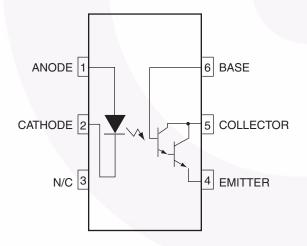


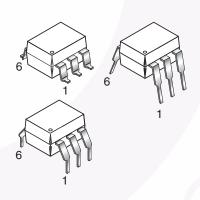
September 2009

4N29M, 4N30M, 4N32M, 4N33M, H11B1M, TIL113M General Purpose 6-Pin Photodarlington Optocoupler

Features

- High sensitivity to low input drive current
- Meets or exceeds all JEDEC Registered Specifications
- UL, C-UL approved, File #E90700, Volume 2
- IEC 60747-5-2 approved (ordering option V)


Applications


- Low power logic circuits
- Telecommunications equipment
- Portable electronics
- Solid state relays
- Interfacing coupling systems of different potentials and impedances

Description

The 4N29M, 4N30M, 4N32M, 4N33M, H11B1M and TIL113M have a gallium arsenide infrared emitter optically coupled to a silicon planar photodarlington.

Schematic

Absolute Maximum Ratings ($T_A = 25^{\circ}$ C unless otherwise specified.) Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Value	Units
TOTAL DEVICE			!
T _{STG}	Storage Temperature	-50 to +150	°C
T _{OPR}	Operating Temperature	-40 to +100	°C
T _{SOL}	Lead Solder Temperature (Wave)	260 for 10 sec	°C
P _D	Total Device Power Dissipation @ T _A = 25°C	250	mW
	Derate above 25°C	3.3	mW/°C
EMITTER			
I _F	Continuous Forward Current	80	mA
V _R	Reverse Voltage	3	V
I _F (pk)	Forward Current – Peak (300µs, 2% Duty Cycle)	3.0	А
P_{D}	LED Power Dissipation @ T _A = 25°C	150	mW
	Derate above 25°C	2.0	mW/°C
DETECTOR			
BV _{CEO}	Collector-Emitter Breakdown Voltage	30	V
BV _{CBO}	Collector-Base Breakdown Voltage	30	V
BV _{ECO}	Emitter-Collector Breakdown Voltage	5	V
P_{D}	Detector Power Dissipation @ T _A = 25°C	150	mW
	Derate above 25°C	2.0	mW/°C
I _C	Continuous Collector Current	150	mA

Electrical Characteristics (T_A = 25°C Unless otherwise specified.)

Individual Component Characteristics

Symbol	Parameter	Test Conditions	Device	Min.	Тур.	Max.	Unit
EMITTER			1				
V _F	Input Forward Voltage*	I _F = 10mA	4NXXM		1.2	1.5	V
			H11B1M, TIL113M	0.8	1.2	1.5	
I _R	Reverse Leakage Current*	$V_{R} = 3.0V$	4NXXM		0.001	100	μΑ
		V _R = 6.0V	H11B1M, TIL113M		0.001	10	
С	Capacitance*	$V_F = 0V$, $f = 1.0MHz$	All		150		pF
DETECTO	PR		•				
BV _{CEO}	Collector-Emitter Breakdown Voltage*	$I_C = 1.0 \text{mA}, I_B = 0$	4NXXM,	30	60		V
			TIL113M				
			H11B1M	25	60		
BV _{CBO}	Collector-Base Breakdown Voltage*	$I_C = 100 \mu A, I_E = 0$	All	30	100		V
BV _{ECO}	Emitter-Collector Breakdown Voltage*	$I_E = 100 \mu A, I_B = 0$	4NXXM	5.0	10		V
			H11B1M, TIL113M	7	10		
I _{CEO}	Collector-Emitter Dark Current*	V _{CE} = 10V, Base Open	All		1	100	nA

Transfer Characteristics

Symbol	Parameter	Test Conditions	Device	Min.	Тур.	Max.	Unit
DC CHARAC	CTERISTICS			'		•	•
I _{C(CTR)}	Collector Output Current*(1, 2)	$I_F = 10$ mA, $V_{CE} = 10$ V, $I_B = 0$	4N32M, 4N33M	50 (500)			mA (%)
			4N29M, 4N30M	10 (100)			
		$I_F = 1 \text{mA}, V_{CE} = 5 \text{V}$	H11B1M	5 (500)			
		$I_F = 10$ mA, $V_{CE} = 1$ V	TIL113M	30 (300)			
V _{CE(SAT)}	Saturation Voltage*(2)	$I_F = 8mA, I_C = 2.0mA$	4NXXM			1.0	V
` '			TIL113M			1.25	1
		$I_F = 1mA$, $I_C = 1mA$	H11B1M			1.0	
AC CHARAC	CTERISTICS						
t _{on}	Turn-on Time	$I_F = 200 \text{mA}, I_C = 50 \text{mA}, V_{CC} = 10 \text{V}, R_L = 100 \Omega$	4NXXM, TIL113M			5.0	μs
		$I_F = 10 \text{mA}, V_{CE} = 10 \text{V},$ $R_L = 100 \Omega$	H11B1M		25		
t _{off}	Turn-off Time	$I_F = 200 \text{mA}, I_C = 50 \text{mA},$ $V_{CC} = 10 \text{V}, R_L = 100 \Omega$	4N32M, 4N33M, TIL113M			100	μs
			4N29M, 4N30M			40	
		$I_F = 10$ mA, $V_{CE} = 10$ V, $R_L = 100\Omega$	H11B1M		18		
BW	Bandwidth ^(3, 4)				30		kHz

Electrical Characteristics (T_A = 25°C Unless otherwise specified.) (Continued)

Isolation Characteristics

Symbol	Characteristic	Test Conditions	Device	Min.	Тур.	Max.	Units
V _{ISO}	Input-Output Isolation Voltage ⁽⁵⁾	f = 60Hz, t = 1 sec.	All	7500			V _{AC} PEAK
		VDC	4N32M*	2500			V
		VDC	4N33M*	1500			
R _{ISO}	Isolation Resistance ⁽⁵⁾	V _{I-O} = 500VDC	All	10 ¹¹			Ω
C _{ISO}	Isolation Capacitance ⁽⁵⁾	$V_{I-O} = \emptyset$, $f = 1MHz$	All		0.8		pF

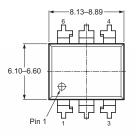
^{*} Indicates JEDEC registered data.

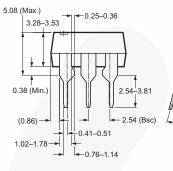
Notes:

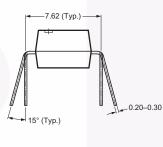
- 1. The current transfer $ratio(I_C/I_F)$ is the ratio of the detector collector current to the LED input current.
- 2. Pulse test: pulse width = $300\mu s$, duty cycle $\leq 2.0\%$.
- 3. I_F adjusted to I_C = 2.0mA and I_C = 0.7mA rms.
- 4. The frequency at which I_C is 3dB down from the 1kHz value.
- 5. For this test, LED pins 1 and 2 are common, and phototransistor pins 4, 5 and 6 are common.

Safety and Insulation Ratings

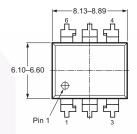
As per IEC 60747-5-2, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

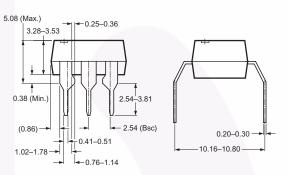

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Installation Classifications per DIN VDE 0110/1.89 Table 1				
	For Rated Main Voltage < 150Vrms		I-IV		
	For Rated Main voltage < 300Vrms		I-IV		
	Climatic Classification		55/100/21		
	Pollution Degree (DIN VDE 0110/1.89)		2		
CTI	Comparative Tracking Index	175			
V _{PR}	Input to Output Test Voltage, Method b, V _{IORM} x 1.875 = V _{PR} , 100% Production Test with tm = 1 sec, Partial Discharge < 5pC	1594			V _{peak}
	Input to Output Test Voltage, Method a, V _{IORM} x 1.5 = V _{PR} , Type and Sample Test with tm = 60 sec, Partial Discharge < 5pC	1275		, , , , , , , , , , , , , , , , , , ,	V _{peak}
V _{IORM}	Max. Working Insulation Voltage	850			V _{peak}
V _{IOTM}	Highest Allowable Over Voltage	6000			V _{peak}
	External Creepage	7			mm
	External Clearance	7			mm
	Insulation Thickness	0.5			mm
RIO	Insulation Resistance at Ts, V _{IO} = 500V	10 ⁹			Ω

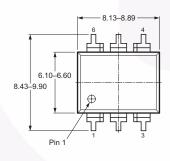

Typical Performance Curves Fig. 1 LED Forward Voltage vs. Forward Current Fig. 2 Normalized CTR vs. Forward Current 1.6 V_{CE} = 5.0V T_A = 25°C Normalized to I_F = 10 mA 1.4 VF - FORWARD VOLTAGE (V) 1.6 1.2 NORMALIZED CTR 1.5 1.0 1.4 0.8 $T_A = -55^{\circ}C$ 1.3 0.6 1.2 0.4 1.1 0.2 1.0 0.0 18 10 12 IF - LED FORWARD CURRENT (mA) IF - FORWARD CURRENT (mA) Fig. 3 Normalized CTR vs. Ambient Temperature Fig. 4 CTR vs. RBE (Unsaturated) 1.0 NORMALIZED CTR (CTR_{RBE} / CTR_{RBE}(OPEN)) 0.9 IF = 20 mA 1.2 0.8 $I_F = 5 \text{ mA}$ 0.7 NORMALIZED CTR 1.0 0.6 $I_F = 10 \text{ mA}$ 0.5 0.8 0.4 0.6 0.2 V_{CE}= 5.0 V Normalized to 0.4 0.1 = 10 mA 0.0 0.2 -60 -40 -20 20 100 10 1000 R_{BE} - BASE RESISTANCE ($k\Omega$) T_A - AMBIENT TEMPERATURE (°C) Fig. 6 Collector-Emitter Saturation Voltage Fig. 5 CTR vs. RBE (Saturated) vs. Collector Current 1.0 100 NORMALIZED CTR (CTR_{RBE} / CTR_{RBE}(OPEN)) 0.9 V_{CE}= 0.3 V VCE (SAT) - COLLECTOR-EMITTER SATURATION VOLTAGE (V) 0.8 0.7 0.6 0.5 0.1 0.4 0.3 I_F = 20 mA 0.01 0.2 0.1 0.001 100 1000 0.01 IC - COLLECTOR CURRENT (mA) R_{BE} - BASE RESISTANCE (k Ω)

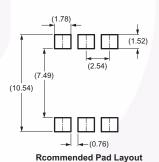

Typical Performance Curves (Continued) Fig. 7 Switching Speed vs. Load Resistor Fig. 8 Normalized ton vs. R_{BE} I_F = 10 mA $V_{CC} = 10 \text{ V}$ $I_C = 2 \text{ mA}$ $R_L = 100 \Omega$ 4.5 NORMALIZED ton - (ton(RBE) / ton(open)) 4.0 100 SWITCHING SPEED - (µs) 3.5 3.0 2.5 2.0 1.0 0.5 0.1 100 10 10000 100000 R-LOAD RESISTOR ($k\Omega$) R_{BE}- BASE RESISTANCE (k Ω) Fig. 9 Normalized toff vs. RBE Fig. 10 Dark Current vs. Ambient Temperature 10000 OEO - COLLECTOR -EMITTER DARK CURRENT (nA) V_{CE} = 10 V T_A = 25°C 1.3 1000 1.2 NORMALIZED toff - (toff(RBE) / toff(open)) 1.1 100 1.0 0.9 10 0.8 0.7 0.6 V_{CC} = 10 V I_C = 2 mA R_L = 100 Ω 0.5 0.1 0.4 0.3 0.01 0.2 0.001 0.1 10 100 1000 10000 100000 RBE- BASE RESISTANCE (k Ω) TA - AMBIENT TEMPERATURE (°C) **TEST CIRCUIT WAVE FORMS** $V_{CC} = 10V$ INPUT PULSE Rı OUTPUT **OUTPUT PULSE** Adjust IF to produce Ic = 2 mA Figure 11. Switching Time Test Circuit and Waveforms

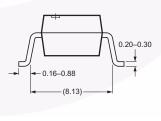
Package Dimensions


Through Hole

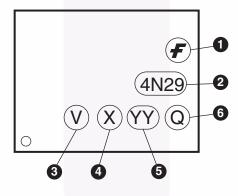





0.4" Lead Spacing

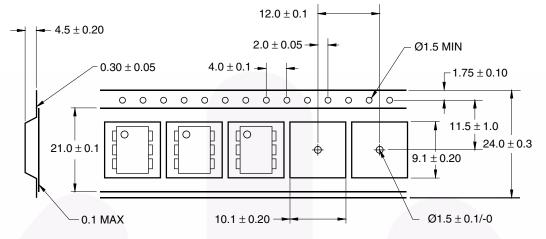


Surface Mount



Note: All dimensions in mm.

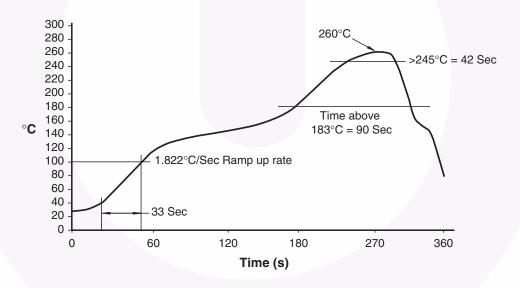
Ordering Information


Suffix	Example	Option		
No Suffix	4N32M	Standard Through Hole Device (50 units per tube)		
S	4N32SM	Surface Mount Lead Bend		
SR2	4N32SR2M	Surface Mount; Tape and Reel (1,000 units per reel)		
Т	4N32TM	0.4" Lead Spacing		
V	4N32VM	VDE 0884		
TV	4N32TVM	VDE 0884, 0.4" Lead Spacing		
SV	4N32SVM	VDE 0884, Surface Mount		
SR2V	4N32SR2VM	VDE 0884, Surface Mount, Tape & Reel (1,000 units per reel)		

Marking Information

Definiti	Definitions					
1	1 Fairchild logo					
2	Device number					
3	VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table)					
4	One digit year code, e.g., '7'					
5	Two digit work week ranging from '01' to '53'					
6	Assembly package code					

Tape Dimensions



User Direction of Feed ----

Note:

All dimensions are in millimeters.

Reflow Soldering Profile

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Auto-SPM™ F-PFS™ Build it Now™ **FRFET®** CorePLUS™

Global Power Resource SM CorePOWER™ Green FPS™ Green FPS™ e-Series™ CROSSVOLT™

Gmax™ Current Transfer Logic™ GTO™ EcoSPARK® IntelliMAX™ EfficentMax™ ISOPLANAR™ EZSWITCH™* MegaBuck™ MICROCOUPLER™

MicroFET™ MicroPak™ MillerDrive™ Fairchild[®] MotionMax™ Fairchild Semiconductor® Motion-SPM™ FACT Quiet Series™ OPTOLOGIC® **FACT OPTOPLANAR®**

FAST® FastvCore™ FETBench™ PDP SPM™

FlashWriter® Power-SPM™ FPS™

PowerTrench® PowerXS™

Programmable Active Droop™

OFFT QS™ Quiet Series™ RapidConfigure™

Saving our world, 1mW/W/kW at a time™

SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™

SyncFET™ Sync-Lock™ SYSTEM ®* The Power Franchise®

bwer TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT™*

UHC Ultra FRFET™ UniFFT™ **VCXTM**

μSerDes™

VisualMax™ XS™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 140

^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.