

Crystal Clock Oscillator

3.3V, CMOS / TTL

Technical Data S1633 Series

Description

The 3.3V S1633 is a crystal-controlled, low-current, low voltage oscillator providing precise rise and fall times to drive high performance applications. The miniature, low profile leadless ceramic package has gold-plated contact pads, ideal for today's pick-and-place SMT environments. These oscillators are contained in a rugged, subcompact 3.2x5mm package ideal for high density applications requiring tight frequency stability over a range of operating conditions.

Applications & Features

- Miniature, 1.3mm high ceramic package ideal for SMT applications
- 3.3V operation
- Extended frequency range and low jitter for a variety of networking, computing and communications applications requiring compact size or low power
- Low-power standby function included
- Perfect for high density, low power switches, routers, base stations, and storage devices
- Ideal for 802.11 applications
- Anywhere small size, low power, surface mountability are a priority
- Available on tape & reel; 16mm tape, 1000pcs per reel

Frequency Range:	1.8432 MHz to 125 MHz (as specified)

Frequency Stability: ±25ppm, ±50ppm over all conditions; calibration tolerance, operating temperature, rated input (supply) voltage changes,

load change, aging*, shock and vibration

Aging*: 1 year @ 25°C average ambient operating temperature

Temperature Range:

Operating: -20 to +70°C or -40 to +85°C (as specified)

Storage: -55 to +125°C

Supply Voltage: $3.3V \pm 5\%$

Stand-by:

Supply Current:

Oscillation: 15mA max (1.8432 to 39.9999 MHz)

10mA max (40 to 59.9999 MHz) 40mA max (60 to 79.9999 MHz) 55mA max (80 to 125 MHz) 0.01mA max (1.8432 to 125 MHz)

Output (LVCMOS / LVTTL Compatible)

Symmetry: 45/55% measured @ 50% V_{DD} (-20 to +70°C)

45/55% measured @ 50% V_{DD} (-40 to +85°C, up to 79.9999 MHz) 40/60% measured @ 50% V_{DD} (-40 to +85°C, 80 to 125 MHz)

Rise & Fall Times: 7ns max (1.8432 to 39.9999 MHz)

5ns max (40 to 79.9999 MHz)

3ns max (80 to 125 MHz)

Logic 0: 10% V_{DD} max Logic 1: 90% V_{DD} min

Load: 15pF max or 10LSTTL

Jitter (1.8432 to 80 MHz): 5ps RMS (1Σ) max, accumlated in 20,0000 adjacent periods

1.5ps RMS ($\overline{1}\Sigma$) max phase jitter computed in 10 kHz-20 MHz freq. band 50ps peak-to-peak max total jitter, sampled in 100,000 random periods

20- DMC (15) mass assumbted in 20,000 adia and a single

Jitter (80 to 125 MHz): 3ps RMS (1Σ) max, accumlated in 20,0000 adjacent periods

1ps RMS ($1\sum$) max phase jitter computed in $10 \text{ kHz} \sim 20 \text{ MHz}$ freq. band 30ps peak-to-peak max total jitter, sampled in 100,000 random periods

Standby Function (pad 1):

Oscillation: $V_{IN} \ge 2.2V$ or open

Stand-by: $V_{IN} \le 0.8V$ (output is high impedance)

Oscillation Output Delay: 10ms max Standby Output Delay: 0.1 μ s max Internal Pullup Resistance: 50K Ω min

Mechanical:

Shock: MIL-STD-883, Method 2002, Condition B

Solvent Resistance: MIL-STD-883, Method 2003 MIL-STD-202, Method 215

Terminal Strength: MIL-STD-883, Method 2004, Condition D Gross Leak: MIL-STD-883, Method 1014, Condition C

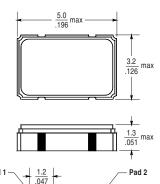
Fine Leak: MIL-STD-883, Method 1014, Condition A2 ($R_I = 2x10^{-8}$ atm cc/s)

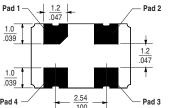
Environmental:

Thermal Shock: MIL-STD-883, Method 1011, Condition A

Moisture Resistance: MIL-STD-883, Method 1004

Vibration: MIL-STD-883, Method 2007, Condition A
Resitance to Soldering Heat: MIL-STD-202, Method 210, Condition I or J

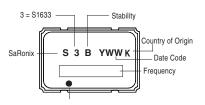


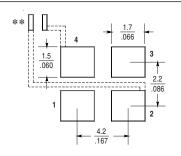

Crystal Clock Oscillator

3.3V, CMOS / TTL

Technical Data S1633 Series

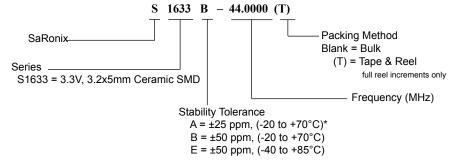
Package Details



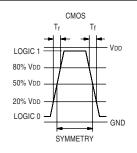

Pad Functions:

Pad 1: En/Disable (Standby) Pad 3: Output Pad 2: GND Pad 4: VDD

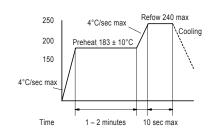
Marking Format (exact location of items may vary)


Recommended Land Pattern

**External high frequency power supply decoupling required.


Scale: None (Dimensions in $\frac{mm}{inches}$

Part Numbering Guide



*(Confirm availability by frequency)

Output Waveform

Solder Reflow Guide

Test Circuit

Note A: C_L includes probe and jig capacitance.

*All specfications subject to changes without notice