FEATURES

- Standard $7.0 \times 5.0 \mathrm{~mm}$ Surface Mount Footprint
- HCMOS/TTL Compatible
- Fundamental and $3^{\text {RD }}$ Overtone Crystals
- Frequency Range $1.5-160 \mathrm{MHz}$
- Frequency Stability, ± 50 ppm Standard ($\pm 25 \mathrm{ppm}$ and $\pm 20 \mathrm{ppm}$ available)
- +3.3 Vdc or +5.0 Vdc Operation
- Operating Temperature to $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Output Enable Standard
- Tape \& Reel Packaging
- RoHS/ Green Compliant (6/ 6)

DESCRIPTION

The CB3/CB3LV is a ceramic packaged Clock oscillator offering reduced size and enhanced stability. The small size means it is perfect for any application. The enhanced stability means it is the perfect choice for today's communications applications that require tight frequency control.

ORDERING I NFORMATI ON

$3= \pm 50 \mathrm{ppm}$ (standard)
$2= \pm 100 \mathrm{ppm}{ }^{2}$
1] 6I Stability/Temperature combination is not available.
2] These stabilities are not recommended for new designs.
3] Frequency is recorded with only leading significant digits before the ' M ' and 4-6 significant digits after the ' M ' (including zeros). [Ex. XMXXXXXX (3M579545), XXMXXXXX (14M31818), XXXMXXXX (125M0000)]
4] CTS Distributors may add a-T or -1 at the end of the part number to indicate Tape and Reel packaging.
Not all performance combinations and frequencies may be available.
Contact your local CTS Representative or CTS Customer Service for availability.

Example Part Number: CB3LV-3C-32M7680 or CB3-3I-32M7680

ELECTRI CAL CHARACTERISTI CS

CMOS/ TTL OUTPUT WAVEFORM

ENABLE TRUTH TABLE

PI N 1	PI N 3
Logic '1	Output
Open	Output
Logic ${ }^{\prime} 0^{\prime}$	High Imp.

TEST CIRCUIT, CMOS LOAD

D.U.T. PI N ASSI GNMENTS

PIN	SYMBOL	DESCRI PTI ON
1	EOH	Enable Input
2	GND	Circuit \& Package Ground
3	Output	RF Output
4	V CC	Supply Voltage

MECHANI CAL SPECI FI CATI ONS

PACKAGE DRAWI NG

MARKI NG I NFORMATI ON

1. ** - Manufacturing Site Code.
[Note a dash may follow the site code and is acceptable.]
2. $\mathrm{XXXMXXXXXX} \mathrm{-} \mathrm{Frequency} \mathrm{is} \mathrm{marked} \mathrm{with}$ only leading significant digits before the ' M ' and 4-6 digits after the ' M ' (including zeros).
Ex. XMXXXXXX (3M579545)
XXMXXXXX (14M31818)
XXXMXXXX (125M0000)
3. YYWW - Date code, YY - year, WW - week.
4. ST - Frequency stability/temperature code.
(Refer to Ordering Information.)
5. V - Voltage code. $3=3.3 \mathrm{~V}, 5=5.0 \mathrm{~V}$.

NOTES

1. Termination pads (e4). Barrier-plating is nickel (Ni) with gold (Au) flash plate.
2. Reflow conditions per JEDEC J-STD-020.

SUGGESTED SOLDER PAD GEOMETRY

$C_{\text {RYPasc }}$ should be $\geq 0.01 \mathrm{uF}$.

Model CB3 \& CB3LV
7.0x5.0mm Low Cost HCMOS/ TTL Clock Oscillator

TAPE AND REEL I NFORMATION

Standard packaging is tape and reel for this product family. Device quantity is 1,000 pieces per 180 mm reel.

DIMENSIONS IN MILLIMETERS

ENVI RONMENTAL SPECI FI CATI ONS

Temperature Cycle:

Mechanical Shock:

Sinusoidal Vibration:

Gross Leak:

Fine Leak:
Resistance to Solder Heat:
High Temperature Operating Bias:
Frequency Aging:
Moisture Sensitivity Level:

400 cycles from $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, 10 minute dwell at each temperature, 1 minute transfer time between temperatures.
$1,500 \mathrm{~g}$'s, 0.5 mS duration, $1 / 2$ sinewave, 3 shocks each direction along 3 mutually perpendicular planes (18 total shocks).
0.06 inches double amplitude, 10 to 55 Hz and 20g's, 55 to 2,000 Hz, 3 cycles each in 3 mutually perpendicular planes (9 times total).

No leak shall appear while immersed in an FC40 or equivalent liquid at $+125^{\circ} \mathrm{C}$ for 20 seconds.

Mass spectrometer leak rates less than $2 \times 10^{-8} \mathrm{ATM} \mathrm{cc/sec} \mathrm{air} \mathrm{equivalent}$.
Product must survive 3 reflows of $+260^{\circ} \mathrm{C}$ peak, 10 seconds maximum.
2,000 hours at $+125^{\circ} \mathrm{C}$, maximum bias, disregarding frequency shift.
1,000 hours at $+85^{\circ} \mathrm{C}$, full bias, less than $\pm 5 \mathrm{ppm}$ shift.
Level 1 per JEDEC J-STD-020.

