

ControLink86
Real-time Networking Software

For the COM20020 ARCNET Controller
Version 1.41

ControLink86 Realtime Networking Software

 2

TABLE OF CONTENTS

1 . O V E R V I E W . 4
1.1 AUDIENCE 4
1.2 DOCUMENT CONVENTIONS .. 4

2 . I N T R O D U C T I O N A N D B A S I C A R C H I T E C T U R E . 6
2.1 HOW TO USE CONTROLINK... 7

2.1.1 SOURCE CODE ... 8
2.1.2 DEMONSTRATION PROGRAMS. ... 9

2.2 CONTROLINK SERVICES.. 10
2.3 ADDRESSING MODES... 10
2.4 SETTING UP CONTROLINK .. 12

2.4.1 SAP12
2.4.2 INITIALIZING CONTROLINK.. 13
2.4.3 CLASS 1 DRIVER STATE MACHINE INITIALIZATION... 14
2.4.4 SAP ACTIVATION .. 14

2.5 EXECUTING CONTROLINK... 15
2.5.1 CHECKING SAPS FOR INCOMING MESSAGES... 15
2.5.2 TRANSMITTING MESSAGES.. 16
2.5.3 AN EXAMPLE OF A COMPLETE PROGRAM: .. 16

3 . L L C 1 - C L A S S 1 D R I V E R D E T A I L E D D E S C R I P T I O N 1 8
3.1 INTRODUCTION... 18
3.2 OPERATE LOGICAL LINK CONTROL (IEEE 802.2) CLASS 1 SERVICES.......................... 18
3.3 LOGICAL LINK LAYER SOFTWARE STRUCTURE .. 18
3.4 LLC DATA STRUCTURES.. 19

3.4.1 LLC_MSG DATA STRUCTURE (SAP).. 19
3.4.2 ADDITIONAL DATA STRUCTURES .. 20

3.5 LLC1 FUNCTIONS.. 20
3.5.1 llc1_request() .. 20
3.5.2 llc_1service() ... 22
3.5.3 llc1_indication() ... 22
3.5.4 llc1_group_indication().. 24

3.6 DESCRIPTION OF LLC1 SERVICES... 25
3.6.1 STATION SERVICES ... 25

3.6.1.1 STATION INITIALIZATION...25
3.6.1.2 STATION COMMAND/RESPONSE PROCESSING..26
3.6.1.3 DISABLE STATION/NODE ..26
3.6.1.4 STATION/NODE STATUS ...26

3.6.2 SERVICE ACCESS POINT (SAP) SERVICES .. 27
3.6.2.1 SAP ACTIVATION/DEACTIVATION..27
3.6.2.2 EXCHANGE ID (XID) REQUEST...27

ControLink86 Realtime Networking Software

 3

3.6.2.3 TEST REQUEST...28
3.6.2.4 DATA REQUEST ..29

3.6.3 LLC PACKET FORMAT.. 30

4 . D 2 0 - H A R D W A R E (L O W L E V E L) D R I V E R D E T A I L E D D E S C R I P T I O N 3 2
4.1 INTRODUCTION... 32
4.2 DESCRIPTION OF STRUCTURE... 33
4.3 EXPLANATION OF OPERATION ... 33
4.4 LOW LEVEL DRIVER FUNCTIONS SUMMARY.. 34
4.5 CONFIGURABLE PARAMETERS .. 35

4.5.1 HARDWARE PARAMETERS ... 35
4.5.2 ARCNET PARAMETERS ... 36
4.5.3 PARAMETER LIST ... 36

4.6 D20 DRIVER: DESCRIPTION OF THE FUNCTIONS .. 40
4.6.1 d20_set_defaults(); ... 40
4.6.2 d20_get_parameter() .. 41
4.6.3 d20_set_parameter() .. 41
4.6.4 d20_init() ... 42
4.6.5 d20_read_packet().. 43
4.6.6 d20_write_packet() ... 44
4.6.7 d20_get_qentry()... 45
4.6.8 d20_network_map() .. 46
4.6.9 d20_registers() .. 47
4.6.10 d20_diagnostic() ... 47
4.6.11 d20_clear_diag()... 48
4.6.12 d20_tokens()... 49
4.6.13 d20_exit() .. 49
4.6.14 d20_interrupt() .. 50
4.6.15 d20_check_int() .. 50
4.6.16 d20_check_diag() ... 52
4.6.17 read_data() ... 52
4.6.18 write_data()... 53
4.6.19 check_network_status().. 54

5 . L I S T O F E R R O R C O D E S R E T U R N E D . 5 6
5.1 CODES RETURNED BY THE D20.C DRIVER FUNCTIONS.............................. 56
5.2 CODES RETURNED BY THE LLC1.C FUNCTIONS ... 56

6 . N E T W O R K S P E E D . 5 7

7 . S A M P L E P R O G R A M A P P _ I N T . C . 5 9

8 . G L O S S A R Y O F T E R M S . 7 2

ControLink86 Realtime Networking Software

 4

1. OVERVIEW
ControLink is a library of software routines for building a real-time message passing network.
ControLink’s architecture is based on a robust messaging service for encapsulating user-defined data
within the ARCNET® protocol. Thus existing higher level protocols or message delivery systems can be
executed on top of the ARCNET protocol. ControLink combines a flexible addressing scheme with a
robust set of network services to provide a simple and easy-to-use method of building a network.
ControLink offers the following to the user:

Transparent Interface - ControLink uses a networking concept called Service Access points or ‘SAPs’ to
pass information between the upper layer software and the ControLink driver. SAPs are logical addresses
defined by the user to represent equipment codes, process variables (i.e. temperature, pressure), or
protocol codes. Each SAP is allocated a ‘mailbox’ in system memory to store incoming messages. A
simple Indication routine notifies the host if any new messages are resident in that mailbox.

Standardization - ControLink forms the upper part of the Data Link Layer (Layer 2) of the OSI stack and
conforms to the IEEE 802.2 Link Layer Control specification. ARCNET conforms to ANSI 878.1.

Portability - ControLink 86 is written in ANSI C and compiled for the 80x86 processor family. Source
code and full documentation is included. Platform and compiler dependent code is unavoidable but is
kept to a minimum and kept in separate files that can be easily modified by the user.

1.1 AUDIENCE
ControLink is supplied to a programmer that wants to develop an ARCNET based application or system.
Therefore, a basic knowledge of the following topics is required to use ControLink effectively:

• Programming in C
• Local Area Network Layers concept
• Data Link Layer purpose

Since ControLink is software written for SMSC’s COM200xx it is implied that a programmer has the
knowledge of these network controllers as well as the architecture of the host systems on which
ControLink will be installed.

When beginning development the programmer is encouraged to obtain and study International standard
ISO 8802-2 (ANSI/IEEE Std. 802.2) document that describes the Data Link Layer concepts implemented
by ControLink.

1.2DOCUMENT CONVENTIONS
The following are the conventions used in this document:

Example Description

ARCDEF.H Uppercase letters indicate filenames, registers, and terms used at
the operating system command level.

USIGN8,int, d20_init() Bold type indicates keywords, operators, language specific
characters, and library routines. Within discussions of syntax, bold
type indicates that the text must be entered exactly as shown.

expression Words in italics indicate place holders for information a
programmer must supply.

[[option]] Items in double square brackets are optional

ControLink86 Realtime Networking Software

 5

#include <dos.h> Courier font is used for examples, user input, program output and
error messages in text.

while()

{

…

}

A column of or a row of three dots (ellipsis) indicates that a part of
an example code was intentionally omitted.

<ENTER> Uppercase letters within the <> brackets denote the names of
keys on the keyboard.

“term” Quotation marks indicate a new term introduced for the first time in
the text.

0x21 Represents hex number.

ControLink86 Realtime Networking Software

 6

2.INTRODUCTION AND BASIC ARCHITECTURE
ControLink is designed to fit into a layered network architecture. The most commonly-used network
architecture is based on the OSI (Open System Interface) stack. The OSI layered architecture defines
only the interfaces and functionality between the seven layers of the OSI stack but does not describe a
particular protocol or implementation. The advantage of using such an architecture is that it can be easily
transported across many types of applications and provides for an easy to maintain and understandable
architecture. The full OSI implementation is a seven layer stack that calls for many functions that are not
pertinent to real-time or industrial applications. Many industrial networks such as ISA’s proposed SP50
project, the Interoperable Systems Project (ISP), AHSRAE’s BACNET, Siemens’ PROFIBUS, and the
French FIP all use a streamlined version of the OSI stack that implements only three of the seven layers.
In the streamlined or collapsed OSI stack only layer 7 (the Application layer), layer 2 (Data link), and layer
1 (Physical layer) are used (see Figure 1). ControLink is combined with SMSC’s COM200xx family of
ARCNET Controllers for layers 1 and 2. The Application layer (layer 7) is inherently specific, as the name
suggests, to the application at hand. ControLink is intended to be a general purpose Data Link level driver
that can support a wide range of applications.

Full OSI Stack
Application

Presentation

Session

Transport

Network

Data Link

Physical

Not
Necessary

for
Realtime

Applications

Collapsed Stack
USERApplication

Data Link

Physical

CONTROLINK

COM20020
+
TRANSCEIVER

FIGURE 1 - NETWORK LAYERS CONCEPTS

ControLink is based around the IEEE 802.2 Data Link level specification. Conforming to the 802.2
specification presents a well-known and accepted data standard to many upper layer protocols such as
ASHRAE’s BACNET and Novell’s Netware. Also, ISA’s SP50 and the ISP use many of same concepts
and procedures followed in the 802.2 specification. In addition to the basic 802.2 functionality, ControLink
contains many utilities that are commonly used including network mapping, initialization functions,
transferring the data between the physical network and logical addresses, compilation of network
statistics, and full error reporting.

ControLink86 Realtime Networking Software

 7

ControLink is composed of two parts, a host interface (referred to as the Class 1 Interface) and a low
level hardware interface. This architecture is illustrated by Figures 2 and 3. The host interface provides
the network interface to the host system. ControLink is based on a ‘mailbox’ type messaging service
where the Class 1 driver acts as the ‘postal service’. The Class 1 driver uses a logical address called a
Service Access Point, or a SAP, to address each mailbox. The system designer assigns the ‘mailbox’
addresses at initialization using ControLink commands.

CONTROLINK

Basic
READ / WRITE

Routines

MAC Layer
Management

Network
Services

SAP & LLC
Management

D20.C LLC1.C

FIGURE 2 - CONTROLINK ORGANIZATION

As messages are received by the hardware, ControLink queues each message for sorting and routing.
When used in its entirety, the architecture of the resulting control software is represented by Figure 3

Host System

LLC1 Class1 Driver

D20 Low Level Driver

COM20020

ARCNET Cable
FIGURE 3 - ARCHITECTURE OF THE CONTROL SOFTWARE BASED ON CONTROLINK

2.1HOW TO USE CONTROLINK
ControLink86 is delivered as source code to be linked with the target application. Aside from the source
code there are additional files that provide auxiliary functions like declarations and definitions.

Two programming examples complete with the application code, make files (for Microsoft Visual C++)
and executables are included. The distribution diskette structure has the following structure:

 CLINK1_4

ControLink86 Realtime Networking Software

 8

 ├─ INSTALL.BAT
 ├─ README.TXT
 ├─ APP_INT
 │ ├─ APP_3
 │ └─ APP_5
 ├─ APP_POLL
 │ ├─ APP_3
 │ └─ APP_5
 ├─ INCLUDE
 └─ SOURCE

2.1.1SOURCE CODE

The source code for ControLink86 resides in the following directories.

 CLINK1_4
 └─ SOURCE
 ├─ D20.C
 └─ LLC1.C

D20.C is a low level driver for the COM200xx ARCNET Local Area Network Controller that contains the
source code to accomplish the following tasks:

• COM200xx control
• interrupt control
• configuration
• transmit
• receive
• diagnostics
• suspension

LLC1.C is an implementation of the Type 1 (connectionless) procedures for the Class 1 Logical Link
Control entities as described in the ANSI/IEEE 802.2

Standard. It contains the source code to accomplish the following tasks:

• processing the incoming requests to the LLC layer
• processing the data received by each SAP
• issue indications to the upper layers as a result of incoming requests
• scheduling transmission of SAP data via the MAC layer

ControLink 86 also contains header files that aid in the development process. These files contain basic
definitions related to the protocol and software structure, and are grouped in the subdirectory:

 CLINK1_4

 └─ INCLUDE

 ├─ ARCDEF.H

 ├─ D20.H

 ├─ LLC.H

 ├─ LLC.H

 ├─ MSC.H

 └─ T_*.H

File Description

ControLink86 Realtime Networking Software

 9

ARCDEF.H contains definitions related to the COM200xx LAN Controller
D20.H contains definitions and declarations related to the low level driver

D20.C, error codes, and data structures
LLC.H contains definitions related to the Logical Link Control driver error

codes and data structures
LLC1.H contains the necessary declarations for the Class 1 LLC driver LLC1.C
MSC.H contains compiler specific (Microsoft Visual C++) definitions
T_*.H timing primitives to define a millisecond and a microsecond based on

the platform used for the host application. One of these files must be
included at the application level for the right timing primitives

2.1.2DEMONSTRATION PROGRAMS.

There are two demonstration programs packaged with the library code: APP_INT and APP_POLL. These
two programs show the operation of ControLink in the interrupt mode of the D20 driver and the polling
mode of the D20 driver.

Both demonstration programs were built using Microsoft Corporation Visual C++ C compiler and
development environment. The makefiles (*.mak) rely on the existence of the C:\MSVC development
environment. APP_INT demonstrates the use of D20 driver in the interrupt mode. This is an interactive
program that lets the user configure the D20 driver for various physical interface parameters, status
reporting and I/O interface.

 CLINK1_4

 └─ APP_INT

 ├─ APP_INT.C

 ├─ APP_3

 │ ├─ APP_INT.EXE

 │ ├─ APP_INT.MAK

 │ ├─ D20.PAR

 │ └─ PLATFORM.H

 └─ APP_5

 ├─ APP_INT.EXE

 ├─ APP_INT.MAK

 ├─ D20.PAR

 └─ PLATFORM.H.

These files have the following functions:

File Description

APP_INT.C source code for the demo.
APP_INT.EXE executable demo for 80386 25MHz
APP_INT.MAK makefile for the demo
D20.PAR parameter list for the D20 driver
PLATFORM.H description of the development environment

APP_POLL is structured similarly to the APP_INT files

ControLink86 Realtime Networking Software

 10

2.2CONTROLINK SERVICES
ControLink provides four services:

• basic message transfer
• remote node disconnect
• link test
• group of utilities

Service Description

Basic Message
Transfer

used to transfer data to/from a node or group of nodes.

Node
Identification

asks the specified node ‘Are you out there?’ or sends a ‘Here I am!’
message.

Link Test a diagnostic service for verifying the integrity of a node and its host
CPU.

Utilities Network Mapping, Network Statistics, Initialization functions

2.3ADDRESSING MODES
Addressing modes refer to addressing of the logical entities called SAPs (Service Access Points) created
and maintained by the ControLink software. The concept of SAPs is illustrated by the Figure 4.
ControLink implements the ANSI/IEEE 802.2 Standard that defines these addressing modes. A SAP is a
logical entity within one physical station. Other stations can send a packet to this physical station and this
packet will be redirected internally to the SAP for which it is intended.

Message
Queue

COM200xx
(Physical Network Address)

SAP1 SAP2 SAP3 SAP4 SAPn

ControLink86
Message Deliverer

Service Access Points: Logical Addresses For Data

Physical Medium

FIGURE 4 - SAP CONCEPT

Thus ControLink offers four addressing modes:

ControLink86 Realtime Networking Software

 11

• individual
• group
• global
• local.

Service Description

Individual destinations are single mailboxes (SAPs) only. Only one node can receive
the message.

Group a single message can be received by more than one node. Membership is
established at each node. Identical group and individual addresses can
exist. For example, a SAP #1 can exist for group messages and a
separate SAP #1 can exist for the individual address.

Global the message is received by all nodes on the network. SAP #255 is
reserved as the global address.

Local is used to perform local function such as loopback and data link
initialization. SAP ID 0 is reserved for this purpose.

The Service Access Points can be used within the control system as the logical addresses. These logical
addresses can have different size of the buffer. Each of these logical addresses can hold the data for a
different aspect of the control process. This is illustrated by the Figure 5.

Physical Medium

Message
Queue

COM200xx
(Physical Network Address)

ControLink86
Message Deliverer

SAP1 SAP2 SAP3 SAP4 SAPn

fan
speed

temp.
sensor

power
control

status

APPLICATION

FIGURE 5 - USING SAPS

ControLink86 Realtime Networking Software

 12

2.4SETTING UP CONTROLINK
An ARCNET based application that wants to use ControLink must set up the necessary interface to
ControLink. This interface consists of SAP control structures (called LLC - MSG) and the buffers to hold
the data for each SAP. This interface is configured during the initialization phase of the application.

2.4.1 SAP

Each SAP in ControLink has an associated structure of the form:
struct LLC_MSG

{
USIGN8 event;
USIGN8 dstation;
USIGN8 ssap;
USIGN8 dsap;
USIGN8 group;
USIGN8 control;
USIGN8 msbcount;
USIGN8 lsbcount;
USIGN8 *msgptr;
};

Parameter Description

event specifies what kind of operation is to be performed on the SAP by the
ControLink

dstation physical ARCNET address
ssap source SAP number
dsap destination SAP number
group designation of individual or group SAP

0 - indicates an individual request
1 - indicates a group request

control specifies the type request to the SAP
msbcount
lsbcount

the number of data bytes to be transmitted. Maximum is 504 bytes.

msgptr array assigned to the SAP being referenced.

This structure is used to pass information to the Class 1 driver. Each service request to the Class 1 driver
must have the following elements of the structure assigned prior to the service request:

The remainder of the parameters are filled in by the Class 1 driver.

Every SAP used, with the exception of the local SAP (SAP 0) and the global SAP (SAP 0xff) requires a
global declaration assigning the SAP name to the type LLC_MSG. For example, the declaration for three
local SAPs and three group SAPs is as follows:

/* declare each ind. SAP as a structure of type LLC_MSG */
struct LLC_MSG SAP1, SAP2, SAP3;
/* declare group SAPs as a structure of type LLC_MSG */
struct LLC_MSG GSAP1, GSAP2, GSAP3;

/* reserve a storage area of 256 or 512 bytes for each declared SAP */
USIGN8 SAP1BUF[256];
USIGN8 SAP2BUF[256];
USIGN8 SAP3BUF[256];
USIGN8 GSAP1BUF[256];
USIGN8 GSAP2BUF[256];
USIGN8 GSAP3BUF[256];
void main(void)

{
…

ControLink86 Realtime Networking Software

 13

/* assign each SAP buffer to the structure */

SAP1.msgptr = SAP1BUF;
SAP2.msgptr = SAP2BUF;
SAP3.msgptr = SAP3BUF;
GSAP1.msgptr = GSAP1BUF;
GSAP2.msgptr = GSAP2BUF;
GSAP3.msgptr = GSAP3BUF;
}

Note: the size of the SAP buffer only has to be as large as the maximum message size. For example, if a
system has a maximum message size of 16 bytes then only a 16 byte buffer is necessary.

2.4.2 INITIALIZING CONTROLINK

The initialization of ControLink involves three simple processes:

• hardware initialization
• SAP activation
• Class 1 driver state machine initialization

Initialization of ControLink will involve requesting network services from the Class 1 driver. All Class 1
driver service requests are accomplished by using the llc1_request() routine. The llc1_request() routine
is of the form:

Example:
status = llc1_request(ssap, dsap, request, SAP structure);

llc1_request() routine is described in detail in Section 3.5.1.

To establish default settings for the hardware the d20_set_defaults() routine must be run first before any
further initialization can be accomplished. d20_set_defaults() initializes a parameter list. Please refer to
the low level driver description for further details. Hardware parameters can be changed using the
d20_set_parameter() and d20_get_parameter() routines. After setting the desired parameters the
d20_init() routine should be run to program the specified parameters into the hardware and to test the
hardware for functionality.

An important process that occurs during initialization is the selection of the physical ARCNET ID value.
The ARCNET specification mandates that each node have a unique Node ID on the network. ControLink
offers three methods of selecting a unique Node ID value:

• Automatic Node ID generation
• Software set
• Hardware port or switch set

Method Description

automatic An algorithm is employed to select the first available Node ID on the
network. The search is started with the Node ID = 1 and ends when there is
no other node on the physical segment with the same Node ID.

software set The ARCNET ID is predetermined and programmed into system non-
volatile memory (EPROM, PROM, EEPROM, FLASH, etc.). The stored
value is then passed to the parameter list and programmed into hardware

hardware set The ARCNET ID value can be read from a switch at a specified hardware
port address. The port address is supplied by the programmer in the
parameter list. This is quickest method of finding a unique ID value. Refer
to COM2002x Data Sheet and to the EVB-PC2002x for information
necessary to customize the initialization of the hardware.

ControLink86 Realtime Networking Software

 14

2.4.3 CLASS 1 DRIVER STATE MACHINE INITIALIZATION

The Class 1 driver utilizes a state machine for processing all requests. The requests to the state machine
llc1_request() are sent from the application as well as the network (other mode) itself. The state machine
must be initialized to a known state to function properly. The service request
ENABLE_WITHOUT_DUP_ADDR_CHECK is used to initialize the state machine. See the Class 1 Driver
Detail Description on how to request services from ControLink.

Example:
/* use ssap and dsap of 0 for internal operations */
status = llc1_request(0,0,ENABLE_WITHOUT_DUP_ADDR_CHECK, &SAP0);
if (status == E_OK)

{
printf(“Station is up\n”);
}

else
{
printf(“Station is down\n”);
}

2.4.4 SAP ACTIVATION

Each SAP to be used must be internally activated within ControLink using the
SAP_ACTIVATION_REQUEST service request to enable the SAP. This process is necessary so that
ControLink can determine which incoming messages have valid addresses and which ones do not.

Example:
/* enable SAP1, use 0 dsap because it is a local operation */
status = llc1_request(1,0, SAP_ACTIVATION_REQUEST, &SAP1);

/*
enable group SAP1, use 0 dsap because it is a local operation
set group member of structure SAP1 to 1 to indicate a group SAP
*/

GSAP1.group = 1;
status = llc1_request(1,0, SAP_ACTIVATION_REQUEST, &GSAP1);

To summarize, the entire initialization process is as follows:
void main(void)

{
USIGN8 status;
…
/* insert SAP buffer declaration as shown above */
…
/d20_set_defaults(); * set default parameters */
…
/* insert custom parameters here */
d20_set_parameter(d20_node_mode,1); /* select soft id selection */
…
status = d20_init();
if (status == E_OK)

{
printf(“Network hardware is up and running\n”);
}

else
{
printf(“Error in hardware initialization\n”);
}

ControLink86 Realtime Networking Software

 15

…
/* initialize Class 1 state machine with local SAP */
status = llc1_request(0,0,ENABLE_WITHOUT_DUP_ADDR_CHECK, &SAP0);
if (status == E_OK)

{
status = llc1_request(1,0, SAP_ACTIVATION_REQUEST, &SAP1);
if (status == E_OK)

{
printf(“SAP 1 is up\n”);
}

else
{
printf(“Error in activating SAP 1\n”);
}

GSAP1.group = 1;
status = llc1_request(1,0, SAP_ACTIVATION_REQUEST, &GSAP1);
if (status == E_OK)

{
printf(“GSAP 1 is up\n”);
}

else
{
printf(“Error in activating GSAP 1\n”);
}

}
…
} /* end main */

2.5EXECUTING CONTROLINK
Running ControLink is simple. Real-time systems often operate using a rotating scheduler calling several
routines at defined intervals. ControLink is designed to operate in such an environment. The Class 1
driver contains a routine called llc1_service(). llc1_service() is the key to proper and timely operation of
the network. As packets arrive at the node, the hardware interrupts the system. ControLink’s low level
driver contains an interrupt handler that buffers the packet onto a queue maintained in system memory
and enables reception of another packet. Messages remain queued until the host system calls
llc1_service(). At this time, llc1_service reads the first packet from the top of the queue. llc1_service()
decodes the header information from the packet and makes a decision based on this information. The
following occurs for different services:

• Node Identification - reception of this command causes an automatic response message from
the Class 1 state machine and buffers the message into the SAP specified in the dsap field of the
packet. This service is used to identify what class of LLC services is supported by the tested
station. See section 3.6.2.2.)

• Link Test - reception of this command causes an automatic response message from the Class 1
state machine and buffers the message into the SAP specified in the dsap of the packet. The
reply is scheduled as early as possible. This is used to test the connection between the stations.
(See section 3.6.2.3.)

• Basic Message Transfer - message is placed in the SAP buffer corresponding to the dsap
address found in the packet header and sets an indication flag to the host. (See section 3.6.2.4.)

Incoming messages will not be processed without calling llc1_service() first.

2.5.1CHECKING SAPS FOR INCOMING MESSAGES

ControLink provides a convenient method of checking each SAP buffer for new messages. The
llc1_indication() routine is used for checking the SAP for new messages. For group addresses use the
llc1_group_indication() routine.

Example: (check SAP 4 for messages)

ControLink86 Realtime Networking Software

 16

/* provide the indication routine with the sap # */
status = llc1_indication(4);

/* process returned status */
switch (status)

{
/* nothing was received */
case NO_INDICATION:

break;

/* basic message was received */
case UNITDATA_INDICATION:

/* insert processing direction here */
break;

/* Node Identification response was received */
case XID_INDICATION:

/* insert processing here */
break;

/* TEST Response frame received */
case TEST_INDICATION:

/* insert processing here */
break;

default:

break;
}

2.5.2 TRANSMITTING MESSAGES

Messages are sent using the llc1_request() routine as mentioned previously. For each message the
dstation member of the associated source SAP data structure must be filled.

The Basic Data Transfer and Test Link service require data input from the user. In these cases, the data
length field (msbcount and lsbcount) must be filled and the SAP buffer from which the message is
originating must be filled with the actual message.

Example: (SAP 1 has an associated buffer SAPBUF_1 for the data)
/* transmit a basic data message of 1,2,3 */
/* transmit from SAP 1 of station 0xff to SAP 2 of station 0xfe */

sap1.dstation = 0xfe;/* fill in ARCNET destination ID */
sap1.msbcount = 0;/* only 3 bytes of data */
sap1.lsbcount = 3;
sap1.group = 0; /* fill with a 1 for group messages */
SAPBUF_1[i]=i+1;/*0 for individual recipient */

for(i = 0; I < 3; i++)

{
}

status = llc1_request(1,2,UNITDATA_REQUEST, &SAP1);
/* status return indicates successful reception or not */

2.5.3AN EXAMPLE OF A COMPLETE PROGRAM:

The following is a skeleton application that illustrates the usage of the ControLink86 functions.
/* include files */
…
/* application specific definitions */
…
/* global declarations: SAP structures, SAPBUF buffers, flags, etc */
struct LLC_MSG SAP[MAX_SAPS];
USIGN8 SAPBUF[MAX_SAPS][MAX_SAPBUF];
…
/* application function prototypes */

ControLink86 Realtime Networking Software

 17

…
void main(void)

{
/* initialize network hardware - COM2002x */
/* initialize ControLink */
/* initialize SAPs */

/* control loop */
while(1)

{
/* packet received from the network */
if(NETWORK EVENT)

{
llc1_service();

for(i = 0; i < number_of_saps; i++)

{
/* check every on-line sap */
rx_status = llc1_indication(i);

/* process the status */
switch(rx_status)

{
case NO_INDICATION:

break;

case UNITDATA_INDICATION:

/* process sap data */
break;

case XID_INDICATION:

/* process exchange id request */
break;

case TEST_INDICATION:
/* process test request */
break;

default:

break;
} /* end of the switch statement */

} /* end of the for loop */
} /* end of processing the network event */

/* send data */
for(source_sap = 0; source_sap < number_of_saps; source_sap++)

{
/* update SAPBUFer data */
tx_status = llc1_request(source_sap, dest_sap, request_type, &SAPBUF);
/* process tx_status */
}

if(EXIT CONDITION)

{
d20_exit();
}

} /* end of control loop */
} /* end of main(..) */

ControLink86 Realtime Networking Software

 18

3.LLC1 - CLASS 1 DRIVER DETAILED DESCRIPTION

3.1INTRODUCTION
The Class 1 Service Interface for Link Layer Control (LLC) is an ANSI/IEEE 802.2 and ISO 802.2
compatible networking protocol. The Class 1 interface is designed to be used in conjunction with the
SMSC low level driver for the COM2002x family of ARCNET local area network controllers.

This section describes the use of the Class 1 (LLC1) software routines. This is not an IEEE 802.2 users
or capabilities guide, but is a description of a set of software routines that allow for the easy use of the
Class 1 interface and COM2002x drivers. For technical information regarding the IEEE 802.2, see the
ISO/ANSI/IEEE 802.2 specification or call the IEEE at (800) 678-IEEE or (908) 981-1392. For technical
information regarding the COM2002x component, see the COM2002x Universal Local Area Network
Controller (ULANC) data sheet or call SMSC at (800) 443-SEMI or (516) 435-6000.

The Class 1 Interface software is dependent on the low level driver routines for initialization, reading, and
writing ARCNET packets. The initialization of the hardware must be adapted to each user’s configuration.
For example, the I/O base address, polled/interrupt mode, packet size, network speed, network physical
type (Dipulse mode or Backplane mode), and other parameters are selectable by the application
programmer. After initialization, the Class 1 routines are independent of the hardware and function as
defined in the IEEE 802.2 specification.

3.2OPERATE LOGICAL LINK CONTROL (IEEE 802.2) CLASS 1
SERVICES

The IEEE 802.2 LLC provides two classes of services - Class 1 (datagram or connectionless) and Class
2 (connection oriented). This set of software routines provides Class 1 or datagram services. Datagram
service provides a basic set of routines to read and write packets without software-based guaranteed
delivery. The datagram services provide basic and fast delivery with minimal overhead and rely on the
ARCNET hardware for flow control and reliable packet delivery. The LLC also has the capability to
loopback messages.

The LLC Class 1 services are described in this chapter in further detail. The LLC Class 1 software
directory structure is described in chapter 2.1.

3.3LOGICAL LINK LAYER SOFTWARE STRUCTURE
The Logical Link Control Layer software is comprised in the following files:

 CLINK1_4

 ├─ INCLUDE

 │ ├─ ARCDEF.H

 │ ├─ LLC.H

 │ ├─ LLC.H

 │ └─ MSC.H

 └─ SOURCE

 └─ LLC1.C

ControLink86 Realtime Networking Software

 19

The SMSC Class 1 driver offers many services as detailed in Section C. Incoming packets from the
physical medium are received by the hardware and queued in system memory by an interrupt handler
located in the Low Level Driver (described in Section 4).

The following are the functions included in the Logical Link Control Layer software LLC1.C:

Function Description

llc1_service(). Routine is used to read, process, and route messages from
the queue into the appropriate SAP buffer. Class 1 services
are invoked through service Request/Indication routines

llc1_request() Used to send requests to ControLink and messages across
the network to SAPs belonging to other nodes. The request
routine processes the Logical Link Layer requests whether
they come from this Node’s upper layer or from the network.

llc1_indication()
llc1_group_indication()

Routines are used to notify the user that another SAP has
sent a command or data to a SAP (i.e. a packet was
received). Section 3.6 describes these routines in detail:

3.4LLC DATA STRUCTURES
LLC Layer relies on several basic data structures for keeping the status and passing parameters.

3.4.1 LLC_MSG DATA STRUCTURE (SAP)

The LLC uses the concept of service access points or SAPs. A SAP is a defined logical address within a
node and can be thought of as a ‘mailbox’. Incoming messages are sorted by ControLink and copied into
the appropriate SAP buffer or mailbox. SAPs can represent equipment codes, process parameters (i.e.
temperature, pressure), or protocol codes. A SAP can be local (LSAP), a destination (DSAP), global
(DSAP = 0xFF.), or a station SAP (SAP = 0). The station SAP is used for management of the entire node
and is defined as SAP zero. The destination SAP (DSAP) is the SAP of the node to which you wish to
send a command or data. SAPs are defined as either group or individual. ControLink uses a default
setting of 16 group and 16 individual SAPs per node. A maximum of 64 SAPs (group and individual) can
be accommodated. To change the default setting the MAX_SAPS definition in the LLC.H file should be
changed. The host system is not notified of a received packet unless the DSAP is activated within that
node. Thus packets not meaningful to this node are discarded. Note that SAP addresses are defined by
the system designer and have no physical relevance to the network. They are a convention for providing
independence from the networking hardware.

The request, indication, and service routines use a specific data structure to carry the required
information to and from the LLC1 and low level driver routines. The structure has the following elements
and is defined in the LLC.H header file.

struct LLC_MSG
{
USIGN8 event;
USIGN8 dstation;
USIGN8 ssap;
USIGN8 dsap;
USIGN8 group;
USIGN8 control;
USIGN8 msbcount;
USIGN8 lsbcount;
USIGN8 *msgptr;
};

The event, control, ssap, and dsap fields are filled in by the llc1_request() routine. The
dstation, group, msbcount, lsbcount, and *msgptr members must be entered by the user.

ControLink86 Realtime Networking Software

 20

The parameters from LLC_MSG for each SAP are passed to LLC1 routines. The group variable indicates
that the destination SAP is a group address. A packet destined for a Group SAP address is transmitted
as an ARCNET broadcast packet. All nodes that have the broadcast receive option enabled will receive
the packet. Each node, upon receiving the broadcast packet, then checks the DSAP address against a
table of group membership. If the DSAP does not match any of the nodes memberships than the packet
is discarded and the host is never notified. If a positive match is found the host is notified.

The dstation is required to be filled in by the user to supply a physical destination node or station. A
loopback feature is supported by the LLC1 to allow the user to send messages to his own node. If the
dstation value and the station value (after initialization) match, then the command is looped back to the
receive buffer in software.

The msgptr and msbcount and lsbcount must be filled in by the user for data messages. The ID
command fills in its own data. The UI and TEST buffer are user-definable and the only ControLink
services that require a byte count. The count value represents the size of the message pointed to by
msgptr.

The control field is filled in by the LLC1 software and depends on the event/function selected by the user.

3.4.2ADDITIONAL DATA STRUCTURES

The information about the status of each SAP is kept in two arrays:
USIGN8 LLC1_SAP_State [MAX_SAPS];
USIGN8 LLC1_SAP_Indication [MAX_SAPS];

USIGN8 is defined as unsigned char (unsigned 8-bit variable). LLC1_SAP_State[] is an array that
holds a value that describes whether a SAP is activated (code: E_UP) or deactivated (code: E_DOWN).
For valid codes see section 5.2.

LLC1_SAP_Indication[] holds a value that describes the type of service/request that is pending for a
particular SAP. Global SAPS have their own arrays:

USIGN8 LLC1_GSAP_Status[MAX_SAPS]
USIGN8 LLC1_GSAP_Indication[MAX_SAPS]

3.5LLC1 FUNCTIONS

The SMSC LLC routines provide all the Class 1 services. The user of these routines must call each of the
routines with the proper parameters. Details regarding the services provided by LLC Class 1 services is
provided in Section 3.6.

3.5.1llc1_request()

ROUTINE DESCRIPTION:

The data request routine is used for all requests to the stations Logical Link Layer and SAPs.
The logical source SAP (lssap), logical destination SAP (ldsap), function or event, and LLC
structure are passed to the llc1_request() routine.

For example llc1_request() can be used for sending data to another station.

ROUTINE PROTOTYPE:
USIGN8 llc1_request (USIGN8 lssap, USIGN8 ldsap, USIGN8 event, struct LLC_MSG *request);

ControLink86 Realtime Networking Software

 21

ROUTINE PARAMETERS:

Parameter Description

lssap logical source SAP,
values 1-63 (1-15 default)

ldsap logical destination SAP,
values 1-63 (1-15 default)

event Type of request (event) - defined in the LLC.H file
SAP EVENTS:

SAP_ACTIVATION_REQUEST
SAP_DEACTIVATION_REQUEST
XID_REQUEST
TEST_REQUEST
DATA_REQUEST

STATION EVENTS:
ENABLE_WITH_DUP_ADDR_CHECK
ENABLE_WITHOUT_DUP_ADDR_CHECK
DISABLE_REQUEST
REPORT_STATUS

A description of the events is provided in the next
section.

struct LLC_MSG *request pointer to the structure containing the LLC
pertinent data

ROUTINE RETURN VALUES:

Action Result
ENABLE_WITH_DUP_ADDR_CHECK
ENABLE_WITHOUT_DUP_ADDR_CHECK

E_OK if the station is in E_UP state
E_DOWN if the station is not in the E_UP state

SAP_ACTIVATION_REQUEST E_NO_SAP if the SAP to be activated does not
exist

XID_REQUEST

E_OK if transmission scheduled without errors
E_TX_BUSY if COM2002x could not schedule a
transmission

TEST_REQUEST E_OK if transmission scheduled without errors
E_TX_BUSY if COM2002x could not schedule a
transmission

DATA_REQUEST E_OK if transmission scheduled without errors
E_TX_BUSY if COM2002x could not schedule a
transmission
E_BAD_PACKET_SIZE if the requested data
packet is of the size that is not allowed

REPORT_STATUS Status of a SAP
Unknown Service E_BAD_PARAMETER

ROUTINE EXAMPLE:

/* startup a SAP 1 */
event = SAP_ACTIVATION_REQUEST;
status = llc1_request(1,0,event,&lsap[1]);

ControLink86 Realtime Networking Software

 22

3.5.2llc_1service()

ROUTINE DESCRIPTION:

The service routine checks for incoming messages and routes the messages to the correct
SAP. If the SAP is null (0=station SAP) then the service routine provides complete servicing
of the message and the user never sees the message. If the message is for this station and
the local SAP is on-line then the message is copied into the local SAP’s buffer and the SAP
is notified through the indication routine. This routine also provides auto-response of ID, and
TEST. The user never sees the servicing of these messages. This routine should be called
prior to invoking the llc1_indication() routine. llc1_service() affects all activated SAPs in the
system by updating their structures.

Note: llc1_service() calls an auxiliary routine - llc1_service_packet()

ROUTINE PROTOTYPE:
void llc1_service(void);

ROUTINE PARAMETERS:

none.

ROUTINE RETURN VALUES:

none.

ROUTINE EXAMPLE:
/* call the service routine during idle time to see if anything for me */
llc1_service(void);

3.5.3llc1_indication()

ROUTINE DESCRIPTION:

The indication routine notifies the user that a message has come to that individual SAP’s
attention (that a packet has been received). It retrieves the status of the SAP from the
internal array called LLC1_SAP_Indication[] The indication routine parameter is the logical
SAP number. The llc1_indication() routine returns the command or response type of the
received packet.

After returning the event for the SAP, the llc1_indication() resets the indication field to
NO_INDICATION, making it ready for the new service.

ROUTINE PROTOTYPE:
USIGN8 llc1_indication (USIGN8 lsap);

ROUTINE PARAMETERS:

Parameter Description

lsap logical source SAP,
range of values 1-63 (1-15 default)

ROUTINE RETURN VALUES:

ControLink86 Realtime Networking Software

 23

Action Result
For any SAP number FALSE - If station is not up
 NO_INDICATION

nothing happened on
this SAP

 UNITDATA_INDICATION

data packet was
received

 XID_INDICATION

XID command was
received or exchange
IDs, defined in LLC.H
file)

 TEST_INDICATION

TEST command was
received

ROUTINE EXAMPLE:
/* process the indications received on the SAP */
status = llc1_indication(1);
switch (status)

{
case UNITDATA_INDICATION:

printf(“\nUI Data Indication to LSAP %d from DSAP %d\n”, dsap, ssap);
count = lsap[i].lsbcount;
bufptr = lsap[i].msgptr;
printf(“Data buffer = “);
while (count > 0)

{
printf(“%c (%XH) “, *bufptr, *bufptr);
bufptr++;
count--;
}

printf(“\n”);
break;

case XID_INDICATION:
printf(“\nXID Indication to LSAP %d from DSAP %d\n”, dsap, ssap);
printf(“XID buffer = “);
count = lsap[i].lsbcount;
bufptr = lsap[i].msgptr;
while (count > 0)

{
printf(“%c (%XH) “,*bufptr, *bufptr);
bufptr++;
count--;
}

printf(“\n”);
break;

case TEST_INDICATION:
printf(“\nTEST Indication to LSAP %d from DSAP %d\n”, dsap, ssap);
count = lsap[i].lsbcount;
bufptr = lsap[i].msgptr;
printf(“TEST buffer = “);
while (count > 0)

{
printf(“%c (%XH) “, *bufptr, *bufptr);
bufptr++;
count--;
}

printf(“\n”);
break;

default:

break;
}

ControLink86 Realtime Networking Software

 24

3.5.4llc1_group_indication()

ROUTINE DESCRIPTION:

The indication routine notifies the user that a message has been received for the a group
SAP. It retrieves the status of the SAP from the internal array called
LLC1_GSAP_Indication[] The indication routine parameter is the logical group SAP
number. If a value not equal to NO_INDICATION is returned then the value describes the
type of indication. This routine is analogous to the llc1_indication() - only it works on the
group SAPs.

ROUTINE PROTOTYPE:
USIGN8 llc1_group_indication (USIGN8 lsap);

ROUTINE PARAMETERS:

Parameter Description

lsap logical source SAP,
range of values 1-63 (1-15 default)

ROUTINE RETURN VALUES:

Action Result

For any SAP number FALSE If station is not up
 NO_INDICATION - nothing happened on

this SAP
 UNITDATA_INDICATION data packet was

received
 XID_INDICATION XID command was

received or exchange
IDs, defined in LLC.H
file)

 TEST_INDICATION - TEST command was
received

ROUTINE EXAMPLE:
status = llc1_group_indication(1);
switch (status)

{
case UNITDATA_INDICATION:

printf(“\nGroup UI Data Indication to LSAP %d from DSAP %d\n”, dsap, ssap);
count = lsap[i].lsbcount;
bufptr = lsap[i].msgptr;
printf(“Data buffer = “);
while (count > 0)

{
printf(“%c (%XH) “, *bufptr, *bufptr);
bufptr++;
count--;
}

printf(“\n”);
break;

case XID_INDICATION:
printf(“\nGroup XID Indication to LSAP %d from DSAP %d\n”, dsap, ssap);
printf(“XID buffer = “);
count = lsap[i].lsbcount;
bufptr = lsap[i].msgptr;
while (count > 0)

{
printf(“%c (%XH) “,*bufptr, *bufptr);

ControLink86 Realtime Networking Software

 25

bufptr++;
count--;
}

printf(“\n”);
break;

case TEST_INDICATION:
printf(“\nGroup TEST Indication to LSAP %d from DSAP %d\n”, dsap, ssap);
count = lsap[i].lsbcount;
bufptr = lsap[i].msgptr;
printf(“TEST buffer = “);
while (count > 0)

{
printf(“%c (%XH) “, *bufptr, *bufptr);
bufptr++;
count--;
}

printf(“\n”);
break;

default:

break;
}

3.6DESCRIPTION OF LLC1 SERVICES
The LLC Class 1 services are defined as connectionless or datagram routines. Note that these are
services provided by the SMSC driver and are invoked using the Request/Indication routines. These
routines provide functions to exchange, test, and send data units to and from other LLC Class 1 entities
(nodes and itself) on the network. The following commands and responses are available for all Class 1
nodes:

• Exchange Identification (XID)
• Test the link (TEST)
• Information Transfer (UI)

The philosophy of their services is described in the ANSI/IEEE Std. 802.2 document. The services are the
functions that a SAP or a station must perform when they are requested. There are two types of services:

• Station Services
• SAP Services

3.6.1STATION SERVICES

The station services are the activities of the LLC Layer that help with the initialization, maintenance and
shutting down the network node (hardware and software collectively). These services are performed by
sending a message to the “station SAP”. The station SAP is SAP zero.

3.6.1.1STATION INITIALIZATION

To initialize the node or station, one of the following functions must be called first:
ENABLE_WITH_DUP_ADDR_CHECK
ENABLE_WITHOUT_DUP_ADDR_CHECK

These functions simply wake up the LLC driver and initialize itself. Note that a low level initialization must
take place first by calling the low level d20_init() routine (see Section 4). It is the responsibility of the
application software to ensure that the Network Controller Hardware (COM2002x) is properly initialized
prior to waking up the Logical Link Layer.

ControLink86 Realtime Networking Software

 26

Example:
…
/* startup the station, 0 is station SAP */
event = ENABLE_WITH_DUP_ADDR_CHECK;

/* initialize LLC driver */
status = llc1_request(0,0,event,&lsap[0]);

/* check to see if the initialization is completed */
if status = =E_UP

{
/* ok */
}

else if (status ==E-DOWN)
{
/* error initializing */
}

else
{
/* invalid response */
}

3.6.1.2STATION COMMAND/RESPONSE PROCESSING

The following station command/responses are used for internal servicing. If the station SAP (0) receives a
null (0) destination SAP value then it responds accordingly. These messages are used for duplicate
address checking which is done in hardware/software by the COM2002x chip. These functions are
supported to allow for non-COM2002x devices to check for duplicate addresses.

RECEIVE_NULL_DSAP_XID_C
RECEIVE_NULL_DSAP_XID_R_CNT_0
RECEIVE_NULL_DSAP_XID_R_CNT_1
RECEIVE_NULL_DSAP_TEST_C

Note these services are automatically performed by the LLC software and are invisible to the system.

3.6.1.3DISABLE STATION/NODE

The disable station request terminates all SAPs and shuts down the station and node hardware. The
node is then removed from the network. The following occurs when a Disable Request is sent:

1. Host issues a DISABLE_REQUEST command to it’s stations Logical Link Layer.

2. Global variable: llc1_station_state is set to DOWN (which prevents any request processing) and
the Network Hardware (transmitter and receiver) is disabled.

Example:
/* bring down the station */
event = DISABLE_REQUEST;
status = llc1_request(0,0,event,&lsap[0]);

3.6.1.4STATION/NODE STATUS

Processing this service is based on the value of the llssap:

• if llssap = 0 Then the station state is returned
• if llssap > 0 Then the state of a SAP of GSAP is returned

Example:
…
/* read status of sap */
printf(“Station/LSAP Status = “);
event = REPORT_STATUS;
status = llc1_request(1,0,event,&lsap[i]);

ControLink86 Realtime Networking Software

 27

3.6.2SERVICE ACCESS POINT (SAP) SERVICES

The SAP services are directed at the local service access points (at the stations Logical Link Layer). The
activation and deactivation requests are used to start/stop a SAP. The XID and TEST requests are used
to exchange information about the types of services and test the communications link. The DATA request
is the main messaging service of the LLC.

3.6.2.1SAP ACTIVATION/DEACTIVATION

The local SAPs are activated or deactivated by providing the lssap (local source SAP) value and a local
SAP structure. Each SAP within a node should have an LLC structure as described in Section 3.4
associated with it. The LLC_MSG structure member msgptr must be initialized to a valid buffer in order
for that SAP to send or receive messages.

Example:
…
/* startup a SAP */
event = SAP_ACTIVATION_REQUEST;
status = llc1_request(i,0,event,&lsap[i]);
…
/* define local sap */
source_id = 1;

/* define dest sap */
dest_id = 2;

3.6.2.2EXCHANGE ID (XID) REQUEST
Host

Application
(RECEIVER)

Host
Application
(SENDER)

Logical Link
Control

(RECEIVER)

MEDIUM
(MAC Layer)

Logical Link
Control

(SENDER)

XID
Request

XID
Indication

Destination
SAP x

Source
SAP y

Destination
SAP y

Source
SAP x

MAC Packet

MAC Packet

Alert
Burst 0x01 SRC

ID
DEST

ID
DEST

ID
Count
0x06 0x00 DSAP

x
SSAP

y 0xAF CRCCRC0x020x010x81

Alert
Burst 0x01 SRC

ID
DEST

ID
DEST

ID
Count
0x06 0x00 DSAP

y
SSAP

x 0xBF CRCCRC0x020x010x81

MAC Packet SENDING

MAC Packet RECEIVING

Note: ACK (Acknowledgement) packets are not represented here

FIGURE 6 - XID PROCEDURE

ControLink86 Realtime Networking Software

 28

The exchange Identification request is an 802.2 function that conveys information regarding the LLC Class 1
and receive window size (number of receive buffers). Future revisions of ControLink will include an enhanced
XID frame that appends an eight character ASCII label and SAP address associated with the label. Any node
receiving an XID frame will automatically respond with an XID response frame that includes the same
information. Since every Class 1 message has a SSAP and DSAP, the XID frame can be used to establish
the existence of a physical node and a particular SAP address in a given node. The idea of the exchanging
IDs is illustrated by the Figure 6.

Example:
/* check what class services are available at the other stations */
…
event = XID_REQUEST
status = llc1_request (x, y, event, & 1sap[x]);
…

3.6.2.3TEST REQUEST

The TEST request invokes an 802.2 function that is intended for use to test the data integrity of a
particular link. This procedure is illustrated in the Figure 7.

Host
Application
(SENDER)

Host
Application

(RECEIVER)

Logical Link
Control

(RECEIVER)

MEDIUM
(MAC Layer)

Logical Link
Control

(SENDER)

Link Test
Request

Link Test
Indication

Destination
SAP x

Source
SAP y

Destination
SAP y

Source
SAP x

MAC Packet

MAC Packet

Test Indication
to Class1

Driver

Response is
automatically

generated when
llc1_service()

is called

Alert
Burst 0x01 SRC

ID
DEST

ID
DEST

ID
Count
0x03 0x00 DSAP

y
SSAP

x 0xF3

MAC Packet SENDING

MAC Packet RECEIVING
Alert
Burst 0x01 SRC

ID
DEST

ID
DEST

ID
Count
0x03 0x00 DSAP

x
SSAP

y 0xE3

Note: ACK (Acknowledgement) packets are not represented here

CRCCRCoptional data
pattern

CRCCRCoptional data
pattern

FIGURE 7 - LINK TEST PROCEDURE

The TEST function allows the user to select the length and pattern of the test message (include a data
field in the test message). When the host issues a TEST request the Class 1 driver will send a TEST
command to the node to be tested. The node receiving the TEST will automatically generate a TEST
response message that is sent back to the originating node. If the TEST request contains a custom data,
this data is returned in the reply. This call/response methodology results in an accurate link integrity test

ControLink86 Realtime Networking Software

 29

which will verify that the physical hardware is operational and that the receiving CPU is functional and
recognizing packets.

Example:
…
/* initiate a test with another station */
event = TEST_REQUEST
status = llc1_request (x, y, event, & lsap [x]);
…

3.6.2.4DATA REQUEST

The DATA request procedure is the process through which application relevant data is transferred. When
the DATA request function is initiated, ControLink sends out a 802.2 UI (Unnumbered Information) frame.
This procedure does not invoke an automatic response from the ControLink software. When Data frames
are sent, the application software must decode the data and respond if necessary.

The Idea of the Data Request is illustrated by the Figure 8.

Host
Application
(SENDER)

Host
Application

(RECEIVER)

Logical Link
Control

(RECEIVER)

MEDIUM
(MAC Layer)

Logical Link
Control

(SENDER)

Alert
Burst 0x01 SRC

ID
DEST

ID
DEST

ID
Count
3-253

DSAP
y

SSAP
x 0x13 CRCCRC

MAC Packet SENDING and RECEIVING

Note: ACK (Acknowledgement) packets are not represented here

0x00 Count
1-256

DATA

Long packet count

UI (Data)
Request

Destination
SAP y

Source
SAP x

MAC Packet

Data Indication
to Class1

Driver

UI (Data)
Indication

Reply
Message

UI (Data)
Indication

Destination
SAP x

Source
SAP yMAC Packet

Data Request
to the

Sender

Optional

FIGURE 8 - DATA TRANSFER PROCEDURE

Example:
event = DATA_REQUEST;
lsap[SAP].dstation = dest_id;

/* initialize pointer */
bufptr = lsap[SAP].msgptr;
*bufptr = ‘H’;

ControLink86 Realtime Networking Software

 30

bufptr++;
*bufptr = ‘E’;
bufptr++;
*bufptr = ‘L’;
bufptr++;
*bufptr = ‘L’;
bufptr++;
*bufptr = ‘O’;

/* fill in the size of the packet */
lsap[i].msbcount = 0;
lsap[i].lsbcount = 10;

/* request sending the HELLO packet */
status = llc1_request(i,j,event,&lsap[i]);

3.6.3LLC PACKET FORMAT

The LLC packet format uses the ARCNET Trade Association (ATA) ANSI 878.1 standard along with the
IEEE 802.2 LLC packet format. The following byte (8 bit) fields are defined (shaded cells represent the
MAC portion of the packet, indented, not shaded cells represent the LLC portion of the packet):

Symbol Value Description

AB 111111 Alert Burst. Precedes all ARCNET frames.
SOH 0x01 Start of Header. Indicates a data frame.
SID 0x01 - 0xFF (Source node hardware address)
DID 0x01 - 0xFF Destination ID (Destination node hardware address)
MSB 1 - 253

or
0

MSB count (most significant count value)

LSB- if MSB = 0
1 - 256

LCB count (least significant count value)

SC 0x00 System Code - usually 0x00
DSAP 0 - 63 Destination SAP (Destination service access point)
SSAP 0 - 63 Source SAP (Source service access point)
CNTRL Control (Control field)
 0x13 UI_COMMAND
 0XBF XID_COMMAND Request
 0XAF XID_COMMAND Reply
 0XF3 TEST_COMMAND Request
 0XE3 TEST_COMMAND Reply
INFO Information fields data = 1 to 504 bytes (defined by the MSB/LSB of

the count of bytes)
CRC Low byte of the check sum calculated based on the polynomial:

x16 + x15 + x2 + 1
CRC High byte of the check sum calculated based on the polynomial:

x16 + x15 + x2 + 1

The discussed packet format is composed of two portions - MAC (Medium Access Control) portion and
LLC PDU (Logical Link Control Protocol Data Unit) portion.

ControLink86 Realtime Networking Software

 31

Note: The System Code field is used to identify protocols and/or manufacturers but its use is optional.
System Codes are issued and maintained by the ARCNET Trade Association (ATA). Contact the ATA for
a System Code for your application.

ARCNET Trade Association
3365 N. Arlington Hts. Rd.
Suite J
Arlington Hts., IL 60004
708-255-3003 - Voice
708-577-7276 - FAX

ControLink86 Realtime Networking Software

 32

4.D20 - HARDWARE (LOW LEVEL) DRIVER DETAILED
DESCRIPTION

4.1INTRODUCTION
The ControLink Low Level Driver is a set of basic network driver and utility routines written in ANSI “C” for
use with SMSC’s COM2002x family of Embedded ARCNET Controllers. However the D20 driver expands
a platform specific macros defined in the MSC.H file. These macros are the timing primitives.

The files comprising the Low Level Driver are listed in the following tree:

 CLINK1_4

 ├─ INCLUDE

 ├ ├─ ARCDEF.H

 ├ ├─ D20.H

 ├ ├─ MSC.H

 ├ └─ T_*.H

 └─ SOURCE

 └─ D20.C

File Description

D20.C source code for the Low Level Driver routines.
ARCDEF.H contains definitions related to the COM2002x LAN Controller such as:

internal registers,
bit masks,
error codes
command masks
definitions for the MAC layer primitives (packet lengths, control fields,
etc.)

D20.H contains definitions and declarations related to the low level driver
D20.C, error codes, and data structures

MSC.H contains compiler specific (Microsoft Visual C++) definitions. Also
contains the timing primitives for different 80x86 platforms, macros for
input and output port operations.

T_*.H timing primitives to define a millisecond and a microsecond based on
the platform used for the host application. One of these files must be
included at the application level for the right timing primitives

The driver routines are a set of initialization, status, read, write, and general utility routines. Since the
COM2002x ULANC offers many network and interface options, the D20.C driver is flexible enough to
accommodate them. This is done via the driver parameters that can be present prior to the initialization or
changed on the fly.

It is important to note that the driver software is designed to be flexible, but easy to use. After setting the
default parameters, setting the hardware addresses, and initializing the hardware, the network/node is
available to read and write packets to any node on the network.

ControLink86 Realtime Networking Software

 33

4.2DESCRIPTION OF STRUCTURE
The Low Level Driver has two major functions:

• Process network events
• Process upper layers events

This structure is illustrated in the Figure 9.

Receiver
Inhibited

New
Next ID

Excessive
NAKs

Transmitter
Available

Network
Reconfiguration

Driver
Initialization

Parameter
Modification

Sending
Data Diagnostics Offline

Request
Network

Map
Received

Data Recovery

SERVICE
FUNCTIONS

DRIVER ISR
and

CHECK INT

COM20020

Data Structures

FIGURE 9 - LOW LEVEL DRIVER SOFTWARE DESIGN

The D20 (Low Level) Driver receives various requests from the upper layer (Logical Link Control Layer)
as well as the network events from the COM2002x ARCNET ULANC. Refer to the COM2002x ULANC
Data Sheet for the description of the network events. The network events represented in Figure 9 directly
correspond to the network interrupts that can be enabled using Interrupt Mask Register of COM2002x
and checked for indication in the Status Register and Diagnostic Status Register.

In the next section the D20 Driver routines are listed. Each routine is tagged with the appropriate
designation of the functional portion of the driver. The designer thus can make a choice how to further
tailor the Low Level Driver based on these designations.

4.3EXPLANATION OF OPERATION
The operation of the Low Level Driver follows a standard driver design procedure. Operating the network
interface begins with the INITIALIZATION of the COM2002x to the specific requirements of network and
upper layers. After the initialization, a node is participating in the token passing on the network, also a
node is ready to RECEIVE a frame (message, packet), TRANSMIT a frame, generate NETWORK MAP, or
respond to other (enabled by the Low Level Driver parameters) NETWORK EVENTS. (reconfiguration,
excessive NAKs, new next ID). D20 Driver operation is illustrated on Figure 10.

TRANSMITTING A MESSAGE is initiated by the upper layers of the network protocol (Logical Link Control
Layer or even an Application Layer). Transmitting a message can be done in a normal mode (packet by
packet) or in a command chaining mode (two messages are queued at once). Transmitting can be
scheduled based on the availability of the transmitter.

ControLink86 Realtime Networking Software

 34

RECEIVING A MESSAGE is a part of the Driver ISR - when the COM2002x interrupts are examined. The
message received is stored in a Driver queue. Retrieval of this information from the Driver queue is
scheduled by the upper layer software.

NETWORK EVENTS are also processed by the Driver ISR - the driver software is designed to increment a
diagnostic counter associated with a particular network event. A designer may choose an action, that a
real-life system should perform as a result of any network event.

INITIALIZATION

NETWORK
STATUS

RETRIEVE
RECEIVED

DATA

DRIVER
ISR

NETWORK
MAP

QUEUE
MAINTENANCE

PARAMETER
MAINTENANCE

UPPER LAYERS

COM20020

TRANSMIT
MESSAGE

FIGURE 10: D20 LOW LEVEL DRIVER OPERATION

The solid lines indicate the initiator of the D20 Driver software process. The dashed lines indicate the
transfer of control or data to the other D20 Driver processes.

4.4LOW LEVEL DRIVER FUNCTIONS SUMMARY
Function Type Description

d20_set_defaults() service Sets hardware defaults defined by the Driver
Parameters.

d20_get_parameter() service get value of hardware parameter.
d20_set_parameter() service Sets a selected parameter to a given value.
d20_init() service Using the values set by the d20_set_parameter

routine or the default values. Initializes the
COM2002x.

d20_read_packet() service Checks if there is a new packet in the receive buffer
and moves it to the specified location (buffer).

d20_write_packet() service Moves data from the specified buffer into the
specified page in the COM2002x RAM for
transmission. Schedule the transmission optionally.

ControLink86 Realtime Networking Software

 35

Function Type Description
d20_get_qentry() service Copies the data from the oldest entry in the receive

queue (internal buffer to D20) into the specified
location.

d20_network_map service Builds a map of physical ID values on the network.
d20_registers() service Returns the contents of the COM2002x Read

Registers.
d20_diagnostic() service Returns the contents of the diagnostic counters.
d20_clear_diag() service Writes 0 to all diagnostic counters except of the

D20_Retry_Counter - reinitializes it with the number
of retries allowed.

d20_tokens service Counts the specified number of token rotations.
d20_exit() service shuts down the node, resets interrupt vectors (if

any), and returns to host.
d20_interrupt() isr Main ISR of the Driver - this routine is vectored to.

Issues an EOI sequence - Sets a global flag for the
system.

d20_check_int() int Parses the interrupt flags of the COM2002x
(Status Register and Diagnostic Status Register):
(TA) Transmitter Available
(NEW NEXTID) New Next ID
(RECON) Reconfiguration
(EXCNAK) Excessive NAK
(RI) Receiver Inhibited

d20_check_diag() int Check if the POR flag was set in the Diagnostic
Status Register. Increment a diagnostic counter.

read_data() service Copy data from a specified page inside the
COM2002x to the specific buffer.

write_data() service Copy data from a specified buffer location to the
specified page within the COM2002x.

check_network_status() int checks if the network is active and whether there
are other nodes on the network.

4.5CONFIGURABLE PARAMETERS
The COM2002x device driver routines have user-selectable parameters which allow the application
programmer to customize the driver to application-specific or different hardware environments. The
parameters are broken up into two areas: specific to the hardware platform and ARCNET specific. These
parameters are stored in an array called d20_params[] and are not programmed into the device until the
d20_init() routine is called. These parameters must be set up prior to calling the driver initialization. The
definitions for each parameter are included in the D20.H file. After initialization, most parameters should
not be modified. A network should have nodes which have the same ARCNET parameters.

4.5.1HARDWARE PARAMETERS

The hardware parameters determine the following aspects of the network hardware:

• base address of the COM2002x card

ControLink86 Realtime Networking Software

 36

• type of computer bus (8/16 bit)
• operating mode of the driver: polled or interrupt
• type of interrupt controller
• interrupt level
• interrupt mask
• end of interrupt sequence
• system clock frequency

4.5.2ARCNET PARAMETERS

The ARCNET parameters determine the personality of this node and the characteristics of the network
such as:

• contents of Interrupt Mask Register
• number of retries of a transmission
• ability of the D20 driver to disable transmitter
• waiting for ACK before returning status of a transmission
• number of input/output buffers
• broadcast messages enabled or disabled
• short and/or long packets enabled or disabled
• signaling method - backplane or normal
• network speed, timeout
• command chaining
• nPULSE1 driver mode (push-pull or open drain)
• number of NAKs before interrupt
• receive all packets mode
• packet RAM arbitration speed

All nodes connected to the same network should have same settings for the ARCNET parameters.

4.5.3PARAMETER LIST

As part of the D20.H definition file, each of the parameters is defined. The parameter definition defines
which parameter number is associated with the parameter name. It is suggested that the application
programmer use the parameter name and not the parameter number. See the application examples listed
at the end of this manual for an sample use of the parameter definitions.

Parameter Default Description

D20_BASE_LSB 0xE0 COM2002x base address of register page Least
Significant Byte. Address of the register page is
the I/O or memory address to which the
COM2002x is mapped. The LSB and MSB make
up the base address for the COM2002x registers.

D20_BASE_MSB 0x02 COM2002x base address of register page Most
Significant Byte.
For combined MSB / LSB parameters the range is
0x0000 - 0xFFFF. The valid values depend on the
host system.

ControLink86 Realtime Networking Software

 37

Parameter Default Description
D20_BUS_8_16 8 The bus type determines if the registers offset

from the base address are incremented by 1 or by
2. A value of 8 for an 8 bit bus sets the increment
value to +1 for each register. A value of 16 for a
16 bit bus sets the increment value to +2 for each
register.
Valid values are 8 or 16.

D20_CLK 20 Holds the value of the XTAL oscillator connected
to the COM2002x for future uses for calculating
the necessary timing primitives.
Valid values are 20 or 40

D20_NODE_MODE 2 Specifies how the Node ID value is determined:
1 = Software set: Node ID is stored in
D20_NODE_ID parameter.
2 = Set the node ID to the value determined by
reading the DIP switch at hardware address
BASE + D20_NODE_SW_PORT.

D20_NODE_SW_PORT 8 The node software port is the offset hardware
address of the DIP switch. This offset is added to
the base address of the COM2002x and read to
determine the node ID. This parameter is only
used if selected by the node mode parameter.
Valid values are 0 to 255.

D20_INT_OR_POLL 0 The COM2002x device and driver software can
be used in polled or in interrupt mode The
interrupt mode provides an interrupt handler to
service the interrupt. The interrupt level, type,
mask, and EOI parameters must be properly
configured prior to the driver initialization.
0 = polled mode
1 = interrupt driven mode

D20_INT_LEVEL 3 The interrupt level is assigned at initialization. The
interrupt level is the hardware interrupt vector
number that is connected between the
COM2002x device and the interrupt controller of
your computer.
Valid values are 0 through 7.

D20_INT_MASK 0x21 The interrupt mask is the I/O port address of the
mask byte for the interrupt controller. Valid values
are 0x00 through 0xFF.
The default value is 0x21 for the IBM PC. This
parameter applies for those 80x86 based on the
8259 Interrupt Controller.

D20_INT_EOI 0x20 The interrupt EOI (End Of Interrupt) is the I/O port
address of the EOI byte for the interrupt
controller(8259A). Valid values are 0x00 through
0xFF. This command is necessary for 80x86
processors only.

ControLink86 Realtime Networking Software

 38

Parameter Default Description
D20_IMR 0xFF Mask for the interrupt Mask Register. This

parameter holds the flags that should be
processed by the d20_check_int() function. The
position of the flag is the same as the COM2002x
Interrupt Mask Register.

D20_RETRIES 0 Number of the retries for the transmission before
the transmission of a packet is aborted.
Valid values: 0 - 255

D20_DISABLE_TX 0x00 If this parameter is set to a “yes” (0x01) value then
the D20 driver will disable the transmitter when
the Excessive NAKs interrupt occurs.
0 = do not disable transmitter
1 = disable transmitter

D20_WRITE_ACK 0 Specifies whether the write routine in the driver
waits for a write acknowledgment from the
network hardware before returning the status to
the upper layer.
0 - do not wait for the acknowledgement.
1 - wait for the acknowledgement.

D20_WAIT_TA 0x01 Specifies whether the d20_write_packet() will wait
for the transmitter to become available.
0 = do not wait for the TA bit
1 = wait for the TA bit

D20_IN_BUFFERS 2 The number of input buffers is determined by
setting this parameter. The input buffers start at
the Packet RAM page 0.
It is assumed that all the input (receive) buffers
are contiguous.
If the command chaining mode is chosen, this
parameter should be set to 2.

D20_OUT_BUFFERS 2 The number of output buffers is determined by
setting this parameter. The output buffers follow
the input buffers in the Packet RAM.
It is assumed that all the output (send) buffers are
contiguous.
If the command chaining mode is selected, this
parameter should be set to 2.

D20_BROADCAST 0 The COM2002x has the ability to accept or send
broadcast messages. Broadcast messages are
delivered to every node connected to the segment
of the physical medium.
0 = reception of broadcast packets is not allowed
1 = reception of broadcast packets is allowed

D20_SHORT_LONG 0 The COM2002x device has the ability to receive
short and/or long packets. Short packets have up
to 253 data bytes, while long packets have up to
507 data bytes.
0 - short packets only
1 - short and long packets

ControLink86 Realtime Networking Software

 39

Parameter Default Description
D20_CMD_CHAIN 0x00 COM2002x can receive and transmit messages

one by one or in the command chaining mode,
when two Packet RAM pages are scheduled for
receive or transmit at a time.
0x00 - normal mode (one by one)
0x40 - command chaining
Note: this parameter is OR-ed into the
Configuration Register

D20_NET_TIMEOUT 0x18 This parameter holds the bit settings for the ET1
and ET2 bits that reside in the Config Register of
the COM2002x. For the explanation how the
settings of these bits affects the MAC layer of the
network see Section 7 that explains Network
Speed.
Valid values: 0x00, 0x08, 0x10, 0x18
Note: this parameter is OR-ed into the
Configuration Register

D20_BACKPLANE 0x00 The COM2002x supports a backplane mode in
which the device can directly drive the physical
layer or be used with RS-485 type transceivers.
The signaling in the Backplane mode is different
from the standard Dipulse mode.
0x00 = standard, Dipulse mode
0x04 = Backplane mode
Note: this parameter is OR-ed into the
Configuration Register

D20_NODE_ID 0xFF The node ID is the resulting node address on the
network for this node. The node mode parameter
determines the method for getting the node
address. See the node mode parameter for more
details.
Valid node addresses are 0x01 to 0xFF.

D20_P1MODE 0x00 Specifies whether the driver for the COM2002x
nPULSE1 pin is configured for the Push-Pull
mode or the Open Drain mode. Refer to the
COM2002x ULANC for further detail.
0x00 = Open Drain
0x80 = Push Pull
Note: this parameter is OR-ed into the Setup
Register

D20_FOUR_NAKS 0x00 This flag modifies the FOUR_NAKS bit in the
COM2002x retry register that controls whether 4
NAKS or 128 NAKS to a transmitted point-to-point
message will result in the EXCNAK interrupt.
0x00 = EXCNAK interrupt after 128 NAKS
0x40 = EXCNAK interrupt after 4 NAKS
Note: this parameter is OR-ed into the Setup
Register

ControLink86 Realtime Networking Software

 40

Parameter Default Description
D20_ET3 0x00 Modifies an additional Extended Timing variable

(that scales protocol timing by 3). This selection
can be used for short topologies. Refer to the
COM2002x ULANC Data Sheet for further
information on ET3 timing.
0x00 = No scaling of the time-outs
0x20 = Scaling in effect
Note: this parameter is OR-ed into the Setup
Register

D20_RCV_ALL 0x00 This parameter controls the RCV_ALL bit in the
COM2002x Setup Register. If RCV_ALL bit is set,
it enables the node to receive all valid data
packets regardless of their Destination Node ID.
0x00 = receive only packets addressed to this
node or broadcast packets
0x10 = receive all
Note: this parameter is OR-ed into the Setup
Register

D20_NET_SPEED 0x00 The network speed sets the clock prescaler to
one of five network speeds. It holds the settings of
CKP3, CKP2 and CKP1 bits. Refer to Section 7
that describes network timing for further detail.
Note: this parameter is OR-ed into the Setup
Register

D20_SLOW_ARB 0x00 This parameter controls the SLOW_ARB bit in the
COM2002x Setup Register. For the applications
that use the network at the speed greater than 2.5
Mbps (XTAL> 20 MHz) this parameter must be
set.
0x00 = normal arbitration
0x01 = slow arbitration
Note: this parameter is OR-ed into the Setup
Register

4.6D20 DRIVER: DESCRIPTION OF THE FUNCTIONS
This chapter discusses all D20 Driver functions.

4.6.1d20_set_defaults();

ROUTINE DESCRIPTION:

This functions is a simple list assignment that gives the default values to the D20 Driver
parameters stored in the d20_params[] array. The parameters are initialized to the default
values listed in the Section 4.5.3. Control application should execute this function before
executing d20_init() function.

ROUTINE PROTOTYPE:
void d20_set_defaults(void);

ControLink86 Realtime Networking Software

 41

ROUTINE PARAMETERS:
none

ROUTINE RETURN VALUES:
none

ROUTINE EXAMPLE:
…
/* set the driver default values */
d20_set_defaults();
…

4.6.2d20_get_parameter()

ROUTINE DESCRIPTION:

The get parameter routine is called to retrieve the current value of one of the driver
parameters. The driver parameter name is used as the input parameter to the get parameter
routine. The result or return value from get parameter is the current value of that particular
driver parameter. The input and result values are unsigned char. The list of driver parameter
names are contained in the ARCDEF.H header file.

ROUTINE PROTOTYPE:
USIGN8 d20_get_parameter(USIGN8 cmd_par);

ROUTINE PARAMETERS:

Parameter Description

cmd_par number of a parameter to be returned.
The list of these numbers is available in D20.H file.

ROUTINE RETURN VALUES:

Action Result
for all parameters value of a parameter defined by the cmd_par

ROUTINE EXAMPLE:
…
/* get the node id value */
value = d20_get_parameter(D20P_NODE_ID);
…

4.6.3d20_set_parameter()

ROUTINE DESCRIPTION:

The set parameter routine is called to change the current value of one of the driver
parameters. The driver parameter name is used as the input parameter along with the new
value to the set parameter routine. This function does not check if the value to be written into
a parameter is valid or not. The list of D20 driver parameters is given in the Section 4.5.3.
The list of driver parameter names are contained in the D20.H header file.

ROUTINE PROTOTYPE:
void d20_set_parameter(USIGN8 cmd_par, USIGN8 data_value);

ControLink86 Realtime Networking Software

 42

ROUTINE PARAMETERS:

Parameter Description

cmd_par number of a parameter to be returned.
The list of these numbers is available in D20.H file.

data_value the new value for the D20 Driver parameter defined
by the cmd_par

ROUTINE RETURN VALUES:

none

ROUTINE EXAMPLE:
…
/* set the node id to 55H */
d20_set_parameter(D20P_NODE_ID, 0x55);
…

4.6.4 d20_init()

ROUTINE DESCRIPTION:

The initialization routine provides the hardware and software initialization of the COM2002x
registers, resets COM2002x, determines the Node ID, joins the network (participates in the
token passing scheme) and enables COM2002x for the reception of a packet. COM2002x
and the driver software are initialized according to the COM2002x Driver parameters (see
Section 4.5).

The D20 Driver parameters may be initialized by the d20_defaults() function or individually,
by the upper layers, using d20_set_parameter() function.

See Section 8 (an example program) for illustration of initializing the D20 Driver.

ROUTINE PROTOTYPE:
USIGN8 d20_init(void);

ROUTINE PARAMETERS:

none

ROUTINE RETURN VALUES:

d20_init() returns the status of the initialization of the driver.

Action Result

Reset failed E_BAD_STATUS
Node alone on the segment E_NO_TOKEN

E_ONE_NODE
Unrecognized network condition E_NOT_OK
Duplicated Node ID detected E_NODE_USED
Initialization done without errors E_OK

ROUTINE EXAMPLE:
…
/* initialize the hardware and driver */
status = d20_init();

ControLink86 Realtime Networking Software

 43

…

4.6.5d20_read_packet()

ROUTINE DESCRIPTION:

Received data retrieval function. After the data has been received by the COM2002x, the
d20_check_int() routine pulls it out of the COM2002x Packet RAM and stores it in the driver
queue called inbuf[]. The upper layer or the control application may schedule the retrieval of
the received data from this queue. This retrieval is accomplished by the d20_read_packet()
function. The retrieved data is placed in the system memory at the specified pointer. This
function can be directed to wait for the buffer to be received or read the packet from inbuf[]
queue.

The retrieved packet is stored at the specified pointer in the format of the ARCNET packet
(see Section 3.6.3):

Buffer location Symbol Description

user_buf[0] SID Source ID
user_buf[1] DID Destination ID
user_buf[2] HCNT 0 = indication of a short packet

1 = indication of a long packet
user_buf[3] LCNT

1 - 252 = short packet count
0 - 256 = long packet count = 256 + count

user_buf[4] SYSCOD System Code
user_buf[5] DATA LLC packet data
… … …
user_buf[n]
or
user_buf[256 + n]

DATA LLC packet data

ROUTINE PROTOTYPE:
USIGN8 d20_read_packet(USIGN8 wait_flag, USIGN8 *data_ptr);

ControLink86 Realtime Networking Software

 44

ROUTINE PARAMETERS:

Parameter Description

wait_flag Specifies whether the function should wait for a
packet reception or get an available packet.
0x00 = do not wait
0x01 = wait

data_ptr Pointer to a buffer to which the data should be
transferred.

ROUTINE RETURN VALUES:

Action Result

no packet available E_NO_PACKET
data retrieved correctly E_OK

ROUTINE EXAMPLE:
/* user buffer declaration */
USIGN8 user_buf[512];
…
/* wait for packet to be received, then pull it out */
…
status = d20_read_packet(WAIT, user_buf)
if (status == E_OK)

{
/* valid data in the user_buf*/
}

…

4.6.6d20_write_packet()

ROUTINE DESCRIPTION:

This function is used for scheduling a transmission of a packet. This function is used by the
upper layers or the control application to schedule a transmission of a packet. This function
will transfer the data provided by the parent software to the COM2002x Packet RAM page
that is available for transmission. If the transmitter is available, this function will then issue a
command to initiate the transmission (see COM2002x ULANC for the description of the
Command Register).

This function will initialize the packet Retry Counter. This is a software mechanism that
allows the D20 Driver to reschedule the sending of a packet as many times as it is specified
by the D20_RETRIES parameter (see Section 4.5).

The data provided in the user buffer to the d20_write_packet() must be of the following
format:

Data Location Symbol Description

user_buf[0] SID Source ID
user_buf[1] DID Destination ID
user_buf[2] HCNT 0 = indication of a short packet

1 = indication of a long packet
user_buf[3] LCNT

1 - 252 = short packet count
0 - 256 = long packet count = 256 + count

ControLink86 Realtime Networking Software

 45

user_buf[4] SYSCOD System Code
user_buf[5] DATA LLC packet data
… … …
user_buf[n]
or
user_buf[256 + n]

DATA LLC packet data

ROUTINE PROTOTYPE:
USIGN8 d20_write_packet(USIGN8 *data_ptr);

ROUTINE PARAMETERS:

Parameter Description

data_ptr pointer to the buffer location that contains a packet
to be transmitted

ROUTINE RETURN VALUES:

Action Result

Long packet specified and only
short packets allowed

E_DRIVER_OPTION

The packet size is not allowed by
the ARCNET protocol

E_BAD_PACKET_SIZE

Transmitter is currently busy E_TX_BUSY
No ACK received E_TA_NO_ACK
Transmission scheduled without
problems

E_OK

ROUTINE EXAMPLE:
…
/* send a packet from user_buffer */
status = d20_write_packet (user_buffer)
…
if (status = E_OK)

{
/* Transmission scheduled OK */
}

…

4.6.7d20_get_qentry()

ROUTINE DESCRIPTION:

This function takes the oldest entry to the receive queue inbuf[] and puts it in the user’s
specified location. Queue’s head and tail are updated. This routine is used by the
d20_read_packet() function for the retrieval of the received packet.

ROUTINE PROTOTYPE:
void d20_get_qentry (USIGN8 * ptr);

ControLink86 Realtime Networking Software

 46

ROUTINE PARAMETERS:

Parameter Description

ptr pointer to the buffer where to put the data retrieved
from the COM2002x

ROUTINE RETURN VALUES:

none

ROUTINE EXAMPLE:
/* data buffer declaration */
USIGN8 ptr[512];
…
/* get the packet out of the inbuf[] queue*/
d20_get_qentry(ptr);
/* data now available
…

4.6.8d20_network_map()

ROUTINE DESCRIPTION:

The network map routine builds a map of the nodes connected to the network. A pointer to a
buffer is passed to the routine and the buffer’s bits are set (present) or reset (not present)
depending on if a node is present. The user buffer must be 32 bytes in length. If the node is
present on the network (passing tokens), the corresponding bit to its address is set in the
network map. Bit 0 of the network map (data_ptr[0].0) is illegal.

ROUTINE PROTOTYPE:
USIGN8 d20_network_map (USIGN8 *data_ptr);

ROUTINE PARAMETERS:

Parameter Description

data_ptr pointer to the 32-byte array of 8-bit values that
store the current network map of nodes

ROUTINE RETURN VALUES:

Action Result

network map successfully compiled E_OK
no active nodes connected to the
medium

E_NO_TOKEN

only one node (this node)
connected and active on the link

E_ONE_NODE

ROUTINE EXAMPLE:
unsigned char bit_map[32];
/* generate a network bit map */
status = d20_network_map(bit_map);
if(status == E_OK)

{
/* check if node 5 is available */
if ((bit_map[0] & 0x20) != 0)

ControLink86 Realtime Networking Software

 47

{

/* it is part of the network */
}

}

4.6.9d20_registers()

ROUTINE DESCRIPTION:

This function copies the contents of the COM2002x Read Registers to the user specified
buffer of 10 bytes (USIGN8). Refer to the COM2002x ULANC Data Sheet for the explanation
of the internal registers.

After the operation is completed, the contents of the buffer is as follows:

Byte number Description

0 Status Register
1 Diagnostic Status Register - after the reading: 0000 x0x0
2 Address High Register
3 Address Low Register
4 Data Register
5 Configuration Register
6 Tentative ID Register
7 Node ID Register
8 Setup Register
9 Next ID Register

Note that the Diagnostic Status Register bits are reset as a result of the register reading
operation (highlighted entry).

ROUTINE PROTOTYPE:
void d20_registers(USIGN8 *p_data_8);

ROUTINE PARAMETERS:

Parameter Description

p_data_8 pointer to the array of 10 bytes that will hold the
COM2002x Read Register values.

ROUTINE RETURN VALUES:

none

ROUTINE EXAMPLE:
…
USIGN8 register[10]
…
/* get current registers */
d20_registers(registers);
…

4.6.10d20_diagnostic()

ROUTINE DESCRIPTION:

ControLink86 Realtime Networking Software

 48

This function transfers the state of the diagnostic counters to the specified user buffer.
Diagnostic counters are used to record the number of occurrences of various network events
as well as upper layers’ requests.

After the transfer, the buffer holds the following information:

Byte
number

Counter Name Description

0 D20_RI_CNT Number of RI interrupts
1 D20_EXNAK_CNT Number of EXNAK interrupts
2 D20_RECON_CNT Number of RECON interrupts
3 D20_NNID_CNT Number of NEW NODE ID interrupts
4 D20_TA_CNT Number of TA interrupts
5 D20_POR_CNT Number of POR resets
6 D20_MYRECON_CNT Number of reconfigurations counted by self
7 D20_RETRY_CNT Number of retries allowed by system
8 D20_Q_FULL_CNT Number of times the receive queue was full
9 D20_TX_DONE Number of successful transmits

10 D20_TX_ERROR Number of failed transmits
11 D20_INT_GEN Number of hardware interrupts from the

COM2002x
12 D20_INT_BUSY_CNT Number of times the ISR was running when the

hardware interrupt came from the COM2002x

ROUTINE PROTOTYPE:
void d20_diagnostic(USIGN16 *p_data_16);

ROUTINE PARAMETERS:

Parameter Description

p_data_16 pointer to the array of 13 16-byte (int) entities that
will hold the latest state of the Diagnostic Counters.

ROUTINE RETURN VALUES:

none

ROUTINE EXAMPLE:
…
USIGN16 counters[13]
…
/* get current diagnostic counters*/
d20_diagnostic(counters);
…

4.6.11d20_clear_diag()

ROUTINE DESCRIPTION:

This function clears (resets to 0) all diagnostic counters except for the D20_RETRIES_CNT
that is reset to the value held by the D20_RETRIES system parameter.

ControLink86 Realtime Networking Software

 49

ROUTINE PROTOTYPE:
void d20_clear_diag(void);

ROUTINE PARAMETERS:

none

ROUTINE RETURN VALUES:

none

ROUTINE EXAMPLE:
…
/* clear diagnostic counters*/
d20_clear_diag();
…

4.6.12d20_tokens()

ROUTINE DESCRIPTION:

The tokens routine waits n number of token rotations and then returns to the caller. This
routine can be used for timing functions. The number of rotations can be 1 to 255.

passed parameters: number of token rotations as an unsigned character

ROUTINE PROTOTYPE:
void d20_tokens (USIGN8 ntokens);

ROUTINE PARAMETERS:

Parameter Description

ntokens number of token rotations to wait on the link

ROUTINE RETURN VALUES:

none

ROUTINE EXAMPLE:
…
/* wait 10 token rotations */
d20_tokens(10);
…

4.6.13d20_exit()

ROUTINE DESCRIPTION:

The exit routine shuts down the transmitter and receiver of the COM2002x and resets the
interrupt vector (if used) to the original value (stored during the initialization). This routine
must be called before exiting the user application program.

ROUTINE PROTOTYPE:
void d20_exit (void);

ROUTINE PARAMETERS:

none

ROUTINE RETURN VALUES:

ControLink86 Realtime Networking Software

 50

none

ROUTINE EXAMPLE:
…
/* leave the network and exit */
d20_exit();
…

4.6.14d20_interrupt()

ROUTINE DESCRIPTION:

This is the function that is vectored to when the COM2002x generates the hardware
interrupt. The vector to this ISR is stored during the driver initialization. It is recommended
that the real-life control system chains the vector to this ISR rather than replace it. This ISR
performs the following functions:

• generate the EOI sequence for the host interrupt controller,
• increment the general counter
• set a global flag informing the scheduler that there is a network interrupt to be

processed.

ROUTINE PROTOTYPE:
void __interrupt __far d20_interrupt (void);

ROUTINE PARAMETERS:

none

ROUTINE RETURN VALUES:

none

ROUTINE EXAMPLE: (INSTALLING THE VECTOR TO THE d20_interrupt())
…
/* define a pointer to the IRQ3 hardware interrupt vector */
#define D20_IRQ3 (USIGN32 __far *)0x2CL
…
/* pointer */
USIGN32 __far *interrupt_vector;
…
/* assign a pointer to the IRQ3 */
interrupt_vector = D20_IRQ3;
/* install the vector to d20_interrupt() at the irq3 location */
*interrupt_vector = (USIGN32 __far *)d20_interrupt;
…

4.6.15d20_check_int()

ROUTINE DESCRIPTION:

Interrupt parser. Its function is to process the network related events based on the
COM2002x interrupt bits located in the Status Register and Diagnostic Status Register:

Bit Interrupt Description of Service

RI Receiver Inhibited Determine if Command Chaining - if so, clear
Receive Interrupt
Examine the contents of the current Packet RAM
page.
Copy the contents of the Packet RAM page to the

ControLink86 Realtime Networking Software

 51

inbuf[] queue
Increment the D20_RI_CNT diagnostic counter
Enable next receive page in the Packet RAM

TA Transmitter Available Determine if Command Chaining - if so, clear
Transmit Interrupt
Return the status of the broadcast
Return the status of the point-to-point transmission
Increment the D20_TX_DONE and
D20_TX_ERROR diagnostic counters

RECON Reconfiguration Increment the D20_RECON_CNT
If the reconfiguration is caused by this node,
increment the D20_MYRECON counter

EXCNAK Excessive NAK Clear Excessive NAK interrupt
If the system requires the retry of a packet -
schedule the retransmission
Return the status
Increment D20_EXNAK_CNT diagnostic counter.

NEW
NEXTID

New Next ID Report the ID of the next node to the upper layers
Increment D20_NNID_CNT diagnostic counter

For explanation of each of these interrupts - refer to the COM2002x ULANC Data Sheet.
Note that the COM2002x will generate the interrupt only when the corresponding bits are set
in the Interrupt Mask Register.

This function can be a part of the ISR d20_interrupt() or can be invoked by the scheduler as
a result of the global flag set the ISR.

The real-life control application may require different actions upon the occurrence of any
network events than those programmed into the d20_check_int() parser. The designer may
want to tailor this parser, inserting the control software in places, where the diagnostic
counters are incremented.

ROUTINE PROTOTYPE:
void d20_check_int (void);

ROUTINE PARAMETERS:

none

ROUTINE RETURN VALUES:

none

ROUTINE EXAMPLE:
…
/* this code will continually parse the COM2002x interrupts */
while(TRUE)
{
d20_check_int();
}
…

ControLink86 Realtime Networking Software

 52

4.6.16d20_check_diag()

ROUTINE DESCRIPTION:

This function checks if the POR (Power on Reset) bit in the Diagnostic Status Register is set.
It is a separate function from the d20_check_int() because this event occurs only once
during the particular network session.

As a result of this routine the D20_POR_CNT diagnostic counter is incremented.

A designer may choose to remove this code from the final application if checking for this
status is not required in the real-life control application.

ROUTINE PROTOTYPE:
void d20_check_diag (void);

ROUTINE PARAMETERS:

none

ROUTINE RETURN VALUES:

none

4.6.17read_data()

ROUTINE DESCRIPTION:

A low level routine, it transfers the specified number of bytes from the COM2002x ULANC
Packet RAM page and offset to the location specified by the calling routine. D20 driver uses
this routine to transfer the data from COM2002x to the driver’s receive queue inbuf[].

ROUTINE PROTOTYPE:
void read_data (USIGN8 page,
 USIGN8 offset,
 USIGN8 count,
 USIGN8 shortlong,
 USIGN8 *user_buffer);

ControLink86 Realtime Networking Software

 53

ROUTINE PARAMETERS:

Parameter Description

page page number of the COM2002x Packet RAM.
These are 512-byte pages. The valid numbers are
0, 1, 2, 3

offset offset from the beginning of the page specified by
the page parameter

count number of bytes to read from the Packet RAM
shortlong specifies if the amount of data exceeds the length

of a short packet (253 bytes)
user_buffer pointer to the location, to which the data from the

Packet RAM must be copied.

ROUTINE RETURN VALUES:

none

ROUTINE EXAMPLE:
/*
after the reset, read two bytes from the beginning of the packet ram
and determine if they are 0xD1 and the node address (0xfe)
abandon the reading after 1000 tries
*/
/* user buffer of 2 bytes */
USIGN8 buffer[2] = {0, 0};
int click = 0;

/* read loop */
while((buffer[0] != 0xD1) || (buffer[1] != 0xFE))

{
/* read from page =0, offset = 0, 2 bytes, place it in the buffer[] array*/
read_data(0, 0, 2, 0, buffer);
DELAYMS(10);
if(++click > 1000)

{
return(E_BAD_STATUS);
}

}

4.6.18write_data()

ROUTINE DESCRIPTION:

This function transfers the data from the location inside host system memory into the packet memory (page)
inside the COM2002x ULANC. The specified number of bytes is transferred from the user buffer into the
specified page/offset location of the COM2002x Packet RAM.

ROUTINE PROTOTYPE:
void write_data(USIGN8 page,
 USIGN8 offset,
 USIGN8 count,
 USIGN8 ShortLong,
 USIGN8 *user_buffer);

ControLink86 Realtime Networking Software

 54

ROUTINE PARAMETERS:

Parameter Description

page page number of the COM2002x Packet RAM.
These are 512-byte pages. The valid numbers are
0, 1, 2, 3

offset offset from the beginning of the page specified by
the page parameter

count number of bytes to write to the Packet RAM
shortlong specifies if the amount of data exceeds the length

of a short packet (253 bytes)
user_buffer pointer to the location, from which the data to the

Packet RAM must be copied.

ROUTINE RETURN VALUES:

none

ROUTINE EXAMPLE:

…
/* write two bytes into the page 0. offset 0, from the user_buffer[] */
USIGN8 user_buffer[2] = {1, 2};

…
write_data(0, 0, 2, user_buffer);

…

4.6.19check_network_status()

ROUTINE DESCRIPTION:

This is an auxiliary function to check whether the MAC layer (network) is alive, tokens are
passed or the medium is undergoing a reconfiguration.

ROUTINE PROTOTYPE:
USIGN8 check_network_status(void);

ROUTINE PARAMETERS:

none

ROUTINE RETURN VALUES:

Action Result

Token seen but reconfiguration
occurred (single node network)

E_ONE_NODE

The token bit is not being set (the
node does not recognize any
tokens)

E_NO_TOKEN

The tokens are being passed, there
is at least one other node on the
network

E_OK

ROUTINE EXAMPLE:

ControLink86 Realtime Networking Software

 55

/* check if the network is operational */
USIGN8 status;
…
switch(check_network_status())

{
case E_OK:

/* network ok */
break;

case E_NO_TOKEN:

/* process for no token */
break;

case E_ONE_NODE:

/* alone on the network */
break;

default:

break;
}

…

ControLink86 Realtime Networking Software

 56

5.LIST OF ERROR CODES RETURNED

5.1CODES RETURNED BY THE D20.C DRIVER FUNCTIONS
Name Dec Hex Description

E_OK 0 0 0x00 operation successful
E_NO_PARAMETERS 1 0x01 setup parameters not initialized
E_BAD_STATUS 2 0x02 ARCNET not operational
E_NOT_INITED 3 0x03 ARCNET was never initialized
E_BAD_COMMAND 4 0x04 invalid command value
E_BAD_PARAMETER 5 0x05 invalid parameter value
E_BAD_DATA 6 0x06 invalid data value
E_NO_PACKET 7 0x07 no packet available
E_NO_TOKEN 8 8 0x08 no token seen
E_BAD_PACKET_SIZE 9 0x09 bad packet size for packet type
E_TX_BUSY 10 0x0A transmitter busy
E_ACK 11 0x0B write acknowledged
E_ABORT 12 0x0C write aborted
E_DUPID 13 0x0D duplicate ID detected on the network

segment
E_ONE_NODE 14 0x0E only one node on the network
E_NODE_USED 15 0x0F node address is used or 255 nodes

connected to the segment
E_QFULL 16 0x10 queue is full
E_NAK_NO_TX 17 0x11 cannot transmit a packet due to the

NAKs to FBEs
E_DRIVER_OPTION 18 0x12 driver configuration does not permit

the service
E_TA_NO_ACK 19 0x13 TA bit set but not TMA bit
E_NOT_OK 255 0xFF bad status

5.2CODES RETURNED BY THE LLC1.C FUNCTIONS
Name Dec Hex Description

E_UP 30 0x1E Station state: operational
E_DOWN 31 0x1F Station state: down
E_NO_SAP 32 0x20 SAP selected does not exist

ControLink86 Realtime Networking Software

 57

6.NETWORK SPEED
ControLink86 is primarily designed to operate with the default network speed and timeout values for the
COM2002x ULANC controllers. The network speed and timeout concepts are explained in the
COM2002x ULANC Data Sheets. The default values are those which are the original values for the
ARCNET Local Area Network Standard: ATA/ANSI 878.1.

COM2002x permits the operation of the physical medium at the following speeds / timeout / timer
selections. The network speed is a function of the following factors:

• Crystal oscillator value (20MHz or 40MHz)
• Setting of the Clock Prescaler bits CKP3, CKP2, CKP1 which divide the oscillator frequency and

yield the effective network speed (baud rate)
• Setting of the Extended Timeout bits ET1, ET2 and separately ET3

The above circumstances influence the behavior of the ARCNET network core, and more specifically its
Response Timer, Idle Timer and Reconfiguration Timer.

ET2 ET1 Divisor Speed Response Timer
[us]

Idle Timer
[us]

Reconfiguration
Timer [ms]

 * 5 mbps 37.35 41 420
1 1 8 2.5 mbps 74.7 82 840
 16 1.25 mbps 149.4 164 1680
 32 625 kbps 298.4 328 3360
 64 312.5 kbps 596.8 656 6920
 128 156.25 kbps 1193.6 1312 13440
 * 5 mbps 74.7 82 840
1 0 8 2.5 mbps 298.4 328 1680
 16 1.25 mbps 596.8 656 3360
 32 625 kbps 1193.6 1312 6920
 64 312.5 kbps 2387.2 2624 13440
 128 156.25 kbps 4774.4 5248 26880
 * 5 mbps 298.4 328 840
0 1 8 2.5 mbps 596.8 656 1680
 16 1.25 mbps 1193.6 1312 3360
 32 625 kbps 2387.2 2624 6920
 64 312.5 kbps 4774.4 5248 13440
 128 156.25 kbps 9548.8 10496 26880
 * 5 mbps 596.8 656 840
0 0 8 2.5 mbps 1193.6 1312 1680
 16 1.25 mbps 2387.2 2624 3360
 32 625 kbps 4774.4 5248 6920
 64 312.5 kbps 9548.8 10496 13440
 128 156.25 kbps 19097.6 20992 26880

The table above summarizes the values of the timers for each network speed. The shaded field is the
default network speed

ControLink86 Realtime Networking Software

 58

The timing primitives are provided in the MSC.H file. These are:

• DELAYMS(number_of_milliseconds)
• DELAYUS(number_of_microseconds).

D20 driver must wait for the expiration of the above timers in cases of:

• Reset
• Reconfiguration
• Token timing

The timing macros are provided for several platforms based on the PC ISA bus. The designer of a real-
life control application is responsible for making sure that these macros hold for the physical system that
is in use.

ControLink86 Realtime Networking Software

 59

7.SAMPLE PROGRAM APP_INT.C
The following listing is the actual program distributed with ControLink86, and it is an interrupt based
demonstration application. This is the file APP_INT.C
/***/
/*---*/
/* STANDARD MICROSYSTEMS CORPORATION */
/*---*/
/* Module: ControLink Test Program */
/* Filename: app_int.c */
/* Description: Example program to exercise ControLink functions */
/* Uses the interrupt mode of D20 driver */
/* Compiler: Microsoft C ver. 7.00 (Visual C++) */
/* Target system: PC-AT platform */
/* Target O.S.: MS-DOS + ANSI.SYS loaded */
/***/

/*=== INCLUDE FILES ===*/

/* standard libraries */
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <dos.h>
#include <string.h>

/* compiler specific includes */
#include <msc.h>

/* arcnet specific defines */
#include <arcdef.h>
#include <llc.h>

/* function declarations */
#include <d20.h>
#include <llc1.h>

/*=== DEFINITIONS ===*/

/* display */
#define CLRSCR printf("\x1B[2J") /* clear screen escape sequence */

/*=== CHARACTER ARRAYS ==*/
static char *par_names[] = {

"D20_BASE_LSB",
"D20_BASE_MSB",
"D20_BUS_8_16",
"D20_CLOCK_RATE",
"D20_NODE_MODE",
"D20_SW_PORT",
"D20_INT_OR_POLL",
"D20_INT_LEVEL",
"D20_INT_MASK",
"D20_INT_EOI",
"D20_IMR",
"D20_RETRIES",
"D20_DISABLE_TX",
"D20_WRITE_ACK",
"D20_WAIT_TA",
"D20_IN_BUFFERS",
"D20_OUT_BUFFERS",
"D20_BROADCAST",
"D20_SHORT_LONG",
"D20_CMD_CHAIN",
"D20_NET_TIMEOUT",
"D20_BACKPLANE",
"D20_NODE_ID",
"D20_P1MODE",

ControLink86 Realtime Networking Software

 60

"D20_FOUR_NAKS",
"D20_ET3",
"D20_RCV_ALL",
"D20_NET_SPEED",
"D20_SLOW_ARB"
};

static char *status_str[] = {

"E_OK",
"E_NO_PARAMETERS",
"E_BAD_STATUS",
"E_NOT_INITED",
"E_BAD_COMMAND",
"E_BAD_PARAMETER",
"E_BAD_DATA",
"E_NO_PACKET",
"E_NO_TOKEN",
"E_BAD_PACKET_SIZE",
"E_TX_BUSY",
"E_ACK",
"E_ABORT",
"E_DUPID",
"E_ONE_NODE",
"E_NODE_USED",
"E_QFULL",
"E_NAK_NO_TX",
"E_DRIVER_OPTION",
"E_TA_NO_ACK",
"E_NOT_OK"
};

/*=== GLOBAL DECLARATIONS ===*/

/* SAPs */
struct LLC_MSG SAP[MAX_SAPS];
USIGN8 SAPBUF[MAX_SAPS][MAX_SAPBUF];
unsigned int sizeof_sb[MAX_SAPS];
unsigned int numof_saps = MAX_SAPS;
unsigned char sap_type[MAX_SAPS];
unsigned char netmap[32];
USIGN8 regs[SIZEOF_REGISTERS];
USIGN16 diag_cntr[SIZEOF_DIAG_CNT];

extern USIGN8 int_flag;
extern USIGN8 rx_flag;

/*=== FUNCTION PROTOTYPES ===*/
void prompt(void);
void chk_saps(void);
void parse_indication(unsigned char, unsigned char);
unsigned char send_pkt(void);
void net_init(void);
void display_parameters(void);
void init_sap(void);
void display_netmap(void);
void change_sap(void);
void show_saps(void);

/*=== CODE ==*/
void main(void)

{
int dummx = 'r';
unsigned char status;

/*=============*/
/* PREPARATION */
/*=============*/

CLRSCR;

printf("TEST11 for %s\n", platform_string);
prompt();

ControLink86 Realtime Networking Software

 61

CLRSCR;

net_init();
prompt();

CLRSCR;

/* show all active nodes on the link */
display_netmap();
prompt();

CLRSCR;

/* tell controlink to activate the SAPs, use a 0 DSAP to indicate internal activity */
init_sap();
prompt();

CLRSCR;

/*===========*/
/* TEST CODE */
/*===========*/

printf("Enter:\n");
printf(" <t> to transmit a data packet from a SAP to a SAP\n");
printf(" <c> to change configuration of a SAP\n");
printf(" <d> to display the configuration of all SAPs\n");
printf(" <e> to exit this program\n");
printf("\n");

while(TRUE)

{
/* service the interrupts */
if(int_flag)

{
DISABLE;

d20_check_int();
int_flag = FALSE;

if(rx_flag)

{
llc1_service();
rx_flag = FALSE;
}

ENABLE;
}

/* check saps if any service received */
chk_saps();

/* check for other services */
if(kbhit())

{
dummx = _getch();

CLRSCR;

printf("Enter:\n");
printf(" <t> to transmit a packet from a SAP to a SAP\n");
printf(" <c> to change configuration of a SAP\n");
printf(" <d> to display the configuration of all SAPs\n");
printf(" <e> to exit this program\n");
printf("\n");
}

/* send data */
if((dummx == 't') || (dummx == 'T'))

{
status = send_pkt();
printf("Transmission scheduled with the status: %s\n",
status_str[status]);
}

/* change data in a SAP buffer */
else if((dummx == 'c') || (dummx == 'C'))

{

ControLink86 Realtime Networking Software

 62

change_sap();
}

/* display configuration of all SAPs*/
else if((dummx == 'd') || (dummx == 'D'))

{
show_saps();
}

/* exit */
else if((dummx == 'e') || (dummx == 'E'))

{
d20_exit();
exit(-1);
}

dummx = 0x00;
}

} /* end of main(..) */

/**
 * FUNCTION NAME: prompt
 *
 * DESCRIPTION : prompts operator to exit or continue
 *
 * RETURN VALUE : none
 ***/
void prompt(void)

{
char dummy1[10];

/* continue or exit */
printf("\nHit <E> to exit or <Return> to continue: ");
gets(&dummy1[0]);
printf("\n");
fflush(stdin);

if ((dummy1[0] == 'e')||(dummy1[0] == 'E'))

{
exit(0);
}

} /* end of prompt(..) */

/**
 * FUNCTION NAME: chk_saps
 *
 * DESCRIPTION : check incoming packet
 *
 * RETURN VALUE : none
 ***/
void chk_saps(void)

{
USIGN8 status;
unsigned char i;

for(i = 0; i < numof_saps; i++)

{
status = llc1_indication((USIGN8)(i + 1));
parse_indication(status, i);
}

} /* end of chk_saps(..) */

/**
 * FUNCTION NAME: parse_indication
 *
 * DESCRIPTION : check the control field of the incoming packet
 *
 * RETURN VALUE : none
 ***/
void parse_indication(unsigned char pkt_type, unsigned char sapid)

{
unsigned int j;

switch(pkt_type)

{

ControLink86 Realtime Networking Software

 63

case NO_INDICATION:
break;

case UNITDATA_INDICATION:

{
printf("\nSAP %d received %d bytes: { ", (sapid + 1), ((SAP[sapid].msbcount << 8) +
SAP[sapid].lsbcount));
for(j = 0; j < sizeof_sb[sapid]; j++)

{
if((j < 3) || (j > (sizeof_sb[sapid] - 3)))

{
printf("%02x ", SAPBUF[sapid][j]);
}

else if(j < 4)
{
printf("... ");
}

}
printf("}\n");
break;
}

case XID_INDICATION:

{
printf("XID query from SAP %d\n", sapid);
break;
}

case TEST_INDICATION:

{
printf("Link TEST frame received from SAP %d\n", sapid);
break;
}

case DISC_INDICATION:

{
printf("Received Disconnect Command\n");
break;
}

case DISC_CONFIRM:

{
printf("Disconnect Confirmation Received\n");
break;
}

}
} /* end of parse_indication(..) */

/**
 * FUNCTION NAME: send_pkt
 *
 * DESCRIPTION : schedule a packet to be sent
 *
 * RETURN VALUE : none
 ***/
unsigned char send_pkt(void)

{
unsigned char status;
USIGN8 destination_node;
USIGN8 ssapidx;
USIGN8 dsapidx;
unsigned char once_many;
char dummy[10];

/* get the node address to send the data to */
printf("Enter the destination node address\n");
printf("<0x01 - 0xFF> for individual or <0x00> for broadcast: ");
gets(&dummy[0]);
fflush(stdin);
sscanf(&dummy[0], "%x", &destination_node);

/* get the sap to send from */
printf("Enter the SAP number to send the data from: ");
gets(&dummy[0]);

ControLink86 Realtime Networking Software

 64

fflush(stdin);
sscanf(&dummy[0], "%d", &ssapidx);

/* adjust ssapidx for the index to the arrays */
if(ssapidx == 0)

{
printf("SAP 0 is reserved - use another!\n");
return(E_NOT_OK);
}

else
{
ssapidx--;
}

/* get the sap to send from */
printf("Enter the SAP number to send the to: ");
gets(&dummy[0]);
fflush(stdin);
sscanf(&dummy[0], "%d", &dsapidx);

/* check if continual sending */
printf("Enter:\n");
printf(" <o> to transmit once\n");
printf(" <c> to transmit continually\n");
printf("\n");
gets(&dummy[0]);
fflush(stdin);
scanf(&dummy[0], "%d", &once_many);

if((dummy[0] == 'o') || (dummy[0] == 'O'))

{
/* data request */
SAP[ssapidx].dstation = (USIGN8)destination_node;
SAP[ssapidx].msbcount = (USIGN8)((sizeof_sb[ssapidx] & 0xFF00) >> 8);
SAP[ssapidx].lsbcount = (USIGN8)(sizeof_sb[ssapidx] & 0x00FF);
SAP[ssapidx].msgptr = &SAPBUF[ssapidx][0];
status = llc1_request((USIGN8)(ssapidx + 1), dsapidx, DATA_REQUEST, &SAP[ssapidx]);
}

else if((dummy[0] == 'c') || (dummy[0] == 'C'))
{
while(TRUE)

{
SAP[ssapidx].dstation = (USIGN8)destination_node;
SAP[ssapidx].msbcount = (USIGN8)((sizeof_sb[ssapidx] & 0xFF00) >> 8);
SAP[ssapidx].lsbcount = (USIGN8)(sizeof_sb[ssapidx] & 0x00FF);
SAP[ssapidx].msgptr = &SAPBUF[ssapidx][0];
status = llc1_request((USIGN8)(ssapidx + 1), dsapidx, DATA_REQUEST, &SAP[ssapidx]);

/* if keyboard hit - return */
if(kbhit())

{
return(status);
}

}
}

else
{
printf("\n\nInvalid selection!\n");
return(E_NOT_OK);
}

return(status);
} /* end of send_pkt(..) */

/**
 * FUNCTION NAME: net_init
 *
 * DESCRIPTION : initializes the network
 *
 * RETURN VALUE : none
 ***/
void net_init(void)

{
unsigned char init_status;

ControLink86 Realtime Networking Software

 65

char dummy[10];
USIGN8 temp_param;
USIGN8 i;
FILE *params;

/* select the configuration parameters for the D20.C */
printf("Enter:\n");
printf(" <d> for the default parameters - in D20.C\n");
printf(" <m> for manual setting of the parameters\n");
printf(" <f> to initialize parameters from the file D20.PAR\n");
printf(" <e> to exit this program\n");
gets(&dummy[0]);
printf("\n");
fflush(stdin);

/* default parameters in D20.C */
if((dummy[0] == 'd') || (dummy[0] == 'D'))

{
d20_set_defaults();
}

/* enter parameters manually */
else if((dummy[0] == 'm') || (dummy[0] == 'M'))

{
for(i = 0; i <= D20P_SLOW_ARB; i++)

{
printf("%s: ", par_names[i]);
gets(&dummy[0]);
fflush(stdin);
sscanf(&dummy[0], "%x", &temp_param);
d20_set_parameter(i, temp_param);
}

}
/* read parameters from D20.PAR file */
else if((dummy[0] == 'f') || (dummy[0] == 'F'))

{
if((params = fopen("D20.PAR", "r")) == NULL)

{
printf("ERROR The file 'D20.PAR' was not opened. Exiting\n");
d20_exit();
exit(-1);
}

else
{
for(i = 0; i <= D20P_SLOW_ARB; i++)

{
fscanf(params, "%02x", &temp_param);
d20_set_parameter(i, temp_param);
}

fclose(params);
}

}
/* exit */
else if((dummy[0] == 'e') || (dummy[0] == 'e'))

{
exit(-1);
}

else
{
printf("\nInvalid selection - exiting!\n");
exit(-1);
}

CLRSCR;

/* display what is about to be configured */
display_parameters();

printf("\nEnter:\n");
printf(" <y> to keep the above parameters\n");
printf(" <e> to exit this program\n");
gets(&dummy[0]);
printf("\n");
fflush(stdin);

/* initialize the hardware with the given parameters */

ControLink86 Realtime Networking Software

 66

if((dummy[0] == 'y') || (dummy[0] == 'Y'))
{
/* initialize hardware */
init_status = d20_init();
}

else if((dummy[0] == 'e') || (dummy[0] == 'e'))
{
exit(-1);
}

else
{
printf("\nInvalid selection - exiting!\n");
exit(-1);
}

/* check the result of the initialization */
if(init_status != E_OK)

{
printf("\nInitialization failed, ERROR CODE = %s\n", status_str[init_status]);
printf("Exiting\n");
d20_exit();
exit(-1);
}

CLRSCR;

printf("Initialization OK\n\n");
display_parameters();
} /* end of net_init(..) */

/**
 * FUNCTION NAME: display_parameters
 *
 * DESCRIPTION : gets the parameters from d20_params and displays them
 *
 * RETURN VALUE : none
 ***/
void display_parameters(void)

{
printf("D20_BASE_LSB D20_BASE_MSB D20_BUS_8_16 D20_CLK D20_NODE_MODE D20_SW_PORT\n");
printf(" %02x %02x %02x %02x %02x %02x\n",
d20_get_parameter(D20P_BASE_LSB), d20_get_parameter(D20P_BASE_MSB),
d20_get_parameter(D20P_BUS_8_16), d20_get_parameter(D20P_CLK),
d20_get_parameter(D20P_NODE_MODE), d20_get_parameter(D20P_NODE_SW_PORT));

printf("D20_INT_OR_POLL D20_INT_LEVEL D20_INT_MASK D20_INT_EOI D20_IMR\n");
printf(" %02x %02x %02x %02x %02x\n",
d20_get_parameter(D20P_INT_OR_POLL), d20_get_parameter(D20P_INT_LEVEL),
d20_get_parameter(D20P_INT_MASK), d20_get_parameter(D20P_INT_EOI),
d20_get_parameter(D20P_IMR));

printf("D20_RETRIES D20_DISABLE_TX D20_WRITE_ACK\n");
printf(" %02x %02x %02x\n",

d20_get_parameter(D20P_RETRIES), d20_get_parameter(D20P_DISABLE_TX),
d20_get_parameter(D20P_WRITE_ACK));

printf("D20_IN_BUFFERS D20_OUT_BUFFERS\n");
printf(" %02x %02x\n",

d20_get_parameter(D20P_IN_BUFFERS),
d20_get_parameter(D20P_OUT_BUFFERS));

printf("D20_BROADCAST D20_SHORT_LONG\n");
printf(" %02x %02x\n",

d20_get_parameter(D20P_BROADCAST),
d20_get_parameter(D20P_SHORT_LONG));

printf("D20_CMD_CHAIN D20_NET_TIMEOUT D20_BACKPLANE\n");
printf(" %02x %02x %02x\n",

d20_get_parameter(D20P_CMD_CHAIN),
d20_get_parameter(D20P_NET_TIMEOUT),
d20_get_parameter(D20P_BACKPLANE));

printf("D20_NODE_ID = %02x\n", d20_get_parameter(D20P_NODE_ID));

ControLink86 Realtime Networking Software

 67

printf("D20_P1MODE D20_FOUR_NAKS D20_ET3 D20_RCV_ALL D20_NET_SPEED D20_SLOW_ARB\n");
printf(" %02x %02x %02x %02x %02x %02x\n",

d20_get_parameter(D20P_P1MODE), d20_get_parameter(D20P_FOUR_NAKS),
d20_get_parameter(D20P_ET3), d20_get_parameter(D20P_RCV_ALL),
d20_get_parameter(D20P_NET_SPEED), d20_get_parameter(D20P_SLOW_ARB));

} /* end of display_parameters(..)

/**
 * FUNCTION NAME: init_sap
 *
 * DESCRIPTION : initialize llc driver and all declared saps
 *
 * RETURN VALUE : none
 ***/
void init_sap(void)

{
char dummy[10];
unsigned char sap_status;
unsigned char temp;
unsigned int j;
USIGN8 i;

/* initialize SAPS */
printf("Enter:\n");
printf(" <d> for the default size of 8 SAPs - 16 bytes per each SAP buffer\n");
printf(" <m> for manual setting of the SAP buffer sizes\n");
printf(" <e> to exit this program\n");
gets(&dummy[0]);
printf("\n");
fflush(stdin);

if((dummy[0] == 'm') || (dummy[0] == 'M'))

{
/* get number of SAPs for this program */
printf("\nEnter number of SAPs for this application: ");
gets(&dummy[0]);
printf("\n\n");
fflush(stdin);
sscanf(&dummy[0], "%d", &numof_saps);

for(i = 0; i < numof_saps; i++)

{
printf("Enter the size of buffer for SAP %d: ", (i + 1));
gets(&dummy[0]);
fflush(stdin);
sscanf(&dummy[0], "%d", &sizeof_sb[i]);

printf("Enter the formatting character of the SAPBUF %d: ", (i + 1));
gets(&dummy[0]);
printf("\n");
fflush(stdin);
sscanf(&dummy[0], "%x", &temp);
for(j = 0; j < sizeof_sb[i]; j++)

{
SAPBUF[i][j] = temp;
}

}
}

else if((dummy[0] == 'd') || (dummy[0] == 'D'))
{
numof_saps = 8;

for(i = 0; i < numof_saps; i++)

{
sizeof_sb[i] = 16;

for(j = 0; j < 16; j++)

{
SAPBUF[i][j] = (USIGN8)((i + 1) << 4);
}

}
}

else if((dummy[0] == 'e') || (dummy[0] == 'e'))

ControLink86 Realtime Networking Software

 68

{
exit(-1);
}

else
{
printf("\nInvalid selection - exiting!\n");
exit(-1);
}

/* link LLC structure to SAP buffers */
for (i = 0; i < numof_saps; i++)

{
SAP[i].msgptr = &SAPBUF[i][0];
}

/* initialize LLC driver */
sap_status = llc1_request(0, 0, ENABLE_WITHOUT_DUP_ADDR_CHECK, &SAP[0]);
if(sap_status != E_OK)

{
printf("ERROR - going online!\n");
}

/* activate SAPS */
for(i = 0; i < numof_saps; i++)

{
sap_status = llc1_request((USIGN8)(i + 1), 0, SAP_ACTIVATION_REQUEST, &SAP[i]);
if(sap_status != E_OK)

{
printf("ERROR - activating SAP %d\n", (i + 1));
}

else
{
printf("SAP %d is on line. SAP %d data: { ", (i + 1), (i + 1));
for(j = 0; j < sizeof_sb[i]; j++)

{
if((j < 3) || (j > (sizeof_sb[i] - 3)))

{
printf("%02x ", SAPBUF[i][j]);
}

else if(j < 4)
{
printf("... ");
}

}
printf("}\n");
}

}

} /* end of init_sap(..) */

/**
 * FUNCTION NAME: display_netmap
 *
 * DESCRIPTION : displays formatted output of the active nodes
 *
 * RETURN VALUE : none
 ***/
void display_netmap(void)

{
int i;
int j;
char net_status;

printf("\nGetting the network map - wait!\n");

net_status = d20_network_map(netmap);

/* display network map */
printf("\nNetwork Map:\n\n");
for(i = 0; i < 32; i ++)

{
for(j = 0; j < 8; j++)

{

ControLink86 Realtime Networking Software

 69

if(netmap[i] & (1 << j))
{
printf("%02x, ", ((i * 8) + j));
}

}
}

printf("\n\n");

if((net_status != E_OK))

{
printf("Bad network, status = %s\n", status_str[net_status]);
printf("Exiting ControLink\n");
exit(-1);
}

} /* end of display_netmap(..)

/**
 * FUNCTION NAME: change_sap
 *
 * DESCRIPTION : changes data in a selected SAP buffer
 *
 * RETURN VALUE : none
 ***/
void change_sap(void)

{
char dummy[10];
USIGN8 sapidx;
USIGN8 temp;
USIGN8 sap_status;
unsigned int j;
unsigned char init_flag = FALSE;

/* get the sap number to change */
printf("\nEnter the SAP number to change: ");
gets(&dummy[0]);
fflush(stdin);
sscanf(&dummy[0], "%d", &sapidx);

/* convert the sap number into the array index */
sapidx--;

printf("\nEnter:\n");
printf(" <y> to change configuration of SAP %d\n", (sapidx + 1));
printf(" <n> to keep old configuration of SAP %d\n", (sapidx + 1));
printf(" <e> to exit to main menu\n");
gets(&dummy[0]);
printf("\n");
fflush(stdin);

if((dummy[0] == 'y') || (dummy[0] == 'Y'))

{
/* set init flag */
init_flag = TRUE;

/* take the SAP off line */
sap_status = llc1_request((USIGN8)(sapidx + 1), 0, SAP_DEACTIVATION_REQUEST,
&SAP[sapidx]);
if(sap_status == E_OK)

{
printf("SAP %d is deactivated.\n", (sapidx + 1));
}

else
{
printf("ERROR - deactivating SAP %d.\n", (sapidx + 1));
return;
}

/* enter new configuration */
printf("\nEnter the new size of SAP %d: ", (sapidx + 1));
gets(&dummy[0]);
fflush(stdin);
sscanf(&dummy[0], "%d", &sizeof_sb[sapidx]);

}

ControLink86 Realtime Networking Software

 70

else if((dummy[0] == 'e') || (dummy[0] == 'E'))
{
return;
}

else if((dummy[0] == 'n') || (dummy[0] == 'N'))
{
printf("\nSAP %d retains its old parameters\n", (sapidx + 1));
}

/* get the formatting character */
printf("\nEnter the formatting character of the SAPBUF %d: ", (sapidx + 1));
gets(&dummy[0]);
printf("\n");
fflush(stdin);
sscanf(&dummy[0], "%x", &temp);

/* fill the SAP buffer */
for(j = 0; j < sizeof_sb[sapidx]; j++)

{
SAPBUF[sapidx][j] = temp;
}

if(init_flag == TRUE)

{
/* activate SAP with the new parameters */
sap_status = llc1_request((USIGN8)(sapidx + 1), 0, SAP_ACTIVATION_REQUEST, &SAP[sapidx]);
if(sap_status != E_OK)

{
printf("ERROR - activating SAP %d\n", (sapidx + 1));
}

else
{
printf("SAP %d is on line. SAP %d has %d bytes: { ", (sapidx + 1), (sapidx + 1),
 sizeof_sb[sapidx]);
for(j = 0; j < sizeof_sb[sapidx]; j++)

{
if((j < 3) || (j > (sizeof_sb[sapidx] - 3)))

{
printf("%02x ", SAPBUF[sapidx][j]);
}

else if(j < 4)
{
printf("... ");
}

}
printf("}\n");
}

}
else

{
/* display the contents of the SAP buffer */
printf("SAP %d new data, %d bytes: { ", (sapidx + 1), sizeof_sb[sapidx]);
for(j = 0; j < sizeof_sb[sapidx]; j++)

{
if((j < 3) || (j > (sizeof_sb[sapidx] - 3)))

{
printf("%02x ", SAPBUF[sapidx][j]);
}

else if(j < 4)
{
printf("... ");
}

}
printf("}\n");
}

} /* end of change_sap(..) */

 **/
 * FUNCTION NAME: show_saps
 *
 * DESCRIPTION : shows the size and contents of local saps
 *
 * RETURN VALUE : none
 **/

ControLink86 Realtime Networking Software

 71

void show_saps(void)
{
unsigned int i;
unsigned int j;
USIGN8 status;

for(i = 0; i < numof_saps; i++)

{
status = llc1_request((USIGN8)(i + 1), 0, REPORT_STATUS, &SAP[i]);

printf("SAP %d status is %d. SAP %d has %d bytes: { ", (i + 1), status, (i + 1),
 sizeof_sb[i]);
for(j = 0; j < sizeof_sb[i]; j++)

{
if((j < 3) || (j > (sizeof_sb[i] - 3)))

{
printf("%02x ", SAPBUF[i][j]);
}

else if(j < 4)
{
printf("... ");
}

}
printf("}\n");
}

} /* end of show_saps(..) */

/* end of file app_int.c */

ControLink86 Realtime Networking Software

 72

8.GLOSSARY OF TERMS

ACK Acknowledgment packet - a dedicated message that is used in point-to-
point communications by a receiving node as a means of signaling a
successful reception of the FBE (Free Buffer Enquiry) packet and the
data packet.

Application Portion of the network node's software that processes the local events
and is not related to the network. This portions of the software may
contain the scheduler. It is responsible for general system
management. See section 7.

Application Interface A collection of software and hardware features making it possible for an
application to utilize COM2002x as its network interface. These include
COM2002x registers, SAP data structures (LLC_MSG), receive queue
inbuf[], LLC1's data structures: llc1_rbuf, llc1_xbuf, llc1_sbuf.

Class 1 Services Services within the Logical Link Control (LLC) that do not require
establishment of a connection. See ANSI/IEEE 802.2 Standard

Class 2 Services Services within the Logical Link Control (LLC) that require
establishment of a connection. See ANSI/IEEE 802.2 Standard

COM2002x ULANC Standard Microsystems Corporation integrated family of the ARCNET
Local Area Network Controller. This is the main element of the network
hardware for which the ControLink86 has been developed. This family
includes the following parts: COM20010, COM20020, COM20020-5,
COM20022.

Count Number of bytes in a packet. In the MAC packet the count describes
the number of bytes in the entire packet.

Diagnostic Counters A collection of 13 16-bit variables maintained by the D20 Low Level
Driver to count various network related events.

DID Destination Identification - network node address of the recipient of the
packet. DID is a field in the MAC frame (packet)

Driver Parameters A collection of parameters that specify the configuration, timing and the
flavor of D20 Driver. These parameters' scope is D20 module. They are
configured during setup or by the dedicated functions. See section 4.5.

DSAP Destination Service Access Point - a SAP that is a destination of the
request or data. See Section 3.4.

ISR Interrupt Service Routine - the portion of the driver code that is vectored
to upon COM2002x generating its hardware interrupt to host system.
See section 4.6.

LDSAP Local Destination Service Access Point - a SAP that is the destination

ControLink86 Realtime Networking Software

 73

(or recipient) of the request or data.

LLC Layer Logical Link Control - the part of network node's system that supports
and resolves the issues of sending commands, data and maintaining
the logical links between the stations connected to the medium.

LLC_MSG data structure Data structure that holds all necessary control information to manage a
SAP - logical address. See section 3.4.

LSAP Local Service Access Point - a SAP within the local node.

LSSAP Local Source Service Access Point - a SAP that is an originator of the
request or data.

MAC Layer Portion of the network node's system dedicated to the maintenance of
the connection to the medium.

Message See packet.

Makefile A collection of procedures aimed at producing an executable format for
an application to run.

NAK Negative Acknowledgment - a dedicated message that is used in point-
to-point communications by a receiving node as a means of signaling
that the node is unable to receive a message.

Network A collection of hardware and software used to connect various stations
together in a strictly defined fashion for the purpose of exchanging the
data between the stations.

Network Map The list or active (participating) nodes that are attached to the medium
and are actively passing tokens.

Network Speed A measure of how fast the signals are sent on the medium. Some
COM2002x's standard network speeds are 2.5Mbps (Mega-bits-per-
second) and 5Mbps. This parameter is controlled by the choice of the
crystal oscillator as well as the software via divisors. See section 6.

Node Synonymous with Station.

Node (Station) Address A unique number by which one station is distinguished from another.
Two stations connected to the same medium must not have the same
address. A packet is delivered to a station based on its address. Also
known as Node ID.

Packet Packet is the string of bytes ordered according to the rules of MAC layer
and LLC layer. It is synonymous with message. See Section 3.6.3

PDU Protocol Data Unit - a portion of the network packet that contains all the
necessary information for delivery and reply between the logical entities
within the Data Link Layer; as well as data.

Physical Medium A method by which local area network connects its stations together.
Physical layer specifies the delivery mechanism (wire, fiber-optic, radio
waves) and the signaling method for most effective and error preventing

ControLink86 Realtime Networking Software

 74

form of delivering the signals from one station to the other.

Polling / Interrupt A method by which a driver determines what kind of network event is
taking place.

Registers Internal registers to COM2002x that allow to specify the hardware
configuration, discerning the network services, reading the incoming
data. See section 4.6

Reply A message that is sent to the sender as a confirmation or as a result of
a request for data.

Response Result of a request - it can be a reply message or a status returned by
the local layer.

Requests Method by which the services are asked for and obtained.

SAP Service Access Point - a logical entity within the Logical Link Control
Layer that receives the data or requests from the other logical entities at
the other nodes or the local node. A node can have up to 64 SAPs
(logical addresses). See Section 3.4.

Services Procedures performed by the Data Link Layer (LLC plus MAC). For
instance: sending data, receiving data, testing other nodes.

SID Source Identification - network node address of the sender of the
packet. SID is a field in the MAC frame (packet).

SSAP Source Service Access Point - a SAP that is an originator of the data or
request.

Station A system connected to a network: its application plus network software
and hardware.

Token A dedicated message that is passed from a node with the lower
address to a node with a higher address as the invitation to transmit.
Only a node that just received a token may transmit its data
(information, requests, replies, etc.) onto a medium.

Timing Primitives Low level code that is optimized for a particular type of processor
(80x86) that doles out a period of a microsecond and a millisecond.

USIGN8 Data type. Defined in C as unsigned char

USIGN16 Data type. Defined in C as unsigned int

USIGN32 Data type. Defined in C as unsigned long

ControLink86 Realtime Networking Software

 75

 80 Arkay Drive
 Hauppauge, NY 11788
 (631) 435-6000
 FAX (631) 273-3123

Copyright © SMSC 2004. All rights reserved.

Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete
information sufficient for construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no
responsibility is assumed for inaccuracies. SMSC reserves the right to make changes to specifications and product descriptions at any time without
notice. Contact your local SMSC sales office to obtain the latest specifications before placing your product order. The provision of this information
does not convey to the purchaser of the described semiconductor devices any licenses under any patent rights or other intellectual property rights of
SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated version of SMSC's
standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or
errors known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon
request. SMSC products are not designed, intended, authorized or warranted for use in any life support or other application where product failure
could cause or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of SMSC
and further testing and/or modification will be fully at the risk of the customer. Copies of this document or other SMSC literature, as well as the Terms
of Sale Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered trademark of Standard Microsystems
Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders.

SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND
ALL WARRANTIES ARISING FROM ANY COURSE OF DEALING OR USAGE OF TRADE.

IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES;
OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON
CONTRACT; TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR
NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

