_BASE

status = Serial_Tx(port,cli_buff, cli_idx)

!echo_0?

call_when_waiting ()

S_EMPTY != *status)

send_crlf ()Y

Y

Y

N

N

N

len--
cp++

return (TRUE)
 cli_index = CLI_BASE

Y

N

N

N

Y

return (FALSE)

Figure 5-17: cmd_pending()

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 63 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

EEPROM Read/Write

EEDATA= 0xA0 (write command)
EECTRL = 0x03 (transmit data command)

interrupt rcvd?
(INT5)

EEDATA= address of MSB
EECTRL = 0x03 (transmit data command)

interrupt rcvd?
(INT5)

EEDATA= address of LSB
EECTRL = 0x03 (transmit data command)

interrupt rcvd?
(INT5)

write or read?

EEDATA= 0xA1 (read command)
EECTRL = 0x03 (transmit data command)

EEDATA= *destination
EECTRL = 0x03 (transmit data command)

READ WRITE

interrupt rcvd?
(INT5)

interrupt rcvd?
(INT5)

EECTRL = 0x06 (receive data command)

interrupt rcvd?
(INT5)

Multi-byte operations
continue here

*source = EEDATA (store data)

EECTRL = 0x05 (stop command)

Clear all registers

End

Figure 5-18: Single-Byte Read/Write

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 64 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Registers and memory locations:

• EEDATA = SFR 0x9E

• EECTRL = SFR 0x9F

• *source = pointer to EEPROM address for read or write

• *destination = pointer to XRAM address

• count = byte count for multiple read/write

If the EEPROM interrupt service routine (INT5) returns the value 0x80 (illegal command), the loop should be exited, all
registers should be refreshed and the operation should be restarted.

EEDATA= 0xA1 (read command)
EECTRL = 0x03 (transmit data command)

interrupt rcvd?
(INT5)

count==1?

*source++ = EEDATA

EECTRL = 0x05 (stop command)

Clear all registers

End

NO

*source++ = EEDATA
EECTRL = 0x02 (multiple read with ACK command)

count- -

Figure 5-19: Multi-Byte Read

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 65 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

count==0?

EECTRL = 0x05 (stop command)

Clear all registers

End

NO

EEDATA= *(destination++)
EECTRL = 0x03 (multiple write with ACK command)

count- -

Start

interrupt rcvd?
(INT5)

Figure 5-20: Multi-Byte Write

Notes:

• For larger EEPROMs, 1010xxR can be the first command (R=1 for read, R = 0 for write operation).

• The START command should be sent to the EEPROM before any read or write operation

• The algorithms cover single and multi-byte operations limited to a single page.

• EEPROMs are organized in pages. In general, ATMEL EEPROMs have 1Kbyte per page (256 x 32 bits).
When reading, no special requirements with respect to page boundaries apply.

• Special precautions apply when a page boundary is crossed for write operations: When the end of a page is
reached, the write.to the next page has to be preceded by a START command.

• EEPROMs typically respond to START commands with 5ms delay.

Battery Test

The battery test is based on sampling the voltage applied to the VBAT pin during an alternative multiplexer cycle. The
function used for calculating the battery voltage from the count obtained from the ADC is int32_t mVBat (int32_t v).

In this function, the ADC sample count is shifted right 9 bits (to account for the left-shift operation automatically done by
the ADC). The measured value is not very accurate, since the chip-to-chip variations in offset and LSB resolution are
not calibrated (these may have 5% variations).

The routine battest_start() may be invoked from the command line interface. battest_start() sets the variable
bat_sample_cnt to 2. This signals to the XFER_BUSY interrupt (in ce.c) to take two measurement (to account for the
variations caused by the amplifier chopping). The RTC date is recorded in the structure last_day. That way, an
automated battery test is run only once per day (when the date changes right after midnight).

The routine battest_run (void) is called from the part of meter_run() that only operates when the CE is active. This is
because the battery test can only run when the CE is active. The routine battest_run (void) compares the current date
with last_day. If it detects a difference, indicating that the date has just changed), it calls battest_start ().

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 66 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Power Factor Measurement

The power-factor option (not compiled in the executable Demo Code) provides both instantaneous and accumulated
(over fractions of an hour) display of power factor by phase. All power factor calculations are performed using floating
point variables.

The power factor (PF = cosϕ) calculation is based on the equations:

P = S * cosϕ = S * PF

==> PF = P/S,

with P = real energy, S = apparent energy, PF = power factor

or VAh divided by Wh.

 5.4.4 Watchdog Timer

The Demo Code revision 4.03 uses only the hardware watchdog timer provided by the 80515. This fixed-duration timer
is controlled with SFR register WDI (0xE8).

The software watchdog timer is described in section 6.3.4, but should not be used. The hardware watchdog
timer is more reliable since it cannot be accidentally disabled.

The hardware watchdog timer requires a refresh by the MPU firmware, i.e. bit 7 of WDI set, at least every 1.5 seconds.
If this refresh does not occur, the hardware watchdog timer overflows, and the 80515 is reset as if RESETZ were pulled
low. When overflow occurs, the bit WD_OVF is set in the configuration RAM. Using the WD_OVF bit, the MPU can
determine whether a reset or a hardware watchdog timer overflow occurred. The WD_OVF bit is cleared when
RESETZ is pulled low.

Note: The bits of the WDI register (SFR 0xE8) should not be individually set or reset. Instead, byte operations should
be used.

The following macro code should be used for resetting (clearing) the watchdog, IE_RTC or IE_XFER bits:

#define WD_RST_ 0xFF // WatchDog bit.
#define IE_RTC_ 0x02 // RTC ticked.
#define IE_XFER_ 0x01 // XFER data available.

#define RESET_WD() IFLAGS = WD_RST_;
#define CLR_IE_XFER() IFLAGS = ~IE_XFER_ & 0x7F; // 0x7E
#define CLR_IE_RTC() IFLAGS = ~IE_RTC_ & 0x7F; // 0x7D

 5.4.5 Real-Time Clock (RTC)

The RTC is accessible through the I/O RAM (Configuration RAM) registers RTC_SEC through RTC_YR (addresses
0x2015 through 0x201B), as described in the data sheets.

Since the RTC runs on a much slower clock than the MPU, only one write operation can be performed per RTC clock
cycle. This means that write operations to set the RTC must be separated by at least 396us. The sample code uses a
software timer to perform this delay, so any code modification must make sure that hardware timer 1 is still useable for
the RTC functions.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 67 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 5.5 MANAGING MISSION AND BATTERY MODES
After a reset or power up, the processor must first decide what mode it is in and then take the appropriate action. It is
useful to concentrate all activities related to power modes and reset into one centralized module. The Demo Code
revision 4.7a does the switching of modes in the main() routine, based on decisions made in batmodes_20.c. Figure
5-21 shows the actions taken by the Demo Code and chip hardware after entering the main() routine. The code uses
the following inputs and flags to determine which mode to enter:

• Battery mode enable jumper (see the DBUM for a detailed description of this input)
• PLL_OK flag
• RESET input
• PB input

 main
Start here:
1. On power up
2. On HWDT Overflow
3. If PB pressed
4. On wake up from LCD or Sleep Modes
5. If Reset Button Pressed
6. Soft Reset function invoked.

Restart Hardwrare
WDT

 Check if HWDT
has overflowed ?

Set Status register
Clear Overflow flag
Invoke Soft Reset

Is battery
mode

enabled?

Is PLL ok ?
Already in
Brownout
mode?

Is Reset
Button

Pressed?

Is Push
Button

Pressed?

Mission mode Sleep mode Brownout Mode LCD mode

 Initialise Main

 Run Main Loop

Sleep mode

Is V3P3
Sys

Present ?

On power up, will remain in
this loop till PLL ok flag is
set and "Brownout
interrupt" occurs which
invokes a "Soft Reset" Checked by Hardware

NNN N

Y

Y

N

Y

N

Y Y Y

Y

N

Figure 5-21: Power-Up Sequence

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 68 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Precautions when adding a battery: When a battery or other DC supply is added to a Demo Board that is
powered down, the 71M6521 Demo Code will cause the chip to enter Brownout mode and stay in Brownout
mode. It is possible that the VBAT pins of the chip draws up to 1mA in this state, since the I/O pins are not

initialized when Brownout mode is entered from a state where the chip is powered down (if Brownout mode is entered
from Mission mode, the I/O pins are properly initialized, and the chip will enter Sleep mode automatically causing much
lower supply current into the VBAT).

In general, to work in an operational meter (not a demo meter), the firmware has to be written to
handle the case of connecting a battery to a powered-down board (since in a factory setting,
batteries will most likely be added to meter boards that are powered down). The firmware must
immediately enter sleep mode in this situation.

 5.6 DATA FLOW
The ADC collects data from the electrical inputs on a cycle that repeats at 2520Hz. On each ADC cycle, the compute
engine (CE) code digitally filters and adjusts the data using gain parameters (CAL_Ix, CAL_Vx) and phase adjustment
parameters (PHADJ_x).

Normally, a calibration operation during manufacturing defines these adjustments and stores them in flash or EEPROM
to be placed into CE memory by the MPU when the meter powers up. The Demo Code includes a basic linear self-
calibration function that can typically reach 0.05% accuracy. (meter.c: meter_run(), calphased.c: cal_begin(),
calibration()).

Better calibration schemes are possible. The calibration save and restore operations (cal_save() and cal_restore())
save and restore all adjustment variables, such as the constants for the real-time clock, not just the ones for electrical
measurements.

On each ADC cycle, 2520 times per second, the CE performs the following tasks:

1. It calculates intermediate results for that set of samples.

2. It runs a debounced check for sagging mains, with a configurable debounce function.

3. It has three equally-spaced opportunities to pulse each pulse output.

On each ADC cycle, an MPU interrupt, "ce_busy" (see ce.c, ce_busyz_isr()) is generated. Normally, the interrupt
service routine checks the CE's status word for the sag detection bits, and begins sag logic processing if a sag of the
line voltage is detected.

In the event of a sag detection (announcing a momentary brownout condition or even a blackout), the cumulative
quantities in memory are written to the EEPROM.

By the end of each accumulation interval, each second on the Demo Code, the CE performs the following tasks:

1. It calculates deviation from nominal calibration temperature (TEMP_X).

2. It calculates the frequency on a particular phase (FREQ_X).

4. It calculates watt hours (Wh) for each conductor, and the meter (WxSUM_X).

5. It calculates var hours (VARh) for each phase and the meter (VARxSUM_X).

6. It calculates summed squares of currents for each phase (IxSQSUM_X).

7. It calculates summed squares of voltages for each phase (VxSQSUM_X).

8. It counts zero crossings on the same phase as the frequency (MAINEDGE_X).

The CE code (see ce652x.c for a “C” image) digitally filters out the line frequency component of the signals, eliminating
any long-term inaccuracy caused by heterodyning between the line frequency and the sampling or calculation rates.
This also permits a meter to be used at 50 or 60Hz, or with inaccurate line frequencies.

Each metering equation has a CE code written for that calculation, so that the 6521 can calculate according to the most
common metering methods.

Once per accumulation interval, the MPU requests the CE code to make an alternative measurement (alternate
multiplexer cycle).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 69 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

At the end of each accumulation interval, an MPU interrupt, the "xfer_interrupt" occurs (see ce.c, xfer_busy_isr())
occurs. This is the signal for the MPU to copy the above data to stable storage for further use.

At this time, the MPU performs creep detection (meter.c Apply_Creep()). If the measured voltage, current and/or
power is below the minimum, no results for volts, current or watts are reported. If the voltage is below the threshold, no
frequency or edge counts are reported. If the current is below the minimum, no current, Wh, VARh or VAh are
reported.

The MPU's creep thresholds are configurable (VThrshld, IThrshld).

The MPU calculates human-readable values, and accumulates cumulative quantities (see meter.c, meter_run.ce.c,
ce_update()). The MPU scales these values to the voltage and current sensors used on the PCB (see VMAX and
IMAX).

Wh and VARh quantities are signed, permitting the MPU to perform net metering by assigning negative values to
"export" and positive values to "import" (see meter.c. Wh.c, VAh.c and VARh.c.

Meters require more precision than standard C floating point provides. The Demo Code has reusable calculations for
meter math (mmath.c). These automatically convert CE counts into a major running count of Wh, and a minor
remainder of CE counts.

The MPU also places a scaled value into the CE RAM for each pulse output (meter.c, meter_run(), pulse_src.c,
selectpulses()). This adjusts the pulse output frequency in such a way as to reflect that accumulation's contribution to
the total pulse interval. Pulse intervals are cumulative, and cumulatively accurate, even though the frequency is
updated only periodically.

Placing the pulse value selection logic into the MPU software means that any quantity from any phase or combination
of phases can control either pulse output (see PulseSrcFunc[] for a list of transfer functions).

The MPU also performs temperature adjustments of the real-time clock (rtc_10.c, RTC_Trim(), RTC_Adjust_Trim()).
The Demo Code can adjust the clock speed to a resolution of 1 part per billion, roughly one second per thirty years.
The adjustments include offset (Y_CAL), temperature-linear (Y_CALC) and temperature-squared (Y_CALC2)
parameters.

Once a human-readable quantity is available, it can be translated into a set of segments (meter.c, lcd.c) to display on
the liquid crystal display, or read from a register in memory by means of the command-line interface (cli.c), or possibly
some other serial protocol such as Flag (see flag.c) or NEMA.

 5.7 CE/MPU INTERFACE
The interface between the CE and the MPU is described completely in the 71M6521 Data Sheet.

 5.8 BOOT LOADER
It is possible to implement code that functions as a boot loader. This feature is useful for field updates and various test
scenarios.

See the TERIDIAN Application Note number 031 for details.

 5.9 SOURCE FILES
The functionality of the Demo Code is implemented in the following files and directories:

1. CLI: Command Line Interface – General Commands
access.c SFR, I/O RAM, MPU and CE memory access routines
access_x.c extended memory access routines
c_serial.c parser for command line interface
cli.c command line interface routines
cmd_ce.c sub-parser for CE commands
cmd_misc.c sub-parser for RTC, EEPROM, trim and PS commands
help.c display of help text
io.c number conversion functions and auxiliary routines for CLI
load.c upload and download
profile.c data collection for support of profile command
ser0cli.c
ser1cli.c
sercli.c buffer serial I/O for the CLI

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 70 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

When compiled without the on-line help option (help.c), CLI.C takes about 14Kbytes of program
space. Adding the on-line help will use another 5Kbytes. When designing a real meter, CLI.C can
easily be removed without major changes to the software.

2. FLAG Basic FLAG AMR Protocol
flag0.c implements a basic FLAG AMR protocol for SER0
flag1.c implements a basic FLAG AMR protocol for SER1
flag.c code shared shared by flag0.c and flag1.c

3. IO: Input/Output
cal_ldr.c load routines for calibration factors
eep24C08.c routines supporting the 24C08 EEPROM
eeprom.c interrupt-driven serial EEPROM routines
eepromp.c high-speed polling EEPROM routines
eepromp3.c polling interface for µWire EEPROM
iiceep.c I2C bus interface using the chip’s I2C hardware
iolite.c IO subroutines for use by the calibration loader (cal_ldr.c)
lcd.c initialization, configuration, read and write routines for LCDs
lcd_VIM808.c routines for driving Varitronix VIM-808 LCS
rtc.c RTC read, write, reset, and trim routines
ser.c baud rate table shared by ser0.c and ser1.c
ser0.c initialization, configuration, interrupt, read and write routines for SER0
ser1.c initialization, configuration, interrupt, read and write routines for SER1
serial.c legacy code that implements a fully buffered interrupt-driven serial driver
tmr0.c initialization, configuration, interrupt, read and write routines for TMR0
tmr1.c initialization, configuration, interrupt, read and write routines for TMR1
uwrdio.c 3-wire interface using direct control of DIO4 and DIO5. It can be adapted to nonstandard
 clock polarities and edges, 4-wire SPI EEPROMs, and TSC chips other than the 71M6521
 (see comments in the source file)
uwreep.c a 3-wire interface using the high-speed 3-wire interface hardware of the 71M6521

4. Main: Main top-level tasks, 6521-specific
batmodes_20.c battery mode logic
defaults.c contains the table of start-up default values
main.c main() with startup sequence and main task switch
main.c initialization and main loop

5. Meter: Metering Functions
calphased.c auto-calibration
ce.c initialization, configuration, interrupt, read and write routines for the compute engine
ce652X.c data exchange between CE data RAM and XRAM
error.c error recording and logging
freq.c routines to calculate and display frequency
io652X.c control of analog front end, multiplexer, RTM, I/O pins
meter.c contains overall meter logic to calculate and display meter data
misc.c unused legacy code for managing interrupts and priorities
pcnt.c code for counting output pulses
peak_alerts.c detects out-of-range line values
phase_angle.c calculates and displays voltage-to-current phase angles
psoft.c generates two additional pulse outputs using DIO pins
pulse_src.c directs line measurements to any pulse output
pwrfct.c routines for calculating the power factor
rms.c calculates and displays Vrms and Irms
vah.c calculates VAh
varh.c calculates VARh
vphase.c calculates voltage-to-voltage phase angles for multiphase meters
wh.c calculates Wh

6. UnitTest: Test and Verification (not Shipped with standard Demo Code)
eepromtest.c basic test of the EEPROM driver

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 71 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

flag0test.c a test for a FLAG system
modetest.c a simple test of the 6520’s battery modes
ser0test.c tests the serial driver for SER0
ser1test.c tests the serial driver for SER1
stmtest.c tests the software timers
tmr0test.c tests the driver for TMR0
tmr1test.c tests the driver for TMR1

7. Util: Utilities
dead.c defines unused flash space for the boot loader
dio.h defines high-level access to DIO pins
flash.c flash memory read, write, erase, compare and checksum calculation
irq.c securely disables and enables interrupts
library.c routines for memory copy, compare, CRC calculation, string length
math.c contains routines for multiple-precision math
oscope.h a utility to trigger oscilloscope loops using DIO7
priority.h header file defining priorities for IP0 and IP1
sfrs.c access to SFRs
startup.a51 startup assembly code
startup_boot.a51
startup_boot_secure.a51
startup_secure.a51
stm.c software timer routines
timers.c unused software timer legacy code
wd.c routines that support the hardware watchdog

 5.10 AUXILIARY FILES
A variety of startup files is provided with the Demo Kits. The function of these files is as follows:

1. STARTUP.A51:
This file provides memory and stack initialization. It is part of the Keil compiler package.

2. STARTUP_SECURE.A51:
This file is almost identical to STARTUP.A51. The only difference is that this variation sets the SECURE bit.
This bit enables security provisions that prevent external reading of flash memory and CE program memory.
The code segment below sets the security bit located at SFR register address 0xB2:

STARTUP1:
 CLR 0xA8^7 ; Disable interrupts
 MOV 0B2h,#40h ; Set security bit.
 MOV 0E8h,#0FFh ; Refresh nonmaskable watchdog

3. INIT.A51:
A secondary startup file. It is part of the Keil compiler package. This code is executed, if the application
program contains initialized variables at file level.

4. STARTUP_BOOT.A51:
This startup file is to be used when the code is to be compiled as a bootloader.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 72 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 5.11 INCLUDE/HEADER FILES
In line with common industry practice, each C file in the Demo Code source code has a corresponding header file that
ends in .H and that provides the interface to the C file’s code. A number of include files are special cases, and provide
global data or hardware definitions.

• Main_6521B\options.h selects the features used by the code that is less than 8K

• Main_6521D\options.h selects the features used by the code that is less than 16K

• Main_6521_CLI\options.h selects the features used by the code that is less than 32K

• main\option_gbl.h defines global configuration values used in all meter versions.

• meter\meter.h defines the meter’s configuration and power registers.

• meter\ce652x.h defines the CE memory used to communicate with the MPU.

• meter\io652x.h defines the memory-mapped registers of the 652x chips.

• util\reg652x.h defines the special function registers of the 652x chips.

• util\stdint.h defines `a standard integer package for TSC meter chips using 8051s.

 5.11.1 OPTIONS.H

The file OPTIONS.H is especially important because it controls entire features in a firmware build. When an option is
1, it means that the feature is to be compiled and linked into the build. The idea is that by adding or subtracting
features, a customer can quickly tune the Demo Code to approximate the desired meter configuration. If the comments
in OPTIONS.H are not clear, feel free to use grep, or another code-searching tool to locate where the flags occur in the
code. While TERIDIAN has made a good-faith effort to test representative combinations of compile flags, there are too
many combinations to test exhaustively.

When OPTIONS.H is changed, there are three usual results. Either the build complains that it needs some
subroutines, or it complains that it has too many subroutines, or it is good. When it needs subroutines, enable the
option flags for the needed subroutines. When it has too many subroutines, try to disable the option flags for the
unneeded subroutines.

If the resulting build is too big to fit the available program memory, then more features must be disabled.

Usually, the option flags are tested either right after options.h is included in a file, or around the subroutines.

 5.11.2 Register Definitions

Register definitions can be found in the following files:

• REG80515.H - Register definition for the 80515 MPU core

• REG652X.H - Register definition of 652X SFRs and I/Os

• IO652X.H and IO6512X.C - I/O RAM register definitions

• CE652X.H and CE652X.C - CE data and structure declarations

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 73 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 5.11.3 Other Include/Header Files

Other Include/Header files are:
• CLI.H - Result code and Common ASCII code definition used for CLI
• HELP.H - HELP message prototype declarations
• IO.H – I/O subroutines for CLI
• SER0CLI.H, SER1CLI.H – hardware access layer for UART0/UART1
• SERCLI.H – include definitions for UART 0/1 debug routines
• FLAG0.H, FLAG1.H, FLAG.H – shared logic for all FLAG interfaces
• EEPROM.H – EEPROM
• II2.H – I2C Interface
• LCD.H – LCD
• RTC.H – Real-Time clock
• SER0.H, SER1.H, SER.H – serial interface
• SERIAL.H – serial interface API prototypes and definitions
• TMR0.H, TMR1.H – timer routines
• UWR.H – microwire (µwire), or three-wire interface
• BATMODES.H – battery modes (BROWNLOUT, LCD, SLEEP)
• DEFAULTS.H – default values
• OPTIONS_GBL.H – global compile-time options
• OPTIONS.H – general compile-timeoptions, defining meter functionality
• CALIBRATION.H – calibration
• CE.H – compute engine interface includes
• FREQ.H – frequency and main-edge count
• METER.H – meter structures, enumerates and definitions
• PCNT.H – pulse counting
• PEAK_ALERTS.H – voltage/current peak alerts
• PHASE_ANGLE.H – phase angle calculation
• PSOFT.H – pulse generation by MPU software (external pulse generation)
• PULSE_SRC.H – pulse source definitions and support
• RMS.H – RMS calculation
• VAH.H – VAh accumulation
• VARH.H – VARh accumulation
• WH.H – Wh accumulation
• DIO.H – DIO structures, enumerations and definitions
• FLASH.H – flash copy and CRC routines
• IRQ.H – interrupt kernel
• LIBRARY.H – library routines
• MATH.H – meter math library
• PRIORITY.H – interrupt masks and priority definitions
• SERIAL.H – serial interface structures, enumerates and definitions
• SFRS.H – low-level API for SFRs and memory
• STDINT.H – standard integer definitions
• STM.H – software timer definitions
• WD.H – watchdog bit definitions

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 74 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 5.12 CE IMAGE FILES
The CE code uses pre-designed, pre-validated algorithms and calculations, which are accurate to the noise floor of the
integrated circuit, saving substantial engineering and development time.

The source code for the CE is proprietary. Only the code and data images (binary images) are available to the user.
The code image must be merged with the MPU code residing in flash memory.

Teridian provides two files for each ce code. One file is the code for the compute0engine. The other is a set of data to
copy into the CE's RAM area, to initialize the CE program variables.

Teridian has two standard CE codes for the 6521:

• For one-element two-wire single phase meters, use ce21a04_ce.c, and ce21a04_dat.c (the CE code and data
files). When the hardware field EQU is 0x00, this CE code provides two metering elements using VA and IA
and VA and IB. The equations are WhA = (VA * IA) and WhB = (VA * IB).

There are two metering elements so that the neutral current can be measured for tamper detection. The MPU
software must decide which element is more accurate at any given time. This gives a perfectly flexible
method for detecting and mitigating tampering.

For one-element three-wire split phase meters, also use ce21a04_ce.c, and ce21a04_dat.c (the CE code and
data files). When the hardware field EQU is 0x01, this ce code provides two metering elements. One has an
equation of Wh = VA (IA - IB)/2. The other has WhB = VA * IB.
There are two metering elements so that the second element can be used to reduce the calibration steps
during meter manufacturing. The second element provides the data needed to calibrate the meter with both
current sensors operating at the same time. This permits more accurate, realistic calibrations.

• For two-element three-wire delta meters, or dual non-tamper-detecting single-phase meters, use
CE21A03_CE.C and CE21A03_DAT.C. When the hardware field EQU is 02, this CE code provides two
metering elements. One has an equation of WhA = VA * IA. The other is WhB = VB * IB. This measures two
legs of a delta configuration, and therefore, by Blondel's theorem, when these are added together, the total
delivered power is metered. Since the two channels are independent, they can also be used as two single-
phase meters, even if the meters are operating on different phases.

Teridian has a number of other CE codes for other sensors and needs, including code for tamper-resistant meters.

Images of the CE data and program code are provided with the Demo Kits. They are to be linked into the object code.
CE images are provided by the following files:

1. CE21B_CE.C:
This file provides the image of the 6521 CE program in C notation.

2. CE21C_DAT.C:
This file provides the image of the 6521 CE default data in C notation.

 5.13 COMMON MPU ADDRESSES
In the Demo Code, certain MPU XRAM parameters have been given fixed addresses in order to permit easy external
access. These variables can be read via the command line interface (if available), with the)n$ command and written
with the)n=xx command where n is the word address. Note that accumulation variables are 64 bits long and are
accessed with)n$$ (read) and)n=hh=ll (write) in the case of accumulation variables.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 75 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Name Purpose Function or LSB Value CLI Format L in
bits

XDATA

IThrshldA Starting current,
element A

SQSUMILSB 0216=

0 in this position disables creep
logic for both element A and B.

)0 unsigned 32 0x0000

Config Configure meter
operation on the fly.

bit 0:** reserved
 0: VA = Vrms * Irms;

 1: 22 VARhWhVA +=

bit1:* 1 = Clears accumulators
bit2:*1 = Calibration mode
bit3:** reserved: 1 = enable
tamper detection

)1 N/A 8 0x0004

VPThrshld error if exceeded.* SQSUMVLSB 0216=)2 unsigned 32 0x0005

IPThrshld error if exceeded.* SQSUMILSB 0216=)3 unsigned 32 0x0009

Y_Cal_Deg0 RTC adjust 100ppb)4 signed 16 0x000D
Y_Cal_Deg1 RTC adjust, linear by

temp.*
10ppb*ΔT, in 0.1?C)5 signed 16 0x000F

Y_Cal_Deg2 RTC adjust, squared
by temp.*

1ppb*ΔT2, in 0.1?C)6 signed 16 0x0011

PulseWSource
PulseVSource

Wh Pulse source,
VARh pulse source
selection*

See table for PulseWSource and
PulseVSource

)7
)8

unsigned 8 0x0013
0x0014

Vmax Scaling Maximum
Voltage for PCB,
equivalent to 176mV
at the VA/VB pins

0.1V)9 unsigned 16 0x0015

ImaxA Scaling maximum
current for PCB,
element A, equi-
valent to 176mV at
the IA pin

0.1A)A unsigned 16 0x0017

ppmc1 ADC linear adjust
with temperature

PPM per degree centigrade)B signed 16 0x0019

ppmc2 ADC quadratic adjust
with temperature

PPM per degree centigrade
squared

)C signed 16 0x001B

Pulse 3 source Source for software
pulse output 3**

See table for PulseWSource and
PulseVSource

)D unsigned 8 0x001D

Pulse 4 source Source for software
pulse output 4**

See table for PulseWSource and
PulseVSource

)E unsigned 8 0x001E

Scal Duration for auto-
calibration** in
seconds

Count of accumulation intervals to
be used for auto-calibration.

)F unsigned 16 0x001F

Vcal Voltage value to be
used for auto-
calibration**

Nominal RMS voltage applied to
all elements during auto-
calibration (LSB = 0.1V).

)10 unsigned 16 0x0021

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 76 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Name Purpose Function or LSB Value CLI Format L in
bits

XDATA

Ical Current value to be
used for autocalibra-
tion**

Nominal RMS current applied to
all elements during auto-calibra-
tion (LSB = 0.1V). Power factor
must be 1.

)11 unsigned 16 0x0023

VThrshld Voltage at which to
measure frequency,
zero crossing, etc.

SQSUMVLSB 0216=

This feature is approximated using
the CE’s sag detection.)

)12 unsigned 16 0x0025

PulseWidth Maximum time pulse
is on.

t = (2*PulseWidth + 1)*397µs,
0xFF disables this feature. Takes
effect only at start-up.

)13 signed 16 0x0029

temp_nom Nominal tempera-
ture, the temperature
at which calibration
occurs.

Units of TEMP_RAW, from CE.
The value read from the CE must
be entered at this address.

)14 unsigned 32 0x002B

ImaxB Scaling maximum
current for PCB ele-
ment B, equivalent to
176mV at the IA pin

0.1A)15 unsigned 16 0x002F

IThrshldB Starting current,
element B

SQSUMI1216
)16 unsigned 32 0x0031

VBatMin* Minimum battery
voltage.

Same as VBAT, below)17 unsigned 32 0x0035

CalCount Count of calibrations Counts the number of times
calibration is saved, to a
maximum of 255

)18 unsigned 8 0x0039

RTC copy Nonvolatile copy of
the most recent time
the RTC was read.

Sec, Min, Hr, Day, Date, Month,
Year

)19
1A
1B
1C
1D
1E
1F

unsigned 8
8
8
8
8
8
8

0x163

deltaT Difference between
raw temperature and
temp_nom

Same units as TEMP_RAW)20 signed 32 0x003B

Frequency* Frequency Units from CE.)21 unsigned 32 0x003F
VBAT* Last measured

battery voltage* 92
ADCnVBAT =

ADC counts, logically shifted right
by 9 bits. Note: battery voltage is
measured once per day, except
when it is being displayed or
requested with the BT command.

)22 unsigned 32 0x0043

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 77 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Name Purpose Function or LSB Value CLI Format L in
bits

XDATA

Vrms_A Vrms, element A SQSUMV 0216
)23 unsigned 32 0x004B

Irms_A Irms, element A SQSUMI0216
)24 unsigned 32 0x004F

Vrms_B Vrms, element B**,† SQSUMV1216
)25 unsigned 32 0x0053

Irms_B Irms, element B SQSUMI1216
)27 unsigned 32 0x0057

STATUS Status of meter See table for STATUS register)2A unsigned 32 0x0063

CAI Count of accumula-
tion intervals since
reset, or last clear.

count)28 signed 32 0x0067

Whi** Imported Wh, all
elements.

LSB of W0SUM)2C signed 64 0x006B

Whi_A** Imported Wh,
element A

“)2E signed 64 0x0073

Whi_B** Imported Wh,
element B

“)30 signed 64 0x007B

VARhi* Imported VARh, all
elements.

LSB of W0SUM)34 signed 64 0x008B

VARhi_A* Imported VARh,
element A

“)36 signed 64 0x0093

VARhi_B* Imported VARh,
element B

“)38 signed 64 0x009B

VAh** VAh, all elements. LSB of W0SUM)3C signed 64 0x00AB
VAh_A** VAh, element A “)3E signed 64 0x00B3
VAh_B** VAh, element B “)40 signed 64 0x00BB
Whe** Exported Wh, all

elements.
LSB of W0SUM)44 signed 64 0x00CB

Whe_A** Exported Wh,
element A

“)46 signed 64 0x00D3

Whe_B** Exported Wh,
element B

“)48 signed 64 0x00DB

VARhe** Exported VARh, all
elements.

LSB of W0SUM)4C signed 64 0x00EB

VARhe_A** Exported VARh,
element A

“)4E signed 64 0x00F3

VARhe_B** Exported VARh,
element B

“)50 signed 64 0x00FB

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 78 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

*M6521F (32K) only; compilation option in M6521D (16K)
**Compilation option (available Demo Code), variable present but not in use.
† Requires features not in standard demo PCB

Table 5-12: MPU Memory Location

Name Purpose Function or LSB Value CLI Format L in
bits

XDATA

Whn Net metered Wh, all
elements A,

LSB of W0SUM)54 signed 64 0x010B

Whn_A* Net metered Wh,
element A, for
autocalibration

LSB of W0SUM)56 signed 64 0x0113

Whn_B* Net metered Wh,
element B, for
autocalibration

“)58 signed 64 0x011B

VARhn* Net metered VARh,
all elements

LSB of w0sum)5C signed 64 0x012B

VARhn_A* Net metered VARh,
element A, for auto-
calibration

LSB of w0sum)5E signed 64 0x0133

VARhn_B* Net metered VARh,
element B, for auto-
calibration

“)60 signed 64 0x013B

MainEdgeCnt Count of voltage zero
crossings

count)64 unsigned 32 0x014B

Wh Default sum of Wh,
nonvolatile

LSB of w0sum)65 signed 64 0x014F

Wh_A Wh, element A,
nonvolatile

“)67 signed 64 0x0157

Wh_B Wh, element B,
nonvolatile

“)69 signed 64 0x015F

StatusNV Nonvolatile status See Status)6D n/a 32 0x016F

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 79 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 5.14 FIRMWARE APPLICATION INFORMATION

 5.14.1 Sag Detection

A sag is defined as an undervoltage condition that persists for more than one period. A shorter undervoltage condition
is called a dip (see Figure Figure 5-22). The occurrence of sags can announce an impending loss of power. Since
accumulated energy values etc. in the meter will have to be saved to non-volatile memory in the case of loss of power,
a sag can be used to initiate data saving operations. Some applications may instead save or count the sag event for
the purpose of recording power quality data.

dip

sag

Figure 5-22: Sag and Dip Conditions

Sag detection is performed by the CE, based on the CE DRAM registers SAG_THR and SAG_CNT. SAG_THR defines
the threshold which the input voltage has to be continuously below, and SAG_CNT defines the number of samples
required to trigger the sag bit (see Figure 5-23).

16.67ms

SAG_THR

SAG_CNT

84 samples

16.67ms16.67ms

SAG_THR

SAG_CNT

84 samples

Figure 5-23: Sag Event

When the CE detects a sag that meets the sag conditions specified in SAG_THR and SAG_CNT on one of the input
voltage channels, it will reflect this in the corresponding bit (SAG for single-phase, or SAG_A, SAG_B, SAG_C for poly-
phase) of the CE STATUS Word. See the CE Interface section in the 652X Data Sheet for details.

It is up to the MPU firmware to decide what is to be done in case a sag is detected. The Demo Code does not have any
provisions for actions due to sags detected by the CE.

 5.14.2 Temperature Measurement

The temperature output of the on-chip temperature sensor (TEMP_RAW) is provided by the CE in CE DRAM location
0x7B. The relative chip temperature deltaT (MPU location 0x20) is derived by subtracting the raw temperature from the
nominal temperature (TEMP_NOM) and multiplying it with a constant factor. Thus, once the raw temperature obtained
at a known environmental temperature is stored in TEMP_NOM, deltaT will always reflect the deviation from nominal
temperature. The scaling is in tenths of Centigrades, i.e. a reading of 75 means that the measured temperature is
7.5°C higher than the reference temperature.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 80 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 5.14.3 Temperature Compensation for Measurements

The internal voltage reference of the 652X ICs is calibrated during device manufacture. Trim data is stored in on-chip
fuses. The temperature coefficients TC1 and TC2 are given as constants that represent typical component behavior.

The bandgap temperature is provided to the embedded MPU, which then may digitally compensate the power outputs.
This permits a system-wide temperature correction over the entire system rather than local to the chip. The
incorporated thermal coefficients may include the current sensors, the voltage sensors, and other influences. Since the
band gap is chopper stabilized via the CHOP_EN bits, the most significant long-term drift mechanism in the voltage
reference is removed.

The CE applies the gain supplied by the MPU in GAIN_ADJ. This external type of compensation enables the MPU to
control the CE gain based on any variable, and when EXT_TEMP = 15, GAIN_ADJ is an input to the CE.

 5.14.4 Temperature Compensation for the RTC

The flexibility provided by the MPU allows for compensation of the RTC using the substrate temperature. To achieve
this, the crystal has to be characterized over temperature and the three coefficients Y_CAL, Y_CALC, and Y_CAL_C2
have to be calculated. Provided the IC substrate temperatures tracks the crystal temperature the coefficients can be
used in the MPU firmware to trigger occasional corrections of the RTC seconds count, using the RTC_DEC_SEC or
RTC_INC_SEC registers in I/O RAM.

Example: Let us assume a crystal characterized by the measurements shown in Table 5-13.

Deviation from

Nominal
Temperature [°C]

Measured
Frequency [Hz]

Deviation from
Nominal

Frequency [PPM]
+50 32767.98 -0.61
+25 32768.28 8.545

0 32768.38 11.597
-25 32768.08 2.441
-50 32767.58 -12.817

Table 5-13: Frequency over Temperature

The values show that even at nominal temperature (the temperature at which the chip was calibrated for energy), the
deviation from the ideal crystal frequency is 11.6 PPM, resulting in about one second inaccuracy per day, i.e. more
than some standards allow. As Figure 5-24 shows, even a constant compensation would not bring much improvement,
since the temperature characteristics of the crystal are a mix of constant, linear, and quadratic effects.

32767.5
32767.6
32767.7
32767.8
32767.9

32768
32768.1
32768.2
32768.3
32768.4
32768.5

-50 -25 0 25 50

Figure 5-24: Crystal Frequency over Temperature

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 81 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

One method to correct the temperature characteristics of the crystal is to obtain coefficients from the curve in Figure 31
by curve-fitting the PPM deviations A fairly close curve fit is achieved with the coefficients a = 10.89, b = 0.122, and c =
–0.00714 (see Figure 32).

f = fnom * (1 + a/106 + T * b/106 + T2* c/106)
When applying the inverted coefficients, a curve (see Figure 5-25) will result that effectively neutralizes the original
crystal characteristics. The frequencies were calculated using the fit coefficients as follows:

32767.5
32767.6
32767.7
32767.8
32767.9

32768
32768.1
32768.2
32768.3
32768.4
32768.5

-50 -25 0 25 50

crystal
curve fit
inverse curve

Figure 5-25: Crystal Compensation

The MPU Demo Code supplied with the TERIDIAN Demo Kits has a direct interface for these coefficients and it directly
controls the RTC_DEC_SEC or RTC_INC_SEC registers. This interface is implemented by the MPU variables Y_CAL,
Y_CALC, and Y_CALC2 (MPU addresses 0x04, 0x05, 0x06). For the Demo Code, the coefficients have to be entered
in the form:

1000
2_

100
_

10
_)(2 CALCYTCALCYTCALYppmCORRECTION ⋅+⋅+=

Note that the coefficients are scaled by 10, 100, and 1000 to provide more resolution. For our example case, the
coefficients would then become (after rounding):

Y_CAL = 109, Y_CALC = 12, Y_CALC2 = 7

Alternatively, the mains frequency may be used to stabilize or check the function of the RTC. For this purpose, the CE
provides a count of the zero crossings detected for the selected line voltage in the MAIN_EDGE_X address. This count
is equivalent to twice the line frequency, and can be used to synchronize and/or correct the RTC.

 5.14.5 Validating the Battery

For applications that utilize the RTC it is very important to validate the battery. A brief loss of battery power when the
652X IC is powered down may result in corrupted RTC data.

The battery monitor function can be used to obtain the battery charge status.

After battery power is lost, the RTC will read the year 2001, the month January, and the day 1 (2001/01/01). The time
information will be 01:01:01. If the MPU firmware program detects this date upon power-up or reset, it is safe to
conclude that the RTC is corrupted, most likely due to a missing or low-voltage battery.

If invalid time/date information is detected, it sets them to 01:01:01, 1/1/2001.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 82 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 5.15 ALPHABETICAL FUNCTION REFERENCE

Function/Routine
Name Description Input Output File Name

abs_x() x = abs(x0); Take absolute
value of n-byte 'x0'.

uint8_tx *x, uint8_tx *x0,
n none math.c

add() *x += y; where 'x' & 'y' are
'n' bytes wide.

uint8_tx *x, uint8_tx *y,
n uint8_t math.c

add_1() *x += y; where 'x' is 'n' bytes
wide, 'y' is single byte. uint8_tx *x, y, n uint8_t math.c

add8_4() (uint64_t) x += (uint32_t) y; uint8_tx *x, uint8_tx *y none math.c

add8_8 () (uint64_t) x += (uint64_t) y uint8_tx *x, uint8_tx *y none math.c

add8_8() adds two unsigned 8-byte
numbers uint8_tx *x, uint8_tx *y none ce.c

Apply_Creep_Thresh
old() Prevents creep. void void meter.c

batmode_is_brownou
t ()

Returns true if battery mode
is brownout. False is
mission mode

void bool batmode_20.c

batmode_lcd ()

Enters LCD-only mode from
brownout mode. Exit from
LCD-only mode resembles
a reset.

void void batmode_20.c

batmode_sleep ()

Enters sleep mode from
brownout mode. Exit from
sleep mode resembles a
reset.

void void batmode_20.c

batmode_wait_minut
es ()

Sets the wake timer in
minutes. uint16_t minutes none batmode_20.c

batmode_wait_secon
ds ()

Sets the wake timer in
seconds. uint16_t seconds none batmode_20.c

cal_begin() starts auto-calibration
process none bool caphased.c

cal_restore() Restores calibration from
EEPROM none bool calibration.c

cal_save() saves calibration data to
EEPROM none none calibration.c

Calc_Voltage_Phase
()

Calculates phase angles
between voltages of
different phases.

void void vphase.c

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 83 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Function/Routine
Name Description Input Output File Name

calibrate() processes measurements
during auto-calibration none none calphased.c

ce_active() returns CE status none bool ce.c

ce_enable() Enables or disables the CE bool enable none ce.c

ce_init() Initializes the CE none bool ce.c

ce_reset() resets the CE none none ce.c

cli () command Line Interpreter none none cli.c

cli_init() Initializes the SLI's interface
to any serial port.

enum SERIAL_PORT
port, enum
SERIAL_SPD speed,
bool xon_xoff

bool sercli.c3

cli0_init() Initializes the SLI's interface
to SER0

enum SERIAL_SPD
speed, bool xon_xoff bool ser0cli.c3

cli1_init() Initializes the SLI's interface
to SER1

enum SERIAL_SPD
speed, bool xon_xoff bool ser1cli.c3

cmax() returns maximum of
unsigned char 'a' and 'b'. uint8_t a, uint8_t b uint8_t math.c

cmd_ce () processes CE commands none none cmd_ce.c

cmd_ce_data_access
()

Processes context for CE
DATA none none access.c

cmd_download()
downloads/uploads
code/data between various
sources and serial port

none none load.c

cmd_eeprom() processes EEPROM
commands none none cmd_misc.c

cmd_error() assigns generic command
mode error result code none none cli.c

cmd_lcd() processes "D" commands none none display.c

cmd_load() implements user dialog for
data/code download/upload none none load.c

cmd_meter() processes "M" commands none none meter.c

cmd_mpu_data_acces
s()

processes context for MPU
DATA none none access.c

cmd_power_save() processes power save
command none none cmd_misc.c

cmd_rtc() processes RTC commands none none cmd_misc.c

cmd_trim() processes trim commands none none cmd_misc.c

cmin() returns minimum of
unsigned char 'a' and 'b'. uint8_t a, uint8_t b uint8_t math.c

complement_x() x = x0 ^ 1s; takes ones-
complement of n-byte 'x0'.

uint8_tx *x, uint8_tx *x0,
n none math.c

Compute_Phase_Angl
e()

Computes the V/I phase
angle. void void phase_angle.c

Compute_RMS() Computes Vrms and Irms. void void rms.c

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 84 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Function/Routine
Name Description Input Output File Name

LRC_Calc_NVR() calculates longitudinal parity
on NVRAM

uint8_tx *ptr, uint16_t
len, U01 set bool library.c

ctoh() converts ascii hex character
to hexadecimal digit uint8_t c uint8_t load.c

date_lcd () Displays the current date. void void rtc.c

Delta_Time () Figure the elapsed time
between two times.

struct RTC_t start, struct
RTC_t end int32_t seconds rtc.c

Determine_Frequenc
y()

Sets the frequency. Uses
sag status and voltage
thresholds to return 0 if the
voltages are off.

void void freq.c

Determine_Peaks()

Sets status bits if voltages,
currents or temperature are
outside limits. Sag tests are
in xfer_busy_int()

void void peak_alerts.c

done() exits control uint8_td *c *c cli.c

EEProm_Config()
connects/disconnects
DIO4/5 for I2C interface to
serial EEPROM

bool access, uint16_t
page_size, uint8_t tWr none eeprom.c,

eepromp3.c

es0_isr () serial port 0 service routine none none ser0.c

es1_isr() serial port 1 service routine none none se1.c

flag0_in() Input interrupt for FLAG
AMR module on SER0 none none flag0.c3

flag0_initialize() Initialize the FLAG AMR
module on SER0 none none flag0.c3

flag0_out() Output interrupt for FLAG
AMR module on SER0 none none flag0.c3

flag0_run()
Run main loop logic for
FLAG AMR module on
SER0

none none flag0.c3

flag1_in() Input interrupt for FLAG
AMR module on SER1 none none flag1.c3

flag1_initialize() Initialize the FLAG AMR
module on SER1 none none flag1.c3

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 85 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Function/Routine
Name Description Input Output File Name

flag1_out() Output interrupt for FLAG
AMR module on SER1 none none flag1.c

flag1_run()
Run main loop logic for
FLAG AMR module on
SER1

none none flag1.c

frequency_lcd () Displays the frequency on
the LCD. void void freq.c

get_ce_constants()

Copies CE configuration
constants to a data
structure so they can be
viewed in the emulator.

void void ce.c

get_char() gets next character from
CLI buffer none uint8_t io.c

get_char_d() gets next character from
CLI buffer uint8_t idata *d uint8_t io.c

get_digit() gets next decimal (or hex)
digit from CLI buffer uint8_t idata *d uint8_t io.c

get_long() converts ascii decimal (or
hex) long to binary number none int32_t io.c

get_long_decimal() converts ascii decimal long
to binary number. uint8_t c int32_t io.c

get_long_hex()
converts ASCII
hexadecimal number to
binary number

none U32 io.c

get_num()
converts ascii decimal (or
hex) number to binary
number

none S08 io.c

get_num_decimal() converts ascii decimal
number to binary number none S08 io.c

get_num_hex() converts ascii hexdecimal
byte to binary number none uint8_t io.c

get_short() converts ascii decimal (or
hex) short to binary number none int16_t io.c

get_short_decimal(
)

converts ascii decimal short
to binary number none int16_t io.c

get_short_hex() converts ascii hexdecimal
short to binary number none uint16_t io.c

htoc() converts hexadecimal digit
to ascii hex character uint8_t c uint8_t load.c

IICGetBit() gets a bit, used to reset
some parts none bit iiceep.c

IICInit() initializes DIO4/5 as
EEPROM interface none none iiceep.c

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 86 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Function/Routine
Name Description Input Output File Name

IICStart() IIC bus's start condition none none iiceep.c

IICStop() IIC bus's stop condition none none iiceep.c

init_meter() Initializes meter to default
values none none defaults.c

IRQ_DEFINES
Defines variables used by
macros to enable and
disable interrupts.

n/a n/a irq.h

irq_disable() Disables interrupts. void void irq.c

IRQ_DISABLE()

The fastest way to disable
interrupts. Requires
IRQ_DEFINES to be earlier
in the code, or that the
needed symbols be defined.

n/a n/a irq.h

irq_enable() Enables interrupts void void irq.c

IRQ_ENABLE()

The fastest way to enable
interrupts. Requires
IRQ_DEFINES to be earlier
in the code, or that the
needed symbols be defined.

n/a n/a irq.h

irq_init() Initializes interrupt control. void void irq.c

labs() returns the absolute value int32_t x S332 math.c

latan2() returns the arcTangent int32_t sy, int32_t sx U32 math.c

LCD_CE_Off() displays "CE OFF" on LCD none none lcd.c

LCD_Command() turns LCD on or off, clears
display uint8_t LcdCmd none lcd.c

LCD_Config() configures LCD parameters
uint8_t num, enum
eLCD_mode bias, enum
LCD_CLK clock

none lcd.c

LCD_Data_Read() reads from selected icon of
LCD uint8_t Icon uint16_t lcd.c

LCD_Data_Write() writes to selected icon of
LCD

uint8_t icon, uint16_t
Mask none lcd.c

LCD_Hello() displays "HELLO" on LCD none none lcd.c

LCD_Init() clears LCD, enables LCD
segment drivers none none lcd.c

LCD_Mode Display a mode number. uint8_t mode none lcd.c

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 87 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Function/Routine
Name Description Input Output File Name

LCD_Number()
Displays a number on the
LCD.

int32_t number uint8_t
num_digits_before_deci
mal_point, uint8_t
num_digits_after_decim
al_point

none lcd.c

lmax() returns maximum of
unsigned long 'a' and 'b'. U32 a, U32 b U32 math.c

lmin() returns minimum of
unsigned long 'a' and 'b'. U32 a, U32 b U32 math.c

log2() returns binary logarithm uint16_t k uint8_t math.c

main_background() executes background
processing none none main.c

main_edge_cnt_lcd
()

Displays either the
instantaneous edge count,
or the cumulative edge
count.

uint8_t select void freq.c

main_soft_reset() initiates soft reset none none main.c

max() returns maximum of
unsigned int 'a' and 'b'. uint16_t a, uint16_t b uint16_t options_glib.h

memcpy_cei () Copies from IDATA to the
CE memory.

int32x_t *pDst, int32i_t
*pSrc, uint8_t len void ce.c

memcpy_cer () Copies from flash to the CE
memory.

int32x_t *pDst, int32r_t
*pSrc, uint8_t len void ce.c

memcpy_cex () Copies from XDATA to the
CE memory.

int32x_t *pDst, int32x_t
*pSrc, uint8_t len void ce.c

MEMCPY_MCE () Copies from the CE
memory to IDATA.

int32i_t *pDst, int32x_t
*pSrc, uint8_t len void ce.c

memcpy_xce () Copies from the CE
memory to XDATA.

int32x_t *pDst, int32x_t
*pSrc, uint8_t len void ce.c

memget_ce () Reads a word of the CE
memory int32i_t *pDst int32_t ce.c

memset_ce () Sets a word of the CE
memory

int32i_t *pDst, int32_t
src void ce.c

meter_lcd () Display the current quantity
on the LCD. void void meter.c

meter_run () Performs meter data
processing. void void meter.c

memcmp_rx() compares xdata to flash
code

uint8_tr *rsrc, uint8_tx
*xsrc, uint16_t len S08 library.c

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 88 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Function/Routine
Name Description Input Output File Name

memcmp_xx() compares xdata to xdata uint8_tx *xsrc1, uint8_tx
*xsrc2, uint16_t len S08 library.c

memcpy_ix() copies xdata to idata uint8_ti *dst, uint8_tx
*src, uint8_t len none library.c

memcpy_px()
Copies data to serial
EEPROM

U32 Dst, uint8_tx *pSrc,
uint16_t len enum

eeprom.c,
eepromp.c,
eepromp3.c

memcpy_rce() reads from or writes to flash int32_tr *dst, int32_tx
*src, uint8_t len none flash.c

memcpy_rx() Copies xdata to code (flash) uint8_tr *dst, uint8_tx
*src, uint16_t len bool flash.c

memcpy_xi() Copies idata to xdata uint8_tx *dst, uint8_ti
*src, uint8_t len none library.c

memcpy_xp()
copies data from serial
EEPROM

uint8_tx *pDst, U32 Src,
uint16_t len enum

eeprom.c,
eepromp.c,
eepromp3.c

memcpy_xr() copies xdata from code
(flash)

uint8_tx *dst, uint8_tr
*src, uint16_t len none library.c

memcpy_xx() copies xdata to xdata uint8_tx *dst, uint8_tx
*src, uint16_t len none library.c

memset_x() sets xdata to specified
value

uint8_tx *dst, uint8_t s,
uint16_t len none library.c

meter_initialize() initializes most I/O functions
thaty read line power none none meter.c

meter_totals () Display a selected quantity
on the LCD.

uint8_t select,uint8_t
phase void meter.c

microseconds2tmr_r
eg() Converts to timer's count. number uint16_t tmr0.h, tmr1.h

milliseconds()
Converts milliseconds to
clock ticks, usually for a
software timer.

any number uint16_t stm.h

milliseconds2tmr_r
eg() Converts to timer's count. number uint16_t tmr0.h, tmr1.h

min() returns minimum of
unsigned int 'a' and 'b'. uint16_t a, uint16_t b uint16_t options_glib.h

MPU_Clk_Select() selects MPU clock speed enum MPU_SPD speed bool serial.c

MPU_Clk_Select()
Describes the clock speed
of the MPU to a serial
interface.

enum SERIAL_PORT
port, enum eMPU_DIV
speed

bool sercli.c3

MPU_Clk_Select0()
Describes the clock speed
of the MPU to the serial
interface.

enum eMPU_DIV speed bool ser0cli.c3

MPU_Clk_Select1()
Describes the clock speed
of the MPU to the serial
interface.

enum eMPU_DIV speed bool ser1cli.c3

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 89 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Function/Routine
Name Description Input Output File Name

normalize()

puts a register into normal
form, in which the major
count of Wh is greater than
or equal to zero, and less
than 1,000,000,000. The
minor count of ce counts
(e.g. from w0sum) is made
to be less than 1 Wh and
positive, by transfering
larger amounts into the
major count.

uint8x_t *register_ptr none math.c

operating_lcd () Displays the number of
hours of operation. void void rtc.c

OperatingHours()
Calculates hours of
operation from the last valid
mark.

none int32_t hours rtc.c

OSCOPE_INIT Defines DIO_7, the VAR
pulse output as a DIO. n/a n/a oscope.h

OSCOPE_ONE
Set DIO_7, the same pin as
the VARh pulse output, to
high.

n/a n/a oscope.h

OSCOPE_TOGGLE Inverts DIO_7, the same pin
as the VARh pulse output. n/a n/a oscope.h

OSCOPE_ZERO
Set DIO_7, the same pin as
the VARh pulse output, to
low.

n/a n/a oscope.h

pcnt_accumulate() Accumulates counts from
the previous second. void void pcnt.c

pcnt_init () Initialize logic to count
output pulses. void void pcnt.c

pcnt_lcd() Display pulse count on LCD uint8_t select void pcnt.c

pcnt_start() Starts plse-counting for a
fixed number of seconds. int16_t seconds void pcnt.c

pcnt_update() Synchronizes pulse counts
with noninterrupting code. void void pcnt.c

phase_angle_lcd () Displays a V/I phase angle. uint8_t phase void phase_angle.c

psoft_init () Initializes software pulse
outputs. void void psoft.c

psoft_out()
Generates two additional
pulse outputs. Call from
ce_busy_isr

void void psoft.c

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 90 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Function/Routine
Name Description Input Output File Name

psoft_update ()

The inputs are watt hours,
as generated by the CE,
and set the extra pulse
generators to blink at the
same rate as CE pulse out-
puts, with the same units.
This should be called each
time a new accumulation
interval has data.

int32_t pulse3_in,
int32_t pulse4_in void psoft.c

put_char() puts character into CLI
buffer uint8_t idata *c none io.c

Read_Trim() reads the trim value for
selected trim word enum eTRIM select S08 ce.c

rms_i_lcd() Displays current. uint8_t phase void rms.c

rms_v_lcd() Displays voltage. uint8_t phase void rms.c

RTC_Adjust_Trim() Safely sets the
compensation variables.

bool clr_cnt, int32_t
value none rtc.c

RTC_Compensation()
Calculates and adjusts the
temperature compensation
for the RTC.

none none rtc.c

rtc_isr () Interrupt code to adjust
clock each second. void void rtc.c

RTClk_Read() reads current values of RTC none none rtc.c

RTClk_Reset() resets the RTC none none rtc.c

RTC_Trim() Calculates the temperature
compensation using Y_Cals none int32_t ppb rtc.c

RTClk_Write() writes/sets to RTC none none rtc.c

seconds()
Converts seconds to clock
ticks, usually for a software
timer.

any number uint16_t stm.h

SelectPulses()

Selects pulse sources for 2
CE pulse outputs, and
optionally, for two additional
software pulse outputs.
The controls are in MPU
variables initialized from the
default table.

void void pulse_src.c

send_a_result() sends passed result code to
UART uint8_t c none cli.c

send_byte() sends a [0, 255] byte to
DTE. S08 n none io.c

send_char() sends single character uint8_t c none io.c

send_crlf() sends <CR><LF> out to
UART. none none io.c

send_digit()
sends single ASCII hex or
decimal digit out to
SERIAL0

uint8_t c none io.c

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 91 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Function/Routine
Name Description Input Output File Name

send_help()
sends text in code at
specified location to serial
port

uint8_tr * code *s none cli.c

send_hex() sends byte out SERIAL0 in
HEX uint8_t n none io.c

send_long() sends a [0, 9,999,999,999]
value to DTE. int32_t n none io.c

send_long_hex() sends a [0, FFFFFFFF]
value to DTE U32 n none io.c

send_num() sends a [0, 9,999,999,999]
value to DTE int32_t n, uint8_t size none io.c

send_result() looks up result code, primes
pump for result codes none none cli.c

send_rtc() displays RTC data none none cmd_misc.c

send_short() sends a [0, 99,999] value to
DTE. int16_t n none io.c

send_short_hex() sends a [0, FFFF] value to
DTE uint16_t n none io.c

ser_disable_rcv_rd
y()

Disable the receive
interrupt. void void ser0.h, ser1.h

ser_disable_xmit_r
dy()

Disable the transmit
interrupt. void void ser0.h, ser1.h

ser_enable_rcv_rdy
() Enable the receive interrupt. void void ser0.h, ser1.h

ser_enable_xmit_rd
y()

Enable the transmit
interrupt. void void ser0.h, ser1.h

Ser_initialize()
configures the serial port
specified in the include file
ser0.h or ser1.h

enum baud none ser0.h, ser1.h

ser_rcv () Get a byte from the serial
port. void uint8_t ser0.h, ser1.h

ser_rcv_err() Returns true if the last
received byte had an error. void bool ser0.h, ser1.h

ser_rcv_rdy()
Returns true if the serial
port has gotten another
byte.

void bool ser0.h, ser1.h

ser_xmit () Send a byte to the serial
port. uint8_t void ser0.h, ser1.h

ser_xmit_err() Returns true if the last sent
byte had an error. void bool ser0.h, ser1.h

ser_xmit_free ()
Unimplemented routine to
permit other uses of
transmit electronics.

void void ser0.h, ser1.h

ser_xmit_off () Unimplemented routine to
disable transmit electronics. void void ser0.h, ser1.h

ser_xmit_on () Unimplemented routine to
enable transmit electronics. void void ser0.h, ser1.h

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 92 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Function/Routine
Name Description Input Output File Name

ser_xmit_rdy() Returns true if the serial
port can send another byte. void bool ser0.h, ser1.h

Serial_CRx()
Receive a string up to a
maximum length.

enum SERIAL_PORT
port, uint8x_t *buffer,
uint16_t len

uint16_t length-received sercli.c3

Serial_CTx()
Transmit a string up to a
maximum length.

enum SERIAL_PORT
port, uint8x_t *buffer,
uint16_t len

uint16_t length-sent sercli.c3

Serial_CRx()
gets additional bytes from
the receive buffer

enum SERIAL_PORT
port, uint8_tx *buffer,
uint16_t len

uint16_t secli.c

Serial_CTx ()
puts additional bytes into
the transmit buffer

enum SERIAL_PORT
port, uint8_tx *buffer,
uint16_t len

uint16_t sercli.c

Serial_Rx()
Receive a string of any
length.

enum SERIAL_PORT
port, uint8x_t *buffer,
uint16_t len

none sercli.c3

Serial_Rx ()
sets up receive buffer and
starts receiving

enum SERIAL_PORT
port, uint8_tx *buffer,
uint16_t len

enum SERIAL_RC data sercli.c

Serial_RxFlowOff() Force an XOFF to be sent
on the selected port.

enum SERIAL_PORT
port none sercli.c3

Serial_RxFlowOn() Force an XON to be sent on
the selected port.

enum SERIAL_PORT
port none sercli.c3

Serial_RxLen() returns the number of bytes
received

enum SERIAL_PORT
port uint16_t sercli.c

Serial_Tx()
Transmit a string of any
length.

enum SERIAL_PORT
port, uint8x_t *buffer,
uint16_t len

none sercli.c

Serial_Tx()
sets up transmission buffer
and starts transmission

enum SERIAL_PORT
port, uint8_tx *buffer,
uint16_t len

enum SERIAL_RC data sercli.c

Serial_TxLen() returns the number of bytes
left to transmit

enum SERIAL_PORT
port uint16_t sercli.c

Serial0_CRx() Receive a string up to a
maximum length.

uint8x_t *buffer, uint16_t
len uint16_t length-received ser0cli.c

Serial0_CTx() Transmit a string up to a
maximum length.

uint8x_t *buffer, uint16_t
len uint16_t length-sent ser0cli.c

Serial0_Rx() Receive a string of any
length.

uint8x_t *buffer, uint16_t
len none ser0cli.c

Serial0_RxFlowOff(
)

Force an XOFF to be sent
on this port. none none ser0cli.c

Serial0_RxFlowOn() Force an XON to be sent on
this port. none none ser0cli.c

Serial0_Tx() Transmit a string of any
length.

uint8x_t *buffer, uint16_t
len none ser0cli.c

Serial1_CRx() Receive a string up to a
maximum length.

uint8x_t *buffer, uint16_t
len uint16_t length-received ser1cli.c

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 93 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Function/Routine
Name Description Input Output File Name

Serial1_CTx() Transmit a string up to a
maximum length.

uint8x_t *buffer, uint16_t
len uint16_t length-sent ser1cli.c

Serial1_Rx() Receive a string of any
length.

uint8x_t *buffer, uint16_t
len none ser1cli.c

Serial1_RxFlowOff(
)

Force an XOFF to be sent
on this port. none none ser1cli.c

Serial1_RxFlowOn() Force an XON to be sent on
this port. none none ser1cli.c

Serial1_Tx() Transmit a string of any
length.

uint8x_t *buffer, uint16_t
len none ser1cli.c

SFR_Read() reads from SFR uint8_t s, S08d *pc enum SFR_RC sfrs.c

SFR_Write() writes to SFR uint8_t s, uint8_t c_set,
uint8_t c_clr enum SFR_RC sfrs.c

start_tx_ram() sends RAM string out PC
UART uint8_tx *c none io.c

start_tx_rslt() sends ROM string out PC
UART uint8_tr *c none io.c

stm_run()
This counts down the
software timers when called
from the main loop.

void void stm.c

stm_start()

Starts a software timer. If
restart is zero, the timer
stops, otherwise it contin-
ues indefinitely. When a
timer expires, its function is
run. Timers count down and
are deallocated if they
cease to run.

uint16_t tick_count,
uint8_t restart, void
(code *fn_ptr) (void)

volatile uint16x_t
*cnt_ptr stm.c

stm_stop()
Uses a count pointer from
start to identify which soft-
ware timer to stop.

volatile uint16x_t
*cnt_ptr void stm.c

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 94 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Function/Routine
Name Description Input Output File Name

stm_wait() Waits for the passed
number of clock ticks. uint16_t void stm.c

strlen_r () returns length of string in
flash code uint8_tr *src uint16_t library.c

strlen_x() returns length of string in
xdata uint8_tx *src uint16_t library.c

sub8_4() (uint64_t) x -= (uint32_t) y uint8_tx *x, uint8_tx *y none math.c

sub8_8() (uint64_t) x -= (uint64_t) y uint8_tx *x, uint8_tx *y none math.c

temperature_lcd()

Displays the current delta
from the calibration
temperature in degrees C
on the LCD.

void void meter.c

time_lcd () Displays the current time. void void rtc.c

tmr_disable () Halt a timer. none none tmr0.h, tmr1.h

tmr_enable () Lets a timer run (timer start
does this by default) none none tmr0.h, tmr1.h

tmr_running () Returns true if the timer is
running. none bool tmr0.h, tmr1.h

tmr_start () Starts a hardware timer.

uint16_t time (in timer
units), uint8_t
restart_flag (zero means
interrupt once), void
(code *pfn) (void) (code
to execute)

none tmr0.h, tmr1.h, tmr0.c,
tmr1.c

tmr_stop () Stops a hardware timer. none none tmr0.h, tmr1.h

tmr0_isr () Timer interrupt for TMR0 none none tmr0.c

tmr1_isr () Timer interrupt for TMR1 none none tmr1.c

update_register ()
Move data from AMR's copy
of power registers into
power registers.

void void meter.c

uwr_busy_wait () Wait for programming com-
plete indication. none none uwrdio.c, uwreep.c2

uwr_init () Initialize a 3-wire (similar to
uWire™) interface none none uwrdio.c, uwreep.c2

uwr_read () Get a counted string of
bytes.

uint8x_t *pbOut,
uint16_t cnt none uwrdio.c, uwreep.c2

uwr_select ()

Select a chip by passing its
address; 0 = none; This
must be ported to new
PCBs.

uint8_t address none uwrdio.c, uwreep.c2

uwr_write () Transmit a counted string of
bytes.

uint8x_t *pbOut,
uint16_t cnt

bool true =
success. uwrdio.c, uwreep.c2

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 95 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Function/Routine
Name Description Input Output File Name

VAh_Accumulate() Calculates VAh void void vah.c

VARh_Accumulate() Calculates VARh void void varh.c

voltage_phase_lcd(
)

Display voltage phases on
LCD. uint8_t select void vphase.c

wd_create() Creates a software
watchdog. uint8_t wd void wd.c

wd_destroy() Destroys a software
watchdog. uint8_t wd void wd.c

wd_reset()

Resets a software watch-
dog. If all software watch-
dogs have been reset, the
hardware watchdog is reset.

uint8_t wd void wd.c

wh_accumulate() Calculate watt hours. void void wh.c

wh_brownout_to_lcd
()

Displays a precalculated 6-
digit number. uint32_t number void wh.c

wh_lcd()
Displays a watt-hour value
on the LCD in milliwatt-
hours.

uint8_t *val void wh.c

wh_sum_export ()
Adds (0 - w1) to s, only if
w1 is negative, yielding a
total of exported power in w.

uint8x_t *s, int32i_t *wl void wh.c

wh_sum_import ()
Adds w1 to s, only if w1 is
positive, yielding a total of
imported power in w.

uint8x_t *s, int32i_t *wl void wh.c

wh_sum_net() Adds w1 to s, yielding a net
sum of watthours in s. uint8x_t *s, int32i_t *wl void wh.c

wh_to_long ()

Convert a 64-bit internal
watts count to a 6-digit
value (i.e. this is the routine
that precalculates values for
wh_brownout_to_lcd()).

uint8_t *val uint32_t wh.c

 5.16 ERRATA
The up-to-date list of known issues with the current revision of the Demo Code can be found in the readme.txt file
contained in the 6521_demo ZIP file shipped with the Demo Kits. The readme.txt file also contains a list of corrected
issues, that might assist customers who utilized older versions of Teridian demo code.

The factory should be contacted for updates to the Demo Code.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 96 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 5.17 PORTING 71M6511/6513 CODE TO THE 71M6521

 5.17.1 Memory Use

The biggest issue when moving code from the 6511/6513 to the 71M6521 is the reduced program memory. While the
71M6511 and 6513 have 64K, the 6521 has 32K, 16K and 8K versions. The standard 6521 CE code has 414 bytes,
and takes up space in flash. In order to make the code fit, and reduce the risk of running out of memory, TERIDIAN’s
firmware engineers coded to a space budget, and adopted a coding standard that permits entire features to be added
and removed easily. This method proved to be very useful when there were changes of scope in one or another version
of the demonstration firmware.

 5.17.2 CE Code Location

Another difference between 71M6511/6513 and the 71M6521 is that the CE code now resides in the flash. It is not
copied to the CE program RAM as in the 71M651X chips. Instead, the register CE_LCTN, bits 0…4 at XDATA 0x20A8
is set to the most significant 5 bits of the program flash address where the CE program resides. It is best to place the
CE program within the first 8Kbytes, so that the program design adapts easily to the three size variants of the chip.

Since the CE resides in flash memory, there are safeguards that prevent the CE program memory from being erased or
reprogrammed while the CE is running. When programming flash memory, the CE must first be disabled, then the code
must wait until the CE is halted. Only then, programming of the flash memory can occur.

Should there be an attempt to modify flash memory while the CE is running, the FWCOL0 and FWCOL1 interrupt bits
are set. If the interrupt is enabled, recovery action can occur. TSC’s demo firmware has not found a use for the
FWCOL interrupts.

 5.17.3 Battery Modes

One of the most significant innovations for the 71M6521 is the battery-power feature. This feature provides three
operational modes, that apply when the supply voltage is removed and the chip is powered by the battery. The
operation modes and their transitions are shown in Figure 5-26.

In the brownout mode, operation continues at 32kHz, and RAM and DIO pins remain powered. However, the clock
slows down and is so slow that the timers and serial port give dramatically different timings. Only the RTC, and its 1-
second interrupt run at an unchanged speed.

In addition to the flags given in Figure 5-26, the following considerations apply to state transitions:

• Mission to brownout mode: The MPU keeps running, but the clock slows down.

• Brownout to mission mode: The MPU keeps running, but the clock speeds up.

• LCD or sleep mode to brownout mode: The MPU will start code execution at address 0x000.

The sleep and LCD modes shut down all of the 71M6521’s internal and XDATA RAM, as well as the pin drivers for
DIOs, and many of the memory cells that store the hardware configuration.

In particular, the meter should be designed so that the DIO pins and serial port outputs do not need to be powered in
battery modes.

The data sheet for the 71M6521 shows which bits are reset, and which are maintained in the battery modes.

The transitions between the modes are managed by changes in supply voltage, transitions of the push button pin
signal, and a wake-up timer.

The push-button operation is very simple: Pressing the button wakes the part from LCD or sleep mode into brownout
mode. Afterward, a bit is set: IE_PB, bit 4 of IFLAGS, SFR E8.

One of the characteristics of the 71M6521 is that it is not able to enter LCD or sleep mode if IE_PB or IE_WAKE (the
wake timer’s bit, see below) are set. The Demo Code clears these bits at the earliest convenient instant, transferring
their state to bits in the demo firmware’s status variable. This technique preserves data about how the chip last woke,
but also permits the chip to transition to the LCD and sleep modes easily.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 97 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

V3P3SYS
rises

V3P3SYS
falls

MISSION

BROWNOUT

LCD

SLEEP or

V1 > VBIAS
V1 <= VBIAS

LCD_ONLY

RESET &
VBAT_OK

RESET

IE_PLLRISE
-> 1

IE_PLLFALL
-> 1

IE_PB -> 1
IE_WAKE ->

1
PB

timer

timer
PB

RESET &

V3P3SYS
rises

V3P3SYS
rises

VBAT_OK

VBAT_OK

VBAT_OK

VBAT_OK

SLEEP

Figure 5-26: Operation Modes State Diagram

The wake-up timer is a little trickier to use than the pushbutton. To use it, one must first write the timer data, and then,
after a brief delay (about 32µs), enter LCD or sleep mode. The timer does not measure elapsed time. Instead, it counts
the RTC’s transitions. For example, if one programs a two minute delay at 00:00:30, the timer will actually wake the
chip at 00:02:00. Properly used, this is a feature, of course, but it can be surprising.

The wake-up timer, LCD and sleep modes are controlled by the bits in the WAKE register, XDATA address 0x20A9.

The lack of nonvolatile memory during the battery modes can be disconcerting at first. There are usually a few bytes
worth of available nonvolatile space in the unused LCD segment control bits in XDATA addresses 0x2036...0x2056.

The transition from mission mode to brownout and from brownout to mission mode is invisible to the code without
special care. First, there is a bit PLL_OK in the I/O RAM at address 0x2003 that reflects whether the phase locked loop
(PLL) is running or not. In order to save power, the PLL does not run when the part runs from any battery mode.
PLL_OK also drives logic that sets the bits IE_PLLRISE and IE_PLLFALL in IFLAGS, SFR E8. These are logically-ored
and routed to external interrupt 4, which is an edge-triggered interrupt. This interrupt could be called “the brownout
mode interrupt” because it signals any transition between brownout and mission mode. It is very important that both
IE_PLLFALL and IE_PLLRISE be cleared at the end of the interrupt, in the same instruction, otherwise the edge
needed for the next interrupt might fail to occur.

The brownout mode interrupt has to manage the transition to and from brownout mode. The Demo Code’s brownout
interrupt handles this by displaying a watt-hour value, and then performing a soft reset.

The chip starts a normal power-up in brownout mode, and then transitions to mission mode about 4.1 milliseconds after
power is applied. The code is often quite far along the brownout mode path at this point, and must gracefully transition
to mission mode. The soft reset in the brownout interrupt handles this requirement very well.

The Demo Code still includes a “belt and suspenders” test for a change to or from brownout mode in the main loop.
This also performs a soft reset.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 98 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

The demo software is designed so that the serial port always runs at 300 bd, in both mission mode and brownout
mode. The 6521 has special clock-interpolation logic in the baud rate generation so that 300 baud works in brownout
mode. The designers chose this 300 bd especially because it is compatible with some AMR applications, such as
FLAG, and it was achievable in the chip. The Demo Code tests for brownout mode, and sets the 300 bd values in the
serial ports’ bd rate generator in this case.

In brownout mode, the code runs 150 times slower than in mission mode, and it can easily fail to reset the watchdog.
The Demo Code arranges to reset the watchdog from both the main loop and the RTC’s 1-second interrupt, which has
unchanged timing. It uses a “software watchdog” scheme to try to keep this respectable. The idea is that as soon as all
the needed places have called the watchdog routine, the hardware watchdog is reset.

Code for brownout mode should minimize calculations, because brownout mode is 150 times slower than mission
mode. To minimize the calculations, in the Demo Code, every accumulation interval in mission mode caches a pre-
calculated Wh value for use in a transition to brownout mode. When the interrupt for brownout mode executes, this
value is converted to the digits of the LCD registers. The LCD registers are nonvolatile in sleep and LCD modes, so
they are not lost in any battery-mode transitions. Later, when the Demo Code awakes (probably because the push-
button was pressed) in brownout mode, it runs through the brief initialization needed by the C environment, and in
main(), it tests for brownout mode. In the brownout mode’s code it runs a very simple, fast state machine that uses the
wake button flag to decide whether to enter sleep mode or LCD mode, and just depends on the LCD registers to
remain unchanged.

An algorithm similar to this could be adapted to display several values, setting the new value in the LCD as the last
step after all other calculations were done in brownout mode. After displaying the values in the LCD, the code could
enter LCD mode to save power and still display the value.

When the chip wakes from sleep or LCD mode, the PC is cleared to zero, and the I/O bits that are not needed for the
RTC or LCD are reset. The experience of the firmware designers is that it is most convenient to treat transitions from
LCD and sleep modes like resets. This permits a relatively simple start-up initialization to handle the state-transitions,
as well as power-up in mission mode. That scheme proved so convenient that the Demo Code also used the same
scheme to transition to and from brownout mode.

It’s not clear at first how to distinguish hard resets from battery-mode transitions. The code can use the nonvolatile LCD
control registers. The trick is that after a reset, the LCD registers are cleared. In particular, LCD_NUM, bits 0..4 of
XDATA address 0x2020 are cleared after a hard reset.

 5.17.4 Three-Wire EEPROM Hardware

The 71M6521 includes a new three-wire serial EEPROM interface, which is designed to be compatible with
MicroWire™ EEPROMs.

The new 3-wire interface hardware is very fast, transferring a byte in only 16µs. This high speed has made it relatively
uneconomical to use the interrupt provided on this interface. At 16µs per byte, the interrupt overhead would be most of
the delay in the EEPROM control firmware. Therefore, the Demo Code uses a polling driver that reads the ready bit.

Some 3-wire serial EEPROMs (e.g. the Microchip 93C76C) signal completion of a write operation by driving the data
line from low to high. The 71M6521 handles this with two controls: First, there is a “HIZ” bit in EECTRL that forces the
output of the 71M6521 to a high-impedance state after the last bit is sent. Also, the bit WFR (wait for ready) in EECTRL
makes the 71M6521’s BUSY status bit stay true until the data line becomes high. However, there is a period during
which the data line is not driven. If the data line is not pulled-down, a trailing 1 on the last data bit will leave the line
capacitance holding the line well above the transition voltage, causing BUSY to become prematurely false. But if the
pull-down is too powerful, the EEPROM may not be able to drive it (e.g. the 93C76C has only 400µA of drive on the
high state of the data line). An alternative method (uwreep.c in the Demo Code) that is clumsy but reliable and
inexpensive (it saves the resistor), is to complete the last data write without any special modes, then send another 8
bits of zero, with the wait-for-ready and high-Z bits set for that transfer. Note that sending one bit of zero works in
simulations, but not in the lab, for reasons that are not yet clear.

The demo source code also includes a programmed-IO (bit-banging) driver (uwrdio.c). This driver lets 71M6511 and
71M6513 chips use 3-wire EEPROMs, so meter product-lines can share an inventory of identical EEPROMs. Also, the
71M6521’s 3-wire interface hardware is not flexible enough to drive some items designed for SPI. It only supports one
clock polarity, one clock edge and the data line is half duplex. The programmed-IO driver is designed to be easily
modified for these environments.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 99 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 5.17.5 Temperature Compensation

When operating with “internal” temperature compensation, the 71M6511 and 71M6513 ICs use the CE as the
compensation mechanism. Compensation is then based on the temperature deviation from nominal and the PPMC and
PPMC2 factors that are either derived from the on-chip fuses (71M6511H/6513H) or standard values (71M6511/6513)
that apply to the average chip.

In the 71M6521, the CE is no longer in charge of temperature compensation. In the 71M6521, the temperature
calculations are performed once per second in the MPU firmware (see Gain_Compensation() in meter.c). The gain
calculations set a global gain parameter (“gain_adj”) used by the CE code. As a side-effect, the parameters PPMC and
PPMC2, the coefficients that control the meter’s linear and quadratic gain by temperature, are now in MPU memory
space, rather than CE memory space. This causes very little loss of accuracy because the temperature changes only
slowly.

 5.18 TEST MODULES
Various Test Modules are available from TERIDIAN. These Test Modules are small Keil projects that can be used to
test various functions of the 71M6521 IC. The available Test Modules are described in this section.

 5.18.1 6513 CE Example

Even though written for the 71M6513, this Test Module can be used for the 71M6521. It builds a simple test code that
starts and runs the compute engine, collects meter data in RAM, and generates pulses for one accumulation interval.

The Keil project file is 6513_ce_example.uv2.

 5.18.2 Serial Port Tests

These Test Modules build simple tests of the serial ports. The tests start by sending the ASCII character "E" in a loop,
e.g. For testing with an oscilloscope. As soon as a character is received, the test code begins echoing typed
characters, using polling IO. Sending the period character (".") switches the I/O to interrupting I/O.

Note that ser0test.c and ser1test.c use identical text, except for the include file. This is a very convenient technique for
moving serial I/O to a different port when requirements change.

The Keil project files are ser0test.uv2 and ser1test.uv2.

 5.18.3 Timer Tests

These Test Modules build simple routines for testing of the interrupting timers, run both once, and periodically. The
routines include an extended 30-second test that can be used with a stop-watch timer to measure accuracy.

Note that tmr0test.c and tmr1test.c use identical text except for the include file. This is a very convenient technique for
moving a timer IO to a different port when requirements change.

The Keil project files are tmr0test.uv2 and tmr1test.uv2.

 5.18.4 EEPROM Tests

This routine demonstrates the use and test of the eeprom interface.

The Keil project file is eepromtest.uv2.

 5.18.5 Generating DIO Pulses on Reset

This Test Module is written in 8051 assembler and is executed after processor reset. It pulses DIO7 on a meter chip.
This function is useful as a scope loop to discover if the chip resets when expected.

The Keil project file is RESET_PULSES_DIO7.UV2.

 5.18.6 Testing the Security Bit

This Test Module is written in 8051 assembler and is executed after processor reset. It sets the security bit and then
displays the security bit on DIO_7. It is useful to test the behavior of the security bit under various system conditions.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 100 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

The Keil project file is RESET_READ_SE.UV2.

 5.18.7 Software Timer Test

This project, consisting of several files, demonstrates the use and test of the software timer using a hardware timer that
is multiplexed into many slower timers.

The Keil project file is stmtest.uv2.

 5.18.8 Interrupt Test

This Test Module is written in 8051 assembler and can be used for testing the function of the INT0, INT1, TMR0, and
TMR1 control using DIO_Rx. When the code is run it configures all possible DIO pins as DIO input pins. When testing,
a breakpoint should be set on the vector for one of INT0, INT1, TMR0, TMR1. Also, one of the I/O RAM registers
DIO_R0...DIO_R11 should be set to the resource code for that vector. When the DIO pin under test is probed with
GND or V3P3, the programmed interrupt is generated.

The code sets up DIO 4, 5, 6 and 7 for one each of four interrupts.

The Keil project file is inttest.uv2.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 101 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 6 80515 MPU REFERENCE
An 80515 core is implemented on the TERIDIAN 71M652X chips. This section is intended for software engineers who
plan to use the 80515.

 6.1 80515 OVERVIEW
The 80515 is a fast single-chip 8-bit micro controller (MPU) core. It is a fully functional 8-bit embedded controller that
executes all ASM51 instructions and has the same instruction set as the 80C31. The 80515 provides software and
hardware interrupts, an interface for serial communications, a timer system and a watchdog timer.

 6.1.1 80515 Performance

The architecture eliminates redundant bus states and implements parallel execution of fetch and execution phases.
Normally a cycle is aligned with a memory fetch, therefore, most of the 1-byte instructions are performed in a single
cycle. The 80515 uses 1 clock per cycle leading to an 8x performance improvement (in terms of MIPS) over the Intel
8051 device running at the same clock frequency.

Note: The original 8051 had a 12-clock architecture. A machine cycle needed 12 clocks and most instructions were
either one or two machine cycles. Thus, except for the MUL and DIV instructions, the 8051 used either 12 or 24 clocks
for each instruction. Furthermore, each cycle in the 8051 used two memory fetches. In many cases the second fetch
was a dummy, and extra clocks were wasted.

Table 6-1 shows the speed advantage of the 80515 over the standard 8051. A speed advantage of 12 means that the
80515 performs the same instruction twelve times faster that the 8051.

Speed advantage Number of
instructions

Number of
opcodes

24 1 1
12 27 83
9.6 2 2
8 16 38
6 44 89

4.8 1 2
4 18 31
3 2 9

Average: 8.0 Sum: 111 Sum: 255

Table 6-1: Speed Advantage Summary

The average speed advantage is 8x, however, the actual speed improvement observed in a system will depend on the
instruction mix.

16

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 102 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 6.1.2 80515 Features

Below is a summary of the 80515 features:

♦ Control Unit

 8-bit instruction decoder

 Reduced instruction cycle time up to 12 times

♦ Arithmetic-Logic Unit

 8 bit arithmetic and logical operations

 Boolean manipulations

 8 x 8 bit multiplication and 8 / 8 bit division

♦ 32-bit Input/Output ports

 Four 8-bit I/O ports

 Alternate port functions such as external interrupts and serial interfaces are separated, providing
extra port pins when compared with the standard 8051

♦ Two 16-bit Timer/Counters

♦ Two Serial Peripheral Interfaces in full duplex mode, capable of parity generation

 Synchronous mode, fixed baud rate, Serial 0 only

 8-bit UART mode, variable baud rate

 9-bit UART mode, fixed baud rate, Serial 0 only

 9-bit UART mode, variable baud rate

 7E1, 7O1, 7N2, 7E2, 7O2, 8N1, 8E1, 8O1, 8N2, 9N1 data formats supported

 Two Internal baud rate generators independent from timers

♦ Interrupt Controller

 Four priority levels with 11 interrupt sources

♦ 15 bit Programmable Watchdog Timer

♦ Internal Data Memory interface

 Can address up to 256B of internal data memory space

♦ External Memory interface

 Can address up to 64kB of external program memory (32KB, 16KB or 8KB provided on-chip)

 Can address up to 2kB of external data memory plus 512 bytes CE DRAM

 Separate address/data bus to allow easy connection to memories

 Variable length code fetch and MOVC to access fast/slow program memory

 Variable length MOVX to access fast/slow RAM or peripherals

 Dual data pointer for fast data block transfer

♦ Special Function Registers interface

 Services up to 74 external special function registers

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 103 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 6.2 80515 ARCHITECTURAL OVERVIEW

 6.2.1 Memory organization

The 80515 MPU core incorporates the Harvard architecture with separate code and data spaces.

Memory organization in the 80515 is similar to that of the industry standard 8051. There are three memory areas:
program memory (External Flash), external data memory (External RAM), and internal data memory (Internal RAM).

Program memory

FFFFH

0000H

External data mem ory

8000H

4000H

C000H

00H

FFH

Internal data m emory

FFFFH

0000H

8000H

4000H

C000H

Figure 6-1: Memory Map

Program Memory

The 80515 can address up to 64kB of program memory space from 0000H to FFFFH. Program memory is read when
the MPU fetches instructions or performs a MOVC.

After reset, the MPU starts program execution from location 0000H. The lower part of the program memory includes a
reset and interrupt vectors. The interrupt vectors are spaced at 8-byte intervals, starting from 0003H.

External Data Memory

The 80515 can address up to 64kB of external data memory in the space from 0000H to FFFFH. The 80515 writes into
external data memory when the MPU executes a MOVX @Ri,A or MOVX @DPTR,A instruction. The external data
memory is read when the MPU executes a MOVX A,@Ri or MOVX A,@DPTR instruction.

There is an improved variable length access for the MOVX instructions to access fast or slow external RAM and
external peripherals. The three low ordered bits of the CKCON register define the stretch memory cycles. Setting all the
CKCON stretch bits to one allows access to very slow external RAM or external peripherals.

Table 6-2 shows how the signals of the External Memory Interface change when stretch values are set from 0 to 7. The
widths of the signals are counted in MPU clock cycles. The post-reset state of the CKCON register, which is in bold in
the table, performs the MOVX instructions with a stretch value equal to 1.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 104 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

CKCON register Stretch Value Read signals width Write signal width

CKCON.2 CKCON.1 CKCON.0 memaddr memrd memaddr memwr
0 0 0 0 1 1 2 1
0 0 1 1 2 2 3 1
0 1 0 2 3 3 4 2
0 1 1 3 4 4 5 3
1 0 0 4 5 5 6 4
1 0 1 5 6 6 7 5
1 1 0 6 7 7 8 6
1 1 1 7 8 8 9 7

Table 6-2: Stretch Memory Cycle Width

There are two types of instructions, differing in whether they provide an eight-bit or sixteen-bit indirect address to the
external data RAM.

In the first type (MOVX@Ri), the contents of R0 or R1, in the current register bank, provide the eight lower-ordered bits
of address. The eight high-ordered bits of address are specified with the USR2 SFR. This method allows the user
paged access (256 pages of 256 bytes each) to the full 64KB of external data RAM. In the second type of MOVX
instruction (MOVX@DPTR), the data pointer generates a sixteen-bit address. This form is faster and more efficient
when accessing very large data arrays (up to 64 Kbytes), since no additional instructions are needed to set up the eight
high ordered bits of address.

It is possible to mix the two MOVX types. This provides the user with four separate data pointers, two with direct
access and two with paged access to the entire 64KB of external memory range.

Dual Data Pointer

The Dual Data Pointer accelerates the block moves of data. The standard DPTR is a 16-bit register that is used to
address external memory or peripherals. In the 80515 core the standard data pointer is called DPTR, the second data
pointer is called DPTR1. The data pointer select bit chooses the active pointer. The data pointer select bit is located at
the LSB of the DPS register (DPS.0). DPTR is selected when DPS.0 = 0 and DPTR1 is selected when DPS.0 = 1.

The user switches between pointers by toggling the LSB of the DPS register. All DPTR-related instructions use the
currently selected DPTR for any activity.

The second data pointer may or may not be supported by certain compilers.

Internal Data Memory

The Internal data memory interface services up to 256 bytes of off-core data memory. The internal data memory
address is always 1 byte wide. The memory space is 256 bytes (00H to FFH), and can be accessed by either direct or
indirect addressing. The Special Function Registers occupy the upper 128 bytes. This SFR area is available only by
direct addressing. Indirect addressing accesses the upper 128 bytes of Internal RAM.

The lower 128 bytes contain working registers and bit-addressable memory. The lower 32 bytes form four banks of
eight registers (R0-R7). Two bits on the program memory status word (PSW) select which bank is in use. The next 16
bytes form a block of bit-addressable memory space at bit addressees 00H-7FH. All of the bytes in the lower 128 bytes
are accessible through direct or indirect addressing.

Table 6-3 shows the internal data memory map.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 105 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Address Direct addressing Indirect addressing
0xFF Special Function

Registers (SFRs) RAM
0x80
0x7F

Byte-addressable area
0x30
0x2F

Bit-addressable area
0x20
0x1F

Register banks R0…R7
0x00

Table 6-3: Internal Data Memory Map

Special Function Registers Location

A map of the Special Function Registers is shown in Table 6-4. Only a few addresses are occupied, the others are not
implemented. SFRs specific to the 652X are shown in bold print (see 71M652X data sheet for descriptions of these
registers). Any read access to unimplemented addresses will return undefined data, while any write access will have no
effect. The registers at 0x80, 0x88, 0x90, etc., are bit-addressable, all others are byte-addressable.

Hex/Bin
Address

X000 X001 X010 X011 X100 X101 X110 X111
Bin/Hex
Address

Bit-
address-

able
Byte-addressable

F8 INTBITS FF

F0 B F7
E8 WDI EF

E0 A E7
D8 WDCON DF
D0 PSW D7
C8 T2CON CF
C0 IRCON C7
B8 IEN IP1 S0RELH S1RELH USR2 BF
B0 FLSHCTL PGADR B7

A8 IEN0 IP0 S0RELL AF

A0 DIO11
(P2)

DIO12
(P2)

DIO8
(P0) A7

98 S0CON S0BUF IEN2 S1CON S1BUF S1RELL EEDATA EECTRL 9F

90 DIO9
(P1)

DIO10
(P1) DPS ERASE 97

88 TCON TMOD TL0 TL1 TH0 TH1 CKCON 8F

80 DIO7
(P0) SP DPL DPH DPL1 DPH1 WDTREL PCON 87

Table 6-4: Special Function Registers Locations

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 106 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Generic Special Function Register Overview

All generic SFRs are explained in detail in section 6.3.2.

Register Symbol Description
Program status
word

PSW The PSW contains program status information

Accumulator ACC The accumulator register. Mmemonics for instructions involving the accumulator
refer to the accumulator as A.

B register B This register is used for multiply and divide operations. It may also be used as a
scratchpad (temporary) register.

Stack pointer SP The stack pointer is 8 bits wide and is incremented before data is stored with
PUSH and CALL operations. SP is initialized to 0x07 after reset.

Data pointer DPL, DPH Since the DP consists of two bytes (DPH and DPL), it can hold a 16-bit address.
It may be manipulated as a 16-bit register or as two separate 8-bit registers.

Secondary data
pointer

DPL1, DPH1 This register is a second 16-bit data pointer.
Note: Check with the documentation on the compiler used for generating MPU
code whether this pointer is utilized or not.

Data pointer
select register

DPS This register selects which data pointer is to be used for the current operation.

Port registers P0, P1, P2 These registers hold bit patters that are written to or read from the DIO ports
Serial data buffer S0BUF, S1BUF These registers hold data received from the serial interfaces 0 and 1. Data to be

transmitted via the serial interfaces is written to S0BUF or S1BUF.
Serial port reload
registers

S0RELL, S0RELH,
S1RELL, S1RELH

These register pairs can be used to control the baud rate for the serial ports 0
and 1.

Timer registers TL0, TL1, TH0,
TH1

These register pairs (TH0/TL0 and TH1/TL1) are the 16-bit counting registers for
timers 0, 1, and 2.

Interrupt control
registers

IP0, IP1, IEN,
IEN0, TMOD,
TCON, T2CON,
SCON, PCON,
IRCON

These registers contain control and status bits pertaining to the interrupt system,
the timers/counters, and the serial port.

Clock control
register

CKCON The clock control/configuration register. It is used to implement stretch memory
cycles for memory access.

Watchdog timer
reload register

WDTREL This register holds the reload count for the software watchdog timer

Baud rate
generator selector

WDCON This register determines whether UART0 is controlled by timer 1 or by the
internal baud rate generator.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 107 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Generic Special Function Registers Location and Reset Values

Table 6-5 shows the location of the SFRs and the value they assume at reset or power-up.

Register Location Reset value Description
P0 80H FFH Port 0
SP 81H 07H Stack Pointer
DPL 82H 00H Data Pointer Low 0
DPH 83H 00H Data Pointer High 0
DPL1 84H 00H Data Pointer Low 1
DPH1 85H 00H Data Pointer High 1
WDTREL 86H 00H Watchdog Timer Reload register
PCON 87H 00H Power Control
TCON 88H 00H Timer/Counter Control
TMOD 89H 00H Timer Mode Control
TL0 8AH 00H Timer 0, low byte
TL1 8BH 00H Timer 1, high byte
TH0 8CH 00H Timer 0, low byte
TH1 8DH 00H Timer 1, high byte
CKCON 8EH 01H Clock Control (Stretch=1)
P1 90H FFH Port 1
DPS 92H 00H Data Pointer select Register
S0CON 98H 00H Serial Port 0, Control Register
S0BUF 99H 00H Serial Port 0, Data Buffer
IEN2 9AH 00H Interrupt Enable Register 2
S1CON 9BH 00H Serial Port 1, Control Register
S1BUF 9CH 00H Serial Port 1, Data Buffer
S1RELL 9DH 00H Serial Port 1, Reload Register, low byte
P2 A0H 00H Port 2
IEN0 A8H 00H Interrupt Enable Register 0
IP0 A9H 00H Interrupt Priority Register 0
S0RELL AAH D9H Serial Port 0, Reload Register, low byte
IEN1 B8H 00H Interrupt Enable Register 1
IP1 B9H 00H Interrupt Priority Register 1
S0RELH BAH 03H Serial Port 0, Reload Register, high byte
S1RELH BBH 03H Serial Port 1, Reload Register, high byte
USR2 BFH 00H User 2 Port, high address byte for MOVX@Ri
IRCON C0H 00H Interrupt Request Control Register
T2CON C8H 00H Timer 2 control register (only bits I2FR and I3FR are used)
PSW D0H 00H Program Status Word
WDCON D8H 00H Baud Rate Control Register (only WDCON.7 bit used)
A E0H 00H Accumulator
B F0H 00H B Register

Table 6-5: Special Function Registers Reset Values

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 108 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Special Function Registers Specific to the 652X

Register Alternative
Name

SFR
Address

R/W Description

DIO0 DIO_0 0x80 R/W Register for port 0 read and write operations (pins DIO0…DIO7)
DIO8 DIO_DIR0 0xA2 R/W Data direction register for port 0. Setting a bit to 1 means that the

corresponding pin is an output.
DIO9 DIO_1 0x90 R/W Register for port 1 read and write operations (pins DIO8…DIO15)
DIO10 DIO_DIR1 0x91 R/W Data direction register for port 1. Setting a bit to 1 means that the

corresponding pin is an output.
DIO11 DIO_2 0xA0 R/W Register for port 2 read and write operations (pins DIO16…DIO21)
DIO12 DIO_DIR2 0xA1 R/W Data direction register for port 2. Setting a bit to 1 means that the

corresponding pin is an output.
ERASE FLSH_ERASE 0x94 W This register is used to initiate either the Flash Mass Erase cycle or

the Flash Page Erase cycle. Specific patterns are expected for
FLSH_ERASE in order to initiate the appropriate Erase cycle (default
= 0x00).

0x55 – Initiate Flash Page Erase cycle. Must be proceeded by
a write to FLSH_PGADR @ SFR 0xB7.

0xAA – Initiate Flash Mass Erase cycle. Must be proceeded by a write
to FLSH_MEEN @ sfr 0xB2 and the debug (CC) port must
be enabled.

Any other pattern written to FLSH_ERASE will have no effect.
PGADDR FLSH_PGADR 0xB7 R/W Flash Page Erase Address register containing the flash memory page

address (page 0 thru 127) that will be erased during the Page Erase
cycle. (default = 0x00).
Must be re-written for each new Page Erase cycle.

EEDATA 0x9E R/W I2C EEPROM interface data register
EECTRL 0x9F R/W I2C EEPROM interface control register. If the MPU wishes to write a

byte of data to EEPROM, it places the data in EEDATA and then
writes the ‘Transmit’ code to EECTRL. The write to EECTRL initiates
the transmit.

FLSHCRL 0xB2
R/W

W

R/W

R

This multi-purpose register contains the following bits:
Bit 0 (FLSH_PWE): Program Write Enable:
 0 – MOVX commands refer to XRAM Space, normal operation
(default).
 1 – MOVX @DPTR,A moves A to Program Space (Flash) @ DPTR.
This bit is automatically reset after each byte written to flash. Writes to
this bit are inhibited when interrupts are enabled.
Bit 1 (FLSH_MEEN): Mass Erase Enable:
 0 – Mass Erase disabled (default).
 1 – Mass Erase enabled.
Must be re-written for each new Mass Erase cycle.
Bit 6 (SECURE):
Enables security provisions that prevent external reading of flash
memory and CE program RAM. This bit is reset on chip reset and
may only be set. Attempts to write zero are ignored.
Bit 7 (PREBOOT):
Indicates that the preboot sequence is active.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 109 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

WDI 0xE8

R/W

R/W

W

Only byte operations on the whole WDI register should be used when
writing. This multi-purpose register contains the following bits:
Bit 0 (IE_XFER): XFER Interrupt Flag:
This flag monitors the XFER_BUSY interrupt. It is set by hardware
and must be cleared by the interrupt handler
Bit 1 (IE_RTC): RTC Interrupt Flag:
This flag monitors the RTC_1SEC interrupt. It is set by hardware and
must be cleared by the interrupt handler
Bit 7 (WD_RST): WD Timer Reset:
The WDT is reset when a 1 is written to this bit.

INTBITS INT0…INT6 0xF8 R Interrupt inputs. The MPU may read these bits to see the input to
external interrupts INT0, INT1, up to INT6. These bits do not have
any memory and are primarily intended for debug use

Table 6-6: SFRs Specific to the 652X

 6.2.2 The 80515 Instruction Set

All 80515 instructions are binary code compatible and perform the same functions as they do with the industry standard
8051. The following tables give a summary of the instruction set cycles of the 80515 MPU core.

Table 6-7 and Table 6-8 contain notes for mnemonics used in instruction set tables.

Table 6-9 through Table 6-17 show the instruction hexadecimal codes, the number of bytes, and the number of
machine cycles required for each instruction to execute.

Rn Working register R0-R7
direct 256 internal RAM locations, any Special Function Registers
@Ri Indirect internal or external RAM location addressed by register R0 or R1
#data 8-bit constant included in instruction
#data 16 16-bit constant included as bytes 2 and 3 of instruction
bit 256 software flags, any bit-addressable l/O pin, control or status bit
A Accumulator

Table 6-7: Notes on Data Addressing Modes

addr16 Destination address for LCALL and LJMP may be anywhere within the 64-kB of program memory

address space.
addr11 Destination address for ACALL and AJMP will be within the same 2-kB page of program memory

as the first byte of the following instruction.
rel SJMP and all conditional jumps include an 8-bit offset byte. Range is +127/-128 bytes relative to

the first byte of the following instruction

Table 6-8: Notes on Program Addressing Modes

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 110 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Instructions Ordered by Function

Mnemonic Description Code Bytes Cycles
ADD A,Rn Add register to accumulator 28-2F 1 1
ADD A,direct Add direct byte to accumulator 25 2 2
ADD A,@Ri Add indirect RAM to accumulator 26-27 1 2
ADD A,#data Add immediate data to accumulator 24 2 2
ADDC A,Rn Add register to accumulator with carry flag 38-3F 1 1
ADDC A,direct Add direct byte to A with carry flag 35 2 2
ADDC A,@Ri Add indirect RAM to A with carry flag 36-37 1 2
ADDC A,#data Add immediate data to A with carry flag 34 2 2
SUBB A,Rn Subtract register from A with borrow 98-9F 1 1
SUBB A,direct Subtract direct byte from A with borrow 95 2 2
SUBB A,@Ri Subtract indirect RAM from A with borrow 96-97 1 2
SUBB A,#data Subtract immediate data from A with borrow 94 2 2
INC A Increment accumulator 04 1 1
INC Rn Increment register 08-0F 1 2
INC direct Increment direct byte 05 2 3
INC @Ri Increment indirect RAM 06-07 1 3
INC DPTR Increment data pointer A3 1 1
DEC A Decrement accumulator 14 1 1
DEC Rn Decrement register 18-1F 1 2
DEC direct Decrement direct byte 15 2 3
DEC @Ri Decrement indirect RAM 16-17 1 3
MUL AB Multiply A and B A4 1 5
DIV Divide A by B 84 1 5
DA A Decimal adjust accumulator D4 1 1

Table 6-9: Arithmetic Operations

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 111 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Mnemonic Description Code Bytes Cycles
ANL A,Rn AND register to accumulator 58-5F 1 1
ANL A,direct AND direct byte to accumulator 55 2 2
ANL A,@Ri AND indirect RAM to accumulator 56-57 1 2
ANL A,#data AND immediate data to accumulator 54 2 2
ANL direct,A AND accumulator to direct byte 52 2 3
ANL direct,#data AND immediate data to direct byte 53 3 4
ORL A,Rn OR register to accumulator 48-4F 1 1
ORL A,direct OR direct byte to accumulator 45 2 2
ORL A,@Ri OR indirect RAM to accumulator 46-47 1 2
ORL A,#data OR immediate data to accumulator 44 2 2
ORL direct,A OR accumulator to direct byte 42 2 3
ORL direct,#data OR immediate data to direct byte 43 3 4
XRL A,Rn Exclusive OR register to accumulator 68-6F 1 1
XRL A,direct Exclusive OR direct byte to accumulator 65 2 2
XRL A,@Ri Exclusive OR indirect RAM to accumulator 66-67 1 2
XRL A,#data Exclusive OR immediate data to accumulator 64 2 2
XRL direct,A Exclusive OR accumulator to direct byte 62 2 3
XRL direct,#data Exclusive OR immediate data to direct byte 63 3 4
CLR A Clear accumulator E4 1 1
CPL A Complement accumulator F4 1 1
RL A Rotate accumulator left 23 1 1
RLC A Rotate accumulator left through carry 33 1 1
RR A Rotate accumulator right 03 1 1
RRC A Rotate accumulator right through carry 13 1 1
SWAP A Swap nibbles within the accumulator C4 1 1

Table 6-10: Logic Operations

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 112 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Mnemonic Description Code Bytes Cycles
MOV A,Rn Move register to accumulator E8-EF 1 1
MOV A,direct Move direct byte to accumulator E5 2 2
MOV A,@Ri Move indirect RAM to accumulator E6-E7 1 2
MOV A,#data Move immediate data to accumulator 74 2 2
MOV Rn,A Move accumulator to register F8-FF 1 2
MOV Rn,direct Move direct byte to register A8-AF 2 4
MOV Rn,#data Move immediate data to register 78-7F 2 2
MOV direct,A Move accumulator to direct byte F5 2 3
MOV direct,Rn Move register to direct byte 88-8F 2 3
MOV direct1,direct2 Move direct byte to direct byte 85 3 4
MOV direct,@Ri Move indirect RAM to direct byte 86-87 2 4
MOV direct,#data Move immediate data to direct byte 75 3 3
MOV @Ri,A Move accumulator to indirect RAM F6-F7 1 3
MOV @Ri,direct Move direct byte to indirect RAM A6-A7 2 5
MOV @Ri,#data Move immediate data to indirect RAM 76-77 2 3
MOV DPTR,#data16 Load data pointer with a 16-bit constant 90 3 3
MOVC A,@A+DPTR Move code byte relative to DPTR to accumulator 93 1 3
MOVC A,@A+PC Move code byte relative to PC to accumulator 83 1 3
MOVX A,@Ri Move external RAM (8-bit addr.) to A E2-E3 1 3-10
MOVX A,@DPTR Move external RAM (16-bit addr.) to A E0 1 3-10
MOVX @Ri,A Move A to external RAM (8-bit addr.) F2-F3 1 4-11
MOVX @DPTR,A Move A to external RAM (16-bit addr.) F0 1 4-11
PUSH direct Push direct byte onto stack C0 2 4
POP direct Pop direct byte from stack D0 2 3
XCH A,Rn Exchange register with accumulator C8-CF 1 2
XCH A,direct Exchange direct byte with accumulator C5 2 3
XCH A,@Ri Exchange indirect RAM with accumulator C6-C7 1 3
XCHD A,@Ri Exchange low-order nibble indirect RAM with A D6-D7 1 3

Table 6-11: Data Transfer Operations

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 113 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Mnemonic Description Code Bytes Cycles
ACALL addr11 Absolute subroutine call xxx11 2 6
LCALL addr16 Long subroutine call 12 3 6
RET Return from subroutine 22 1 4
RETI Return from interrupt 32 1 4
AJMP addr11 Absolute jump xxx01 2 3
LJMP addr16 Long jump 02 3 4
SJMP rel Short jump (relative addr.) 80 2 3
JMP @A+DPTR Jump indirect relative to the DPTR 73 1 2
JZ rel Jump if accumulator is zero 60 2 3
JNZ rel Jump if accumulator is not zero 70 2 3
JC rel Jump if carry flag is set 40 2 3
JNC Jump if carry flag is not set 50 2 3
JB bit,rel Jump if direct bit is set 20 3 4
JNB bit,rel Jump if direct bit is not set 30 3 4
JBC bit,direct rel Jump if direct bit is set and clear bit 10 3 4
CJNE A,direct rel Compare direct byte to A and jump if not equal B5 3 4
CJNE A,#data rel Compare immediate to A and jump if not equal B4 3 4
CJNE Rn,#data rel Compare immed. to reg. and jump if not equal B8-BF 3 4
CJNE @Ri,#data rel Compare immed. to ind. and jump if not equal B6-B7 3 4
DJNZ Rn,rel Decrement register and jump if not zero D8-DF 2 3
DJNZ direct,rel Decrement direct byte and jump if not zero D5 3 4
NOP No operation 00 1 1

Table 6-12: Program Branches

Mnemonic Description Code Bytes Cycles
CLR C Clear carry flag C3 1 1
CLR bit Clear direct bit C2 2 3
SETB C Set carry flag D3 1 1
SETB bit Set direct bit D2 2 3
CPL C Complement carry flag B3 1 1
CPL bit Complement direct bit B2 2 3
ANL C,bit AND direct bit to carry flag 82 2 2
ANL C,/bit AND complement of direct bit to carry B0 2 2
ORL C,bit OR direct bit to carry flag 72 2 2
ORL C,/bit OR complement of direct bit to carry A0 2 2
MOV C,bit Move direct bit to carry flag A2 2 2
MOV bit,C Move carry flag to direct bit 92 2 3

Table 6-13: Boolean Manipulations

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 114 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Instructions Ordered by Opcode (Hexadecimal)

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic
0x00 NOP 0x20 JB bit.rel 0x40 JC rel
0x01 AJMP addr11 0x21 AJMP addr11 0x41 AJMP addr11
0x02 LJMP addr16 0x22 RET 0x42 ORL direct,A
0x03 RR A 0x23 RL A 0x43 ORL direct,#data
0x04 INC A 0x24 ADD A,#data 0x44 ORL A,#data
0x05 INC direct 0x25 ADD A,direct 0x45 ORL A,direct
0x06 INC @R0 0x26 ADD A,@R0 0x46 ORL A,@R0
0x07 INC @R1 0x27 ADD A,@R1 0x47 ORL A,@R1
0x08 INC R0 0x28 ADD A,R0 0x48 ORL A,R0
0x09 INC R1 0x29 ADD A,R1 0x49 ORL A,R1
0x0A INC R2 0x2A ADD A,R2 0x4A ORL A,R2
0x0B INC R3 0x2B ADD A,R3 0x4B ORL A,R3
0x0C INC R4 0x2C ADD A,R4 0x4C ORL A,R4
0x0D INC R5 0x2D ADD A,R5 0x4D ORL A,R5
0x0E INC R6 0x2E ADD A,R6 0x4E ORL A,R6
0x0F INC R7 0x2F ADD A,R7 0x4F ORL A,R7
0x10 JBC bit,rel 0x30 JNB bit.rel 0x50 JNC rel
0x11 ACALL addr11 0x31 ACALL addr11 0x51 ACALL addr11
0x12 LCALL addr16 0x32 RETI 0x52 ANL direct,A
0x13 RRC A 0x33 RLC A 0x53 ANL direct,#data
0x14 DEC A 0x34 ADDC A,#data 0x54 ANL A,#data
0x15 DEC direct 0x35 ADDC A,direct 0x55 ANL A,direct
0x16 DEC @R0 0x36 ADDC A,@R0 0x56 ANL A,@R0
0x17 DEC @R1 0x37 ADDC A,@R1 0x57 ANL A,@R1
0x18 DEC R0 0x38 ADDC A,R0 0x58 ANL A,R0
0x19 DEC R1 0x39 ADDC A,R1 0x59 ANL A,R1
0x1A DEC R2 0x3A ADDC A,R2 0x5A ANL A,R2
0x1B DEC R3 0x3B ADDC A,R3 0x5B ANL A,R3
0x1C DEC R4 0x3C ADDC A,R4 0x5C ANL A,R4
0x1D DEC R5 0x3D ADDC A,R5 0x5D ANL A,R5
0x1E DEC R6 0x3E ADDC A,R6 0x5E ANL A,R6
0x1F DEC R7 0x3F ADDC A,R7 0x5F ANL A,R7

Table 6-14: Instruction Set in Hexadecimal Order

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 115 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic
0x60 JZ rel 0x80 SJMP rel 0xA0 ORL C,bit
0x61 AJMP addr11 0x81 AJMP addr11 0xA1 AJMP addr11
0x62 XRL direct,A 0x82 ANL C,bit 0xA2 MOV C,bit
0x63 XRL direct,#data 0x83 MOVC A,@A+PC 0xA3 INC DPTR
0x64 XRL A,#data 0x84 DIV AB 0xA4 MUL AB
0x65 XRL A,direct 0x85 MOV direct,direct 0xA5 Reserved
0x66 XRL A,@R0 0x86 MOV direct,@R0 0xA6 MOV @R0,direct
0x67 XRL A,@R1 0x87 MOV direct,@R1 0xA7 MOV @R1,direct
0x68 XRL A,R0 0x88 MOV direct,R0 0xA8 MOV R0,direct
0x69 XRL A,R1 0x89 MOV direct,R1 0xA9 MOV R1,direct
0x6A XRL A,R2 0x8A MOV direct,R2 0xAA MOV R2,direct
0x6B XRL A,R3 0x8B MOV direct,R3 0xAB MOV R3,direct
0x6C XRL A,R4 0x8C MOV direct,R4 0xAC MOV R4,direct
0x6D XRL A,R5 0x8D MOV direct,R5 0xAD MOV R5,direct
0x6E XRL A,R6 0x8E MOV direct,R6 0xAE MOV R6,direct
0x6F XRL A,R7 0x8F MOV direct,R7 0xAF MOV R7,direct
0x70 JNZ rel 0x90 MOV

DPTR,#data16
0xB0 ANL C,bit

0x71 ACALL addr11 0x91 ACALL addr11 0xB1 ACALL addr11
0x72 ORL C,direct 0x92 MOV bit,C 0xB2 CPL bit
0x73 JMP @A+DPTR 0x93 MOVC

A,@A+DPTR
0xB3 CPL C

0x74 MOV A,#data 0x94 SUBB A,#data 0xB4 CJNE A,#data,rel
0x75 MOV direct,#data 0x95 SUBB A,direct 0xB5 CJNE A,direct,rel
0x76 MOV @R0,#data 0x96 SUBB A,@R0 0xB6 CJNE @R0,#data,rel
0x77 MOV @R1,#data 0x97 SUBB A,@R1 0xB7 CJNE @R1,#data,rel
0x78 MOV R0.#data 0x98 SUBB A,R0 0xB8 CJNE R0,#data,rel
0x79 MOV R1.#data 0x99 SUBB A,R1 0xB9 CJNE R1,#data,rel
0x7A MOV R2.#data 0x9A SUBB A,R2 0xBA CJNE R2,#data,rel
0x7B MOV R3.#data 0x9B SUBB A,R3 0xBB CJNE R3,#data,rel
0x7C MOV R4.#data 0x9C SUBB A,R4 0xBC CJNE R4,#data,rel
0x7D MOV R5.#data 0x9D SUBB A,R5 0xBD CJNE R5,#data,rel
0x7E MOV R6.#data 0x9E SUBB A,R6 0xBE CJNE R6,#data,rel
0x7F MOV R7.#data 0x9F SUBB A,R7 0xBF CJNE R7,#data,rel

Table 6-15: Instruction Set in Hexadecimal Order

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 116 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Opcode Mnemonic Opcode Mnemonic
0xC0 PUSH direct 0xD0 POP direct
0xC1 AJMP addr11 0xD1 ACALL addr11
0xC2 CLR bit 0xD2 SETB bit
0xC3 CLR C 0xD3 SETB C
0xC4 SWAP A 0xD4 DA A
0xC5 XCH A,direct 0xD5 DJNZ direct,rel
0xC6 XCH A,@R0 0xD6 XCHD A,@R0
0xC7 XCH A,@R1 0xD7 XCHD A,@R1
0xC8 XCH A,R0 0xD8 DJNZ R0,rel
0xC9 XCH A,R1 0xD9 DJNZ R1,rel
0xCA XCH A,R2 0xDA DJNZ R2,rel
0xCB XCH A,R3 0xDB DJNZ R3,rel
0xCC XCH A,R4 0xDC DJNZ R4,rel
0xCD XCH A,R5 0xDD DJNZ R5,rel
0xCE XCH A,R6 0xDE DJNZ R6,rel
0xCF XCH A,R7 0xDF DJNZ R7,rel
0xE0 MOVX A,@DPTR 0xF0 MOVX @DPTR,A
0xE1 AJMP addr11 0xF1 ACALL addr11
0xE2 MOVX A,@R0 0xF2 MOVX @R0,A
0xE3 MOVX A,@R1 0xF3 MOVX @R1,A
0xE4 CLR A 0xF4 CPL A
0xE5 MOV A,direct 0xF5 MOV direct,A
0xE6 MOV A,@R0 0xF6 MOV @R0,A
0xE7 MOV A,@R1 0xF7 MOV @R1,A
0xE8 MOV A,R0 0xF8 MOV R0,A
0xE9 MOV A,R1 0xF9 MOV R1,A
0xEA MOV A,R2 0xFA MOV R2,A
0xEB MOV A,R3 0xFB MOV R3,A
0xEC MOV A,R4 0xFC MOV R4,A
0xED MOV A,R5 0xFD MOV R5,A
0xEE MOV A,R6 0xFE MOV R6,A
0xEF MOV A,R7 0xFF MOV R7,A

Table 6-16: Instruction Set in Hexadecimal Order

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 117 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Instructions that Affect Flags

Instruction Affected Flag Instruction Affected Flag

C OV AC C OV AC
ADD X X X CLR C 0

ADDC X X X CPL C X
SUBB X X X ANL C, bit X
MUL 0 X ANL C, /bit X
DIV 0 X ORL C, bit X
DA X ORL C, /bit X

RRC X MOV C, bit X
RLC X CJNE X

SETB C 1

Table 6-17: Instructions Affecting Flags

Note: Operations affecting the PSW or bits in the PSW will also affect flag settings

 6.3 80515 HARDWARE DESCRIPTION
The 80515 core implemented in the 71M652X chips consists of:

1. Control processor unit (CPU), also referred to as MPU throughout this document
2. Arithmetic-logic unit
3. Clock control unit
4. Memory control unit
5. RAM and SFR control unit
6. Ports registers unit
7. Timer 0, 1 unit
8. Serial 0, 1 interfaces
9. Watchdog timer
10. Interrupt service routine unit

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 118 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 6.3.1 Block Diagram

tf1, ie1tf0, ie0

cycleinstr

cyclefetch instr

cyclefetch instr

PORTS

p0

p1
p2
p3

port0i

port2i
port3i
port0o
port1o
port2o
port3o

SERIAL_0 s0con
s0bufs0rell s0relh

rxd0i
rxd0o

txd0

SERIAL_1 s1con
s1bufs1rell s1relh

rxd1i
txd1

ie0
ie1
ie2

ircon
ip1
ip0

int2
int3
int4
int5
int6

WATCHDOG_TIMER

wdtrel
swd

instrreg

acc b psw

sp

CLOCK_CONTROL

pcon ckcon

MEMORY_CONTROL

pc
dptr

TIMER_0_1

tl0
tl1

th0
th1

tcon
tmod

t1
t0

int0
int1

in
te

rn
al

 sf
rb

us

ISR

CONTROL_UNIT

ALU

RAM_SFR_CONTROL

dptr1

to/from
IRAM

&
 SFRs

to/from
XRAMs

&
Prog
Mem

port1i

Figure 6-2: 80515 µC Block Diagram

DIO gating
registers
(DIO_R)

0

 DIO pins

“external”
interrupts

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 119 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 6.3.2 80515 MPU

The 80515 MPU is composed of four components:
1. Control unit

2. Arithmetic-logic unit

3. Memory control unit

4. RAM and SFR control unit

The 80515 MPU allows instruction fetch from program memory and instruction execution using RAM or SFR. The
following chapter describes the main MPU registers.

Accumulator

ACC is the accumulator register. Most instructions use the accumulator to hold the operand. The mnemonics for
accumulator-specific instructions refer to accumulator as “A”, not ACC.

The B Register

The B register is used during multiply and divide instructions. It can also be used as a scratch-pad register to hold
temporary data.

Program Status Word (PSW)

MSB LSB
CV AC F0 RS1 RS OV - P

Table 6-18: PSW Register Flags

Bit Symbol Function
PSW.7 CV Carry flag
Psw.6 AC Auxiliary Carry flag for BCD operations
PSW.5 F0 General purpose Flag 0 available for user
PSW.4 RS1 Register bank select control bits. The contents of rs1 and rs0 select the working

register bank as follows:
(0, 0): Bank 0 (0x00-0x07)
(0,1): Bank 1 (0x08-0x0F)
(1, 0): Bank 2 (0x10-0x17)
(1, 1): Bank 3 (0x18-0x1F)

PSW.3 RS0

PSW.2 OV Overflow flag
PSW.1 - User defined flag
PSW.0 P Parity flag, affected by hardware to indicate odd / even number of “one” bits in the

Accumulator, i.e. even parity.

Table 6-19: PSW Bit Functions

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 120 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

The state of bits RS1 and RS0 select the working registers bank as follows:

RS1/RS0 Bank selected Location
00 Bank 0 (00H – 07H)
01 Bank 1 (08H – 0FH)
10 Bank 2 (10H – 17H)
11 Bank 3 (18H – 1FH)

Table 6-20: Register Bank Location

Stack Pointer

The stack pointer is a 1-byte register initialized to 07H after reset. This register is incremented before PUSH and CALL
instructions, causing the stack to begin at location 08H.

Data Pointer

The data pointer (DPTR) is 2 bytes wide. The lower part is DPL, and the highest is DPH. It can be loaded as a 2-byte
register (MOV DPTR,#data16) or as two registers (e.g. MOV DPL,#data8). It is generally used to access external code
or data space (e.g. MOVC A,@A+DPTR or MOVX A,@DPTR respectively).

Program Counter

The program counter (PC) is 2 bytes wide initialized to 0000H after reset. This register is incremented during the
fetching operation code or when operating on data from program memory.

Ports

Port registers ‘P0’, ‘P1’, and ‘P2’ are Special Function Registers. The contents of the SFR can be observed on
corresponding pins on the chip. Writing a ‘1’ to any of the ports causes the corresponding pin to be at high level (VCC),
and writing a ‘0’ causes the corresponding pin to be held at low level (GND).

All DIO ports on the chip are bi-directional. Each of them consists of a Latch (SFR ‘P0’ to ‘P2’), an output driver, and an
input buffer, therefore the MPU can output or read data through any of these ports if they are not used for alternate
purposes.

 Timers 0 and 1

The 80515 has two 16-bit timer/counter registers: Timer 0 and Timer 1. These registers can be configured for counter
or timer operations.

In timer mode, the register is incremented every machine cycle meaning that it counts up after every 12 periods of the
MPU clock signal.

In counter mode, the register is incremented when the falling edge is observed at the corresponding input pin t0 or t1.
Since it takes 2 machine cycles to recognize a 1-to-0 event, the maximum input count rate is 1/2 of the oscillator
frequency. There are no restrictions on the duty cycle, however to ensure proper recognition of 0 or 1 state, an input
should be stable for at least 1 machine cycle.

 Four operating modes can be selected for Timer 0 and Timer 1. Two Special Function Registers (TMOD and TCON)
are used to select the appropriate mode.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 121 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Timer/Counter Mode Control Register (TMOD)

MSB LSB
GATE C/T M1 M0 GATE C/T M1 M0

 Timer 1 Timer 0

Table 6-21: The TMOD Register

Bit Symbol Function
TMOD.7
TMOD.3

Gate If set, enables external gate control (pin int0 or int1 for Counter 0 or 1,
respectively). When int0 or int1 is high, and trx bit is set (see TCON register), a
counter is incremented every falling edge on t0 or t1 input pin

TMOD.6
TMOD.2

C/T Selects Timer or Counter operation. When set to 1, a Counter operation is
performed. When cleared to 0, the corresponding register will function as a Timer.

TMOD.5
TMOD.1

M1 Selects the mode for Timer/Counter 0 or Timer/Counter 1, as shown in TMOD
description.

TMOD.4
TMOD.0

M0 Selects the mode for Timer/Counter 0 or Timer/Counter 1, as shown in TMOD
description.

Table 6-22: The TMOD Register Bits Description

M1 M0 Mode Function
0 0 Mode 0 13-bit Counter/Timer with 5 lower bits in the TL0 or TL1 register and the

remaining 8 bits in the TH0 or TH1 register (for Timer 0 and Timer 1,
respectively). The 3 high order bits of TL0 and TL1 are held at zero.

0 1 Mode 1 16-bit Counter/Timer.
1 0 Mode 2 8-bit auto-reload Counter/Timer. The reload value is kept in TH0 or TH1,

while TL0 or TL1 is incremented every machine cycle. When tl(x) overflows,
a value from th(x) is copied to tl(x).

1 1 Mode 3 If Timer 1 m1 and m0 bits are set to '1', Timer 1 stops. If Timer 0 m1 and m0
bits are set to '1', Timer 0 acts as two independent 8 bit Timer/Counters.

Table 6-23: Timers/Counters Mode Description

Note: In Mode 3, TL0 is affected by TR0 and gate control bits, and sets TF0 flag on overflow, while
 TH0 is affected by TR1 bit, and the TF1 flag is set on overflow.

Timer/Counter Control Register (TCON)

MSB LSB
TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

Table 6-24: The TCON Register

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 122 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Bit Symbol Function

TCON.7 TF1
The Timer 1 overflow flag is set by hardware when Timer 1 overflows. This flag
can be cleared by software and is automatically cleared when an interrupt is
processed.

TCON.6 TR1 Timer 1 Run control bit. If cleared, Timer 1 stops.

TCON.5 TF0 Timer 0 overflow flag set by hardware when Timer 0 overflows. This flag can be
cleared by software and is automatically cleared when an interrupt is processed.

TCON.4 TR0 Timer 0 Run control bit. If cleared, Timer 0 stops.

TCON.3 IE1 Interrupt 1 edge flag is set by hardware when the falling edge on external pin
int1 is observed. Cleared when an interrupt is processed.

TCON.2 IT1 Interrupt 1 type control bit. Selects either the falling edge or low level on input
pin to cause an interrupt.

TCON.1 IE0 Interrupt 0 edge flag is set by hardware when the falling edge on external pin
int0 is observed. Cleared when an interrupt is processed.

TCON.0 IT0 Interrupt 0 type control bit. Selects either the falling edge or low level on input
pin to cause interrupt.

Table 6-25: The TCON Register Bit Functions

 6.3.2.1 Allowed Combinations of Operation Modes

Table 6-25 specifies the combinations of operation modes allowed for timer 0 and timer 1.

 Timer 1

 Mode 0 Mode 1 Mode 2
Timer 0 - mode 0 YES YES YES
Timer 0 - mode 1 YES YES YES
Timer 0 - mode 2 Not allowed Not allowed YES

Table 6-26: Timer Modes

 6.3.3 Serial Interface 0 and 1

The serial buffer consists of two separate registers, a transmit buffer and a receive buffer.

Writing data to the Special Function Register S0BUF or S1BUF sets this data in the serial output buffer and starts
transmission. Reading from the S0BUF or S1BUF reads data from the serial receive buffer. The serial port can
simultaneously transmit and receive data. It can also buffer 1 byte at receive, preventing the receive data from being
lost if the MPU reads the first byte before transmission of the second byte is completed.

Serial Interface 0 Modes

The Serial Interface 0 can operate in 4 modes:

Mode 0
Pin rxd0 serves as an input and an output. Txd0 outputs the shift clock. 8 bits are transmitted starting with the LSB.
The baud rate is fixed at 1/12 of the MPU frequency. Reception is initialized in Mode 0 by setting the flags in S0CON as
follows: RI0=0 and REN0=1. In other modes, when REN0 = 1, a start bit initiates receiving serial data.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 123 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Mode 1

Pin rxd0 serves as an input, and txd0 serves as a serial output. No external shift clock is used. 10 bits are transmitted:
a start bit (always 0), 8 data bits (LSB first), and a stop bit (always 1). On receive, a start bit synchronizes the
transmission. 8 data bits are available by reading S0BUF, and the stop bit sets the flag RB80 in the Special Function
Register S0CON. In mode 1 either the internal baud rate generator or timer 1 can be use to specify the baud rate.

Mode 2

This mode is similar to Mode 1, with two differences. The baud rate is fixed at 1/32 or 1/64 of the oscillator frequency
and 11 bits are transmitted or received: a start bit (0), 8 data bits (LSB first), a programmable 9th bit, and a stop bit (1).
The 9th bit can be used to control the parity of the serial interface: at transmission, bit TB80 in S0CON is output as the
9th bit, and at receive, the 9th bit affects RB80 in the Special Function Register S0CON.

Mode 3

The only difference between Mode 2 and Mode 3 is that in Mode 3, either the internal baud rate generator or timer 1
can be use to specify the baud rate.

Note: The common FLAG protocol requires the data format to be 7E1. This can be implemented using one of the 8-bit
modes, where the MSB (bit 0) is the parity bit. In this mode, the MPU calculates parity

Serial Interface 0 Control Register (S0CON).
The function of the serial port 0 depends on the setting of the Serial Port Control Register S0CON.

MSB LSB
SM0 SM1 SM20 REN0 TB80 RB80 TI0 RI0

Table 6-27: The S0CON Register

Bit Symbol Function
S0CON.7 SM0 Sets baud rate
S0CON.6 SM1 Sets baud rate
S0CON.5 SM20 reserved
S0CON.4 REN0 If set, enables serial reception. Cleared by software to disable reception.
S0CON.3 TB80 The 9th transmitted data bit in Modes 2 and 3. Set or cleared by the MPU,

depending on the function it performs (parity check, multiprocessor
communication etc.)

S0CON.2 RB80 In Modes 2 and 3 it is the 9th data bit received. In Mode 1, if SM20 is 0,
RB80 is the stop bit. In Mode 0 this bit is not used. Must be cleared by
software

S0CON.1 TI0 Transmit interrupt flag, set by hardware after completion of a serial
transfer. Must be cleared by software.

S0CON.0 RI0 Receive interrupt flag, set by hardware after completion of a serial
reception. Must be cleared by software

Table 6-28: The S0CON Bit Functions

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 124 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

SM0 SM1 Mode Description Baud Rate
0 0 0 shift register Fclk/12
0 1 1 8-bit UART Variable
1 0 2 9-bit UART Fclk/32 or /64
1 1 3 9-bit UART Variable

Table 6-29: Serial Port 0 Modes

Note: The speed in Mode 2 depends on the SMOD bit in the Special Function Register PCON when SMOD = 1,
Fclk/32.

Serial Interface 1 Modes

The Serial Interface 1 can operate in 2 modes:

SM Mode Description Baud Rate
0 A 9-bit UART variable
1 B 8-bit UART variable

Table 6-30: Serial 1 Modes

Mode A

This mode is similar to Mode 2 and 3 of serial interface 0. 11 bits are transmitted or received: a start bit (0), 8 data bits
(LSB first), a programmable 9th bit, and a stop bit (1). The 9th bit can be used to control the parity of the serial interface:
at transmission, bit tb81 in S1CON is output as the 9th bit, and at receive, the 9th bit affects rb81 in the Special
Function Register S1CON. The only difference between Mode 3 and A is that in Mode A, only the internal baud rate
generator can be use to specify baud rate.

Mode B
This mode is similar to Mode 1 of serial interface 0. Pin rxd1 serves as an input, and txd1 serves as a serial output. No
external shift clock is used. 10 bits are transmitted: a start bit (always 0), 8 data bits (LSB first), and a stop bit (always
1). On receive, a start bit synchronizes the transmission. 8 data bits are available by reading S1BUF, and the stop bit
sets the flag rb81 in the Special Function Register S1CON. In mode B, the internal baud rate generator specifies the
baud rate.

Serial Interface 1 Control Register (S1CON).

The function of the serial port depends on the setting of the Serial Port Control Register S1CON.

MSB LSB
SM - SM21 REN1 TB81 RB81 TI1 RI1

Table 6-31: The S1CON Register

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 125 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Bit Symbol Function
S1CON.7 SM Sets baud rate
S1CON.5 SM21 Enables the multiprocessor communication feature (see description

above).
S1CON.4 REN1 If set, enables serial reception. Cleared by software to disable reception.
S1CON.3 TB81 The 9th transmitted data bit in Mode A. Set or cleared by the MPU,

depending on the function it performs (parity check, multiprocessor
communication etc.)

S1CON.2 RB81 In Modes 2 and 3, it is the 9th data bit received. In Mode B, if sm21 is 0,
rb81 is the stop bit. In Mode 0 this bit is not used. Must be cleared by
software

S1CON.1 TI1 Transmit interrupt flag, set by hardware after completion of a serial
transfer. Must be cleared by software.

S1CON.0 RI1 Receive interrupt flag, set by hardware after completion of a serial
reception. Must be cleared by software

Table 6-32: The S1CON Bit Functions

 6.3.3.1 Baud Rate generator

Serial 0 modes 1 and 3 only (Fclk = MPU clock rate):

Timer1 baud rate generator (WDCON.7 = 0)

)1256(384
2 mod

th
Fbaudrate

s
clk

−⋅
⋅

=

Internal baud rate generator (WDCON.7 = 1)

)02(64
2

10

mod

rels
Fbaudrate

s
clk

−⋅
⋅

=

Note: s0rel is a 10 bit value formed by concatenating S0RELH and S0RELL as follows:

 s0rel = {S0RELH.[1:0], S0RELL.[7:0]}

Serial 1 all modes: (Fclk = MPU clock rate):

Internal baud rate generator only

)12(32 10 rels
Fbaudrate clk

−⋅
=

Note: s1rel is a 10 bit value formed by concatenating S1RELH and S1RELL as follows:

 s1rel = {S1RELH.[1:0], S1RELL.[7:0]}

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 126 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 6.3.4 Software Watchdog Timer

The watchdog timer is a 16-bit counter that is incremented once every 24 or 384 clock cycles. After an external reset,
the watchdog timer is disabled and all registers are set to zero.

Software Watchdog Timer structure

The watchdog consists of a 16-bit counter (wdt), a reload register (WDTREL), prescalers (by 2 and by 16), and control
logic.

Figure 6-3: Watchdog Block Diagram

 6.3.4.1 WD Timer Start Procedure

During an active internal reset signal, the programmer can start the watchdog later. It will occur when the SWD signal
becomes active. Once the watchdog is started, it cannot be stopped unless the internal reset signal becomes active.

When the WDT registers enters the state 0x7CFF , an asynchronous WDTS signal will become active. The signal
WDTS sets bit 6 in the IP0 register and requests a reset state. WDTS is cleared either by the reset signal or changing
the state of the WDT timer.

/2

/16

wdtl wdth

wdtrel

Control
logic

fclk/12

wdts

swd
wdt

swdt

0 7 8 14

7 6 0

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 127 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Refreshing the WD Timer

The watchdog timer must be refreshed regularly to prevent the reset request signal from becoming active. This re-
quirement imposes an obligation on the programmer to issue two instructions. The first instruction sets WDT and the
second instruction sets SWDT. The maximum delay allowed between setting WDT and SWDT is 12 clock cycles. If this
period has expired and SWDT has not been set, WDT is automatically reset, otherwise the watchdog timer is reloaded
with the content of the WDTREL register and WDT is automatically reset.

Special Function Registers for the WD Timer

Interrupt Enable 0 Register (IEN0):

MSB LSB
EALl WDT ET2 ES0 ET1 EX1 ET0 EX0

Table 6-33: The IEN0 Register

Bit Symbol Function
IEN0.6 WDT Watchdog timer refresh flag.

Set to initiate a refresh of the watchdog timer. Must be set directly before SWDT is
set to prevent an unintentional refresh of the watchdog timer. WDT is reset by
hardware 12 clock cycles after it has been set.

Table 6-34: The IEN0 Bit Functions

Note: The remaining bits in the IEN0 register are not used for watchdog control

Interrupt Enable 1 Register (IEN1):

MSB LSB
EXEN2 SWDT EX6 EX5 EX4 EX3 EX2

Table 6-35: The IEN1 Register

Bit Symbol Function
IEN1.6 SWDT Watchdog timer start/refresh flag.

Set to activate/refresh the watchdog timer. When directly set after setting WDT, a
watchdog timer refresh is performed. Bit SWDT is reset by the hardware 12 clock
cycles after it has been set.

Table 6-36: The IEN1 Bit Functions

Note: The remaining bits in the IEN1 register are not used for watchdog control

Interrupt Priority 0 Register (IP0):

MSB LSB
OWDS WDTS IP0.5 IP0.4 IP0.3 IP0.2 IP0.1 IP0.0

Table 6-37: The IP0 Register

Bit Symbol Function

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 128 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

IP0.6 WDTS Watchdog timer status flag. Set by hardware when the watchdog timer was
started. Can be read by software.

Table 6-38: The IP0 Bit Functions

Note: The remaining bits in the IP0 register are not used for watchdog control

Watchdog Timer Reload Register (WDTREL):

MSB LSB
7 6 5 4 3 2 1 0

Table 6-39: The WDTREL Register

Bit Symbol Function
WDTREL.7 7 Prescaler select bit. When set, the watchdog is clocked through an additional

divide-by-16 prescaler
WDTREL.6

 to
WDTREL.0

6-0 Seven bit reload value for the high-byte of the watchdog timer. This value is
loaded to the WDT when a refresh is triggered by a consecutive setting of bits
WDT and SWDT.

Table 6-40: The WDTREL Bit Functions

The WDTREL register can be loaded and read at any time.

 6.3.5 The Interrupt Service Routine Unit

The 80515 provides 11 interrupt sources with four priority levels. Each source has its own request flag(s) located in a
special function register (TCON, IRCON, SCON). Each interrupt requested by the corresponding flag can be
individually enabled or disabled by the enable bits in SFRs IEN0, IEN1, and IEN2.

 6.3.5.1 Interrupt Overview

When an interrupt occurs, the MPU will vector to the predetermined address as shown in Table 6-58. Once interrupt
service has begun, it can be interrupted only by a higher priority interrupt. The interrupt service is terminated by a
return from instruction, "RETI". When an RETI is performed, the processor will return to the instruction that would have
been next when the interrupt occurred.

When the interrupt condition occurs, the processor will also indicate this by setting a flag bit. This bit is set regardless of
whether the interrupt is enabled or disabled. Each interrupt flag is sampled once per machine cycle, then samples are
polled by the hardware. If the sample indicates a pending interrupt when the interrupt is enabled, then the interrupt
request flag is set. On the next instruction cycle, the interrupt will be acknowledged by hardware forcing an LCALL to
the appropriate vector address, if the following conditions are met:

● No interrupt of equal or higher priority is already in progress.

● An instruction is currently being executed and is not completed.

● The instruction in progress is not RETI or any write access to the registers IEN0, IEN1, IEN2, IP0 or IP1.

Interrupt response will require a varying amount of time depending on the state of the MPU when the interrupt occurs. If
the MPU is performing an interrupt service with equal or greater priority, the new interrupt will not be invoked. In other
cases, the response time depends on the current instruction. The fastest possible response to an interrupt is 7 machine
cycles. This includes one machine cycle for detecting the interrupt and six cycles to perform the LCALL.

 6.3.5.2 Special Function Registers for Interrupts

Interrupt Enable 0 Register (IE0)

MSB LSB

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 129 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

EAL WDT ES0 ET1 EX1 ET0 EX0

Table 6-41: The IEN0 Register

Bit Symbol Function

IEN0.7 EAL EAL=0 – disable all interrupts
IEN0.6 WDT Not used for interrupt control
IEN0.5 -
IEN0.4 ES0 ES0=0 – disable UART 0 interrupt
IEN0.3 ET1 ET1=0 – disable timer 1 overflow interrupt
IEN0.2 EX1 EX1=0 – disable external interrupt 1
IEN0.1 ET0 ET0=0 – disable timer 0 overflow interrupt
IEN0.0 EX0 EX0=0 – disable external interrupt 0

Table 6-42: The IEN0 Bit Functions

Interrupt Enable 1 Register (IEN1)

MSB LSB
 SWDT EX6 EX5 EX4 EX3 EX2

Table 6-43: The IEN1 Register

Bit Symbol Function

IEN1.7 -
IEN1.6 SWDT Not used for interrupt control
IEN1.5 EX6 EX6=0 – disable external interrupt 6
IEN1.4 EX5 EX5=0 – disable external interrupt 5
IEN1.3 EX4 EX4=0 – disable external interrupt 4
IEN1.2 EX3 EX3=0 – disable external interrupt 3
IEN1.1 EX2 EX2=0 – disable external interrupt 2
IEN1.0 -

Table 6-44: The IEN1 Bit Functions

Interrupt Enable 2 Register (IEN2)

MSB LSB
- - - - - - - ES1

Table 6-45: The IEN2 Register

Bit Symbol Function

IEN2.0 ES1 ES1=0 – disable UART 1 interrupt

Table 6-46: The IEN2 Bit Functions

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 130 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Timer/Counter Control Register (TCON)

MSB LSB
TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0

Table 6-47: The TCON Register

Bit Symbol Function

TCON.7 TF1 Timer 1 overflow flag
TCON.6 TR1 Not used for interrupt control
TCON.5 TF0 Timer 0 overflow flag
TCON.4 TR0 Not used for interrupt control
TCON.3 IE1 External interrupt 1 flag
TCON.2 IT1 External interrupt 1 type control bit
TCON.1 IE0 External interrupt 0 flag
TCON.0 IT0 External interrupt 0 type control bit

Table 6-48: The TCON Bit Functions

Interrupt Request Register (IRCON)

MSB LSB
 IEX6 IEX5 IEX4 IEX3 IEX2

Table 6-49: The IRCON Register

Bit Symbol Function

IRCON.7 -
IRCON.6 -
IRCON.5 IEX6 External interrupt 6 edge flag
IRCON.4 IEX5 External interrupt 5 edge flag
IRCON.3 IEX4 External interrupt 4 edge flag
IRCON.2 IEX3 External interrupt 3 edge flag
IRCON.1 IEX2 External interrupt 2 edge flag
IRCON.0 -

Table 6-50: The IRCON Bit Functions

Note: Only TF0 and TF1 (timer 0 and timer 1 overflow flag) will be automatically cleared by hardware when the service
routine is called (Signals t0ack and t1ack – port ISR – active high when the service routine is called).

 6.3.5.3 External Interrupts

The 71M6521 MPU allows seven external interrupts. These are connected as shown in Table 46. The direction of
interrupts 2 and 3 is programmable in the MPU. Interrupts 2 and 3 should be programmed for falling sensitivity, using
the I2FR and I3FR bits of the T2CON register (see Table 6-50).

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 131 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Interrupt Request register (T2CON)

MSB LSB
 I3FR I2FR

Table 6-51: The T2CON Register

Bit Symbol Function

T2CON.7

T2CON.6 I3FR This bit controls the polarity of external interrupt 3

T2CON.5 I2FR This bit controls the polarity of external interrupt 2

T2CON.4

T2CON.3

T2CON.2

T2CON.1

T2CON.0

Table 6-52: The T2CON Bit Functions

 6.3.5.4 Interrupt Priority Level Structure

All interrupt sources are combined in groups, as shown in Table 6-52. The priority of each group is controlled by the
bits of SFR registers IP1 and IP0.

Group IP Bits Affected Interrupts
0 Ip1.0, IP0.0 External interrupt 0 UART 1 interrupt -
1 Ip1.1, IP0.1 Timer 0 interrupt - External interrupt 2
2 Ip1.2, IP0.2 External interrupt 1 - External interrupt 3
3 Ip1.3, IP0.3 Timer 1 interrupt - External interrupt 4
4 Ip1.4, IP0.4 UART 0 interrupt - External interrupt 5
5 IP1.5, IP0.5 - - External interrupt 6

Table 6-53: Priority Level Groups

Each group of interrupt sources can be programmed individually to one of four priority levels by setting or clearing one
bit in the special function register IP0 and one in IP1. If requests of the same priority level are received simultaneously,
an internal polling sequence determines which request is serviced first.

The functionality and edge polarity of the external interrupts are described in Table 6-51.

External
Interrupt Connection Polarity Flag Reset

0 Digital I/O High Priority see DIO_Rx automatic
1 Digital I/O Low Priority see DIO_Rx automatic
2 Comparator falling automatic
3 CE_BUSY falling automatic

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 132 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

4 Comparator rising automatic
5 EEPROM busy falling automatic
6 XFER_BUSY OR RTC_1SEC falling manual

Table 6-54: External MPU Interrupts

Enable Bit Description Flag Bit Description
EX0 Enable external interrupt 0 IE0 External interrupt 0 flag
EX1 Enable external interrupt 1 IE1 External interrupt 1 flag
EX2 Enable external interrupt 2 IEX2 External interrupt 2 flag
EX3 Enable external interrupt 3 IEX3 External interrupt 3 flag
EX4 Enable external interrupt 4 IEX4 External interrupt 4 flag
EX5 Enable external interrupt 5 IEX5 External interrupt 5 flag
EX6 Enable external interrupt 6 IEX6 External interrupt 6 flag

EX_XFER Enable XFER_BUSY interrupt IE_XFER XFER_BUSY interrupt flag
EX_RTC Enable RTC_1SEC interrupt IE_RTC RTC_1SEC interrupt flag

Table 6-55: Control Bits for External Interrupts

SFR (special function register) enable bits must be set to permit any of these interrupts to occur. Likewise, each
interrupt has its own flag bit which is set by the interrupt hardware and is reset automatically by the MPU interrupt
handler (0 through 5). XFER_BUSY and RTC_1SEC, which are OR-ed together, have their own enable and flag bits in
addition to the interrupt 6 enable and flag bits (see Table 6-52), and these interrupts must be cleared by the MPU
software.

Interrupt Priority 0 Register (IP0)

MSB LSB
OWDS WDTS IP0.5 IP0.4 IP0.3 IP0.2 IP0.1 IP0.0

Table 6-56: The IP0 Register

Note: OWDS, WDTS are not used for interrupt controls

Interrupt Priority 1 Register (IP1)

MSB LSB
- - IP1.5 IP1.4 IP1.3 IP1.2 IP1.1 IP1.0

Table 6-57: The IP1 Register

IP1.x IP0.x Priority Level
0 0 Level0 (lowest)
0 1 Level1
1 0 Level2
1 1 Level3 (highest)

Table 6-58: Priority Levels

External interrupt 0 Polling sequence
UART 1 interrupt
Timer 0 interrupt

External interrupt 2

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 133 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

External interrupt 1
External interrupt 3
Timer 1 interrupt

External interrupt 4
UART 0 interrupt

External interrupt 5
External interrupt 6

Table 6-59: Polling Sequence

 6.3.5.5 Interrupt Sources and Vectors

The vectors associated with each interrupt source are displayed in Table 6-59.

Interrupt Request Flags Interrupt Vector
Address

IE0 – External interrupt 0 0003H
TF0 – Timer 0 interrupt 000BH
IE1 – External interrupt 1 0013H
TF1 – Timer 1 interrupt 001BH
RI0/TI0 – UART 0 interrupt 0023H
RI1/TIi1 – UART 1 interrupt 0083H
IEX2 – External interrupt 2 004BH
IEX3 – External interrupt 3 0053H
IEX4 – External interrupt 4 005BH
IEX5 – External interrupt 5 0063H
IEX6 – External interrupt 6 006BH

Table 6-60: Interrupt Vectors

External Interrupt Edge Detect

The external interrupts 4, 5 and 6 are activated by a positive transition. The external source must hold the request pin
low (high for int2 and int3, if it is programmed to be negative transition-active) for at least one MPU clock period.
Afterwards, it must be held high (low) for at least one MPU clock period to ensure the transition is recognized and the
corresponding interrupt request flag is set.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 134 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 Figure 6-4: Interrupt Sources Diagram

IE 0

External
I n ter rupt

Flags

R I 1

T I 1

In t ernal
In t errupt

F lags
Sourc e

> = 1

T F 0

I N T 2

I E 1

I N T 3

T F 1

I N T 4

R I 0

T I 0
> = 1

I N T 5

I N T 6

> = 1

IR C ON. 1
I 2 F R

IR C ON. 2

I 3 F R

I RC ON. 3

I RC ON. 4

I RC ON. 5

IEN0. 7 IEN0.0

IEN2.0

IEN0.1

I EN1.1

I EN0.2

IEN1.2

I EN0.3

I EN1.3

I EN0.4

I EN1.4

I EN1.5

IP 1.0/
I P0. 0

I P1. 1/
IP 0.1

IP 1.2/
I P0. 2

I P1. 3/
IP 0.3

I P1. 4/
IP 0.4

I P1. 5/
IP 0.5

In t er rupt
Contro l

Regis ter

Pr ior it y
As signm ent

I nterrupt
Vec tor

P
o

ll
in

g
 S

e
q

u
e

n
ce

I n terrupt
Enable

Logic and
Polar i ty

Select ion

D I O

UART1
(optical)

Tim er 0

Com par-
ators

Com par-
ators

D IO

Tim er 1

C E_BUSY

U AR T 0

EEPROM/
I2C

XFER_BUSY

RTC _1S

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 135 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

 7 APPENDIX

 7.1 ACRONYMS

AC Alternating Current – current with changing polarity

AMR Automated Meter Reading, usually performed via an optical port or modem

ANSI American National Standardization Institution, part of ISO

ANSI C C Programming Language, standardized by ANSI in 1983. Keil C, used throughout this User’s Guide
is not strictly ANSI compliant.

API Application Programming Interface

C The C Programming Language, as defined by Kernighan and Ritchie

CE Computation Engine

<CR> Carriage Return or Enter Key on PC Keyboard

COM Communication Port

CPU Control Processor Unit (MPU)

DC Direct Current

EEP Engineering Evaluation Platform (Demo Board)

EEPROM Electrically Erasable PROM

FLAG An international protocol for reading of meters using an optical port, initially developed by Ferranti
and Landis&Gyr

GB Gigabyte(s)

ICE In-Circuit Emulator

IDE Integrated Development Environment – usually a combination of editor, compiler, assembler, linker,
debugger, ICE

IEC International Electrotechnical Commission (Geneva, Switzerland)

INT Interrupt

ISO International Standards Organization

ISR Interrupt Service Routine

KB Kilobyte(s) – 1,024 bytes

LCD Liquid Crystal Display

<LF> Line-feed character

77

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 136 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

LSB Least Significant Bit

MB Megabyte(s) – 1,024 kilobytes

MPU Microprocessor/microcontroller Unit

MSB Most Siginificant Bit

NV Non-Volatile

PC Personal Computer, Program Counter

PSU Power Supply Unit

PSW Program Status Word

RAM Random Access Memory

SFR Special Function Register (of the 8051 MPU)

TOU Time-of-Use (variable metering tariffs usually based on time of day)

TSC TERIDIAN Semiconductor Corporation

USB Universal Serial Bus

VA Volt-Amperes (apparent power unit)

VAh Volt-Ampere-Hour (apparent energy unit)

VAR Reactive Power

VARh Reactive energy unit

W Watt (power unit)

WD Watchdog

WDT Watchdog timer

WEMU51 The emulator control program by Signum Systems

Wh Watt-Hour (energy unit)

 7.2 REVISION HISTORY

Revision Date Description
1.0 Initial release
1.1
1.2
1.3 July 11,

2006 Added description of TCON2 register in MPU section.

1.4 August 11,
2006

Improved formatting and numbering, deleted reference to CE
development tools.

1.5 October 12,
2006 Added explanation on interrupt priorities. Fixed interrupt priorities table.

1.6
May 15,
2007

Deleted list of CLI commands and description of hex records (all this in-
formation is contained in the 6521 DBUM). Added explanation on han-
dling battery modes. Fixed formulae for baud rate generator and diagram
“meter_LCD”. Updated SW revision to 4.3.4 in compatibility statement.

1.7 August 6,
2008

Updated SW revision to 4.7a in compatibility statement. Eliminated refer-
ences to ROM code. Corrected baud rate for CLI. Updated variable and
routine names to match usage in revision 4.7a. Completely revised
chapter 5.6 (Data Flow). Updated Teridian street address.

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 137 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

 71M652X Software User’s Guide

Revision 1.7 TERIDIAN Proprietary 138 of 138

© Copyright 2005-2007 TERIDIAN Semiconductor Corporation

Software User Guide: This User Guide contains proprietary product definition information of TERIDIAN Semiconductor
Corporation (TSC) and is made available for informational purposes only. TERIDIAN assumes no obligation regarding future
manufacture, unless agreed to in writing.

If and when manufactured and sold, this product is sold subject to the terms and conditions of sale supplied at the time of
order acknowledgment, including those pertaining to warranty, patent infringement and limitation of liability. TERIDIAN
Semiconductor Corporation (TSC) reserves the right to make changes in specifications at any time without notice. Accordingly,
the reader is cautioned to verify that a data sheet is current before placing orders. TSC assumes no liability for applications
assistance.

TERIDIAN Semiconductor Corp., 6440 Oak Canyon Rd., Suite 100, Irvine, CA 92618-5201
TEL (714) 508-8800, FAX (714) 508-8877, http://www.teridian.com

© 2005-2007 TERIDIAN Semiconductor Corporation 8/6/2008

Downloaded from Elcodis.com electronic components distributor

http://elcodis.com/

