Thin-Film Low Pass Filter

LP0805 Type Harmonic

GENERAL DESCRIPTION

The ITF (Integrated Thin-Film) SMD Filter is based on thin-film multilayer technology. The technology provides a miniature part with excellent high frequency performance and rugged construction for reliable automatic assembly.

The ITF Filter is offered in a variety of frequency bands compatible with various types of high frequency wireless systems.

FEATURES

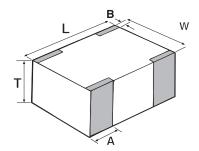
• Small Size: 0805

Frequency Range: 800MHz - 3.5GHz
Characteristic Impedance: 50Ω

• Operating / Storage Temp.: -40°C to +85°C

• Power Rating: 3W Continuous

• Low Profile


• Rugged Construction

• Taped and Reeled

APPLICATIONS

- Mobile Communications
- Satellite TV Receivers
- GPS
- Vehicle Location Systems
- Wireless LAN's

DIMENSIONS: millimeters (inches)

L	2.03±0.1 (0.080±0.004)
W	1.55±0.1 (0.061±0.004)
Т	1.02±0.1 (0.040±0.004)
Α	0.56±0.25 (0.022±0.010)
В	0.35±0.15 (0.014±0.006)
	W T

FINAL QUALITY INSPECTION

Finished parts are 100% tested for electrical parameters and visual/mechanical characteristics. Each production lot is evaluated on a sample basis for:

• Static Humidity: 85°C, 85% RH, 160 hours

• Endurance: 125°C, I_R 4 hours

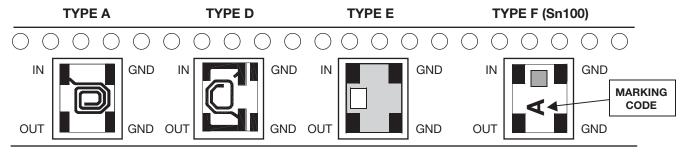
TERMINATION

Nickel/Solder coating (Sn, Pb) compatible with automatic soldering technologies: reflow, wave soldering, vapor phase and manual.

HOW TO ORDER

AW= Nickel/Solder (SnPb)

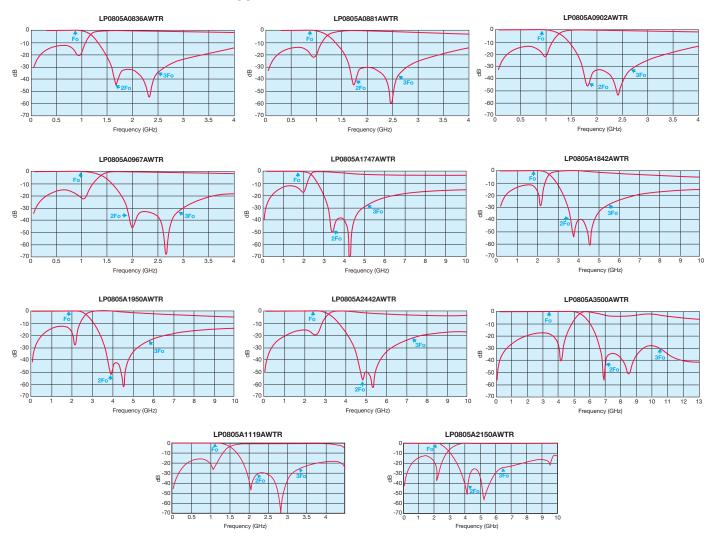
**AS = Nickel/ Lead Free
Solder (Sn100)


**RoHS Compliant

Please select correct termination style

TERMINALS AND LAYOUT (Top View) Orientation in Tape

Thin-Film Low Pass Filter



LP0805 Type Harmonic

ELECTRICAL CHARACTERISTICS

Application	Part Number	Frequency Band (MHz)	I. Loss max	VSWR max	Attenuation (dB) Typical	Layout Type (SnPb)	Layout Type F Marking Code
E-GSM	LP0805A0897AW	880 - 915				А	E
	LP0805A0942AW	925 - 960				А	F
GSM	LP0805A0902AW	890 - 915				А	Е
	LP0805A0947AW	935 - 960				А	F
	LP0805A1119AW	1101 - 1137				А	Н
AMPS	LP0805A0836AW	824 - 849				А	А
	LP0805A0881AW	869 - 894				А	С
PCN	LP0805A1747AW	1710 - 1785	0.4dB	1.7	30 @ 2XFo	D	I
	LP0805A1842AW	1805 - 1880	(0.3dB typ)		20 @ 3xFo	D	J
PCS	LP0805A1880AW	1850 - 1910				D	K
	LP0805A1960AW	1930 - 1990				D	M
PHP	LP0805A1907AW	1895 - 1920				D	L
DECT	LP0805A1890AW	1880 - 1900				D	K
3G	LP0805A2150AW	1905 - 2180				D	N
Wireless LAN	LP0805A2442AW	2400 - 2484				D	S
WLL	LP0805A3500AW	3400 ~ 3600				Е	X

Typical Electrical Performance

Thin-Film Low Pass Filter

LP0805 Test Jig

ITF TEST JIG FOR LOW PASS FILTER 0805

GENERAL DESCRIPTION

These jigs are designed for testing the LPF0805 Low Pass Filters using a Vector Network Analyzer.

They consist of a dielectric substrate, having 50W microstrips as conducting lines and a bottom ground plane located at a distance of 0.254 mm from the microstrips.

The substrate used is RF-35-0100-C1B107 (or similar).

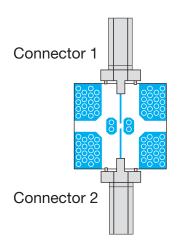
The connectors are SMA type (female), 'Johnson Components Inc.' Product P/N: 142-0701-841(or similar).

Both a measurement jig and a calibration jig are provided.

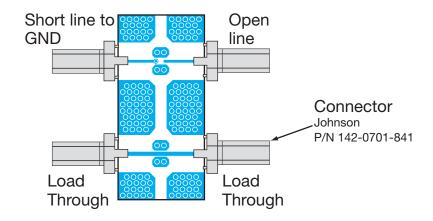
The calibration jig is designed for a full 2-port calibration, and consists of an open line, short line and through line. LOAD calibration can be done by a 50W SMA termination.

MEASUREMENT PROCEDURE

Follow the VNA's instruction manual and use the calibration jig to perform a full 2-Port calibration in the required bandwidths.


Solder the filter to the measurement jig as follows:

Input (Filter) → Connector 1 (Jig) GND (Filter) → GND (Jig)


Output (Filter) → Connector 2 (Jig) GND (Filter) → GND (Jig)

Set the VNA to the relevant frequency band. Connect the VNA using a 10dB attenuator on the jig terminal connected to port 2 (using an RF cable).

Measurement

Calibration Jig

