ASDL-4360

High Power and High Speed Infrared Emitter (885nm) in PLCC-2 Package

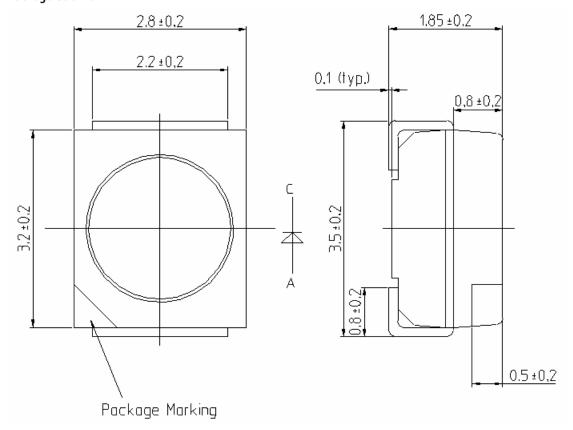
Data Sheet

Description

ASDL-4360 Infrared emitter is encapsulated in the Industry Standard PLCC-2 SMT package that is designed for application that requires high radiant intensity and fast switching at wide viewing angle. This device optimizes at emissive wavelength of 885nm.

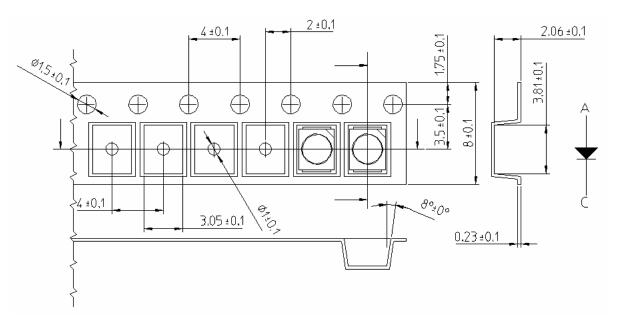
Applications

- High-Speed Machine Automated System
- Medical Applications
- Non-Contact Position Sensing
- Optical Sensing
- Security Applications


Ordering Information

Part Number	Packaging	Shipping Option
ASDL-4360-C22	Tape & Reel	2000pcs

Features


- 885nm Wavelength
- Industry Standard Footprint: PLCC-2 SMT Package
- High Speed
- High Power
- Low Forward Voltage
- High Pulse Rate
- Lead Free and ROHS Compliant
- Tape & Reel for automation placement

Package Outline

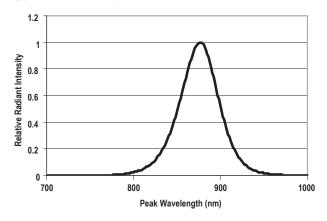
All Dimensions are in Millimeters

Tape and Reel Dimension

All Dimensions are in Millimeters

Absolute Maximum Ratings at 25°C

Symbol	Min.	Max	Unit	Reference
I _{FPK}		500	mA	T_p =500ns T_W = 100ns Duty Cycle = 20%
I _{FDC}		100	mA	
P _{DISS}		200	mW	
V _r	11		V	I _r =100uA
T ₀	-40	85	°C	
Ts	-40	100	°C	
Tj		110	°C	
		260 for 5 sec	°C	
	I _{FDC} P _{DISS} V _r T ₀	IFDC	IFPK 500 IFDC 100 PDISS 200 Vr 11 T0 -40 85 Ts -40 100 TJ 110	IFPK 500 mA IFDC 100 mA PDISS 200 mW Vr 11 V To -40 85 °C Ts -40 100 °C TJ 110 °C


Electrical Characteristics at 25°C

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
Forward Voltage	V_{F}		1.4	1.7	V	I _F =20mA
			1.6	2.0	V	I _F =100mA
Reverse Voltage	V _r	11			V	I _R =10uA
Thermal Resistance			250		°C/W	
Diode Capacitance	C_0		90		pF	Vr=0V, f=1MHz

Optical Characteristics at 25°C

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Radiant On-Axis Intensity	lE	1.0 5.1	2.0 10.0		mW/Sr	I _F = 20mA I _F = 100mA
Viewing Angle	2θ _{1/2}		120		deg	
Peak wavelength	λρΚ		885		nm	$I_F = 20 \text{mA}$
Spectral Width	Δλ		55		nm	$I_F = 20 \text{mA}$
Optical Rise Time	t _r		20		ns	I _{FPK} =500mA Duty Factor=20% Pulse Width=100ns
Optical Fall Time	t _f		17		ns	I _{FPK} =500mA Duty Factor=20% Pulse Width=100ns

Typical Electrical / Optical Characteristics Curve ($T_A = 25^{\circ}$ C Unless Otherwise Stated)

0.10
(4) 0.08
0.06
0.04
0.02
0.00
0 0.5 1 1.5 2
Vf Forward Voltage (V)

Figure 1. Peak Wavelength Vs Relative Radiant Intensity

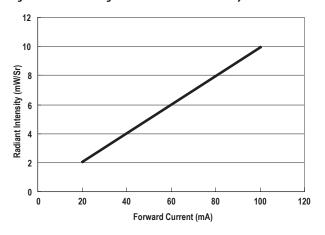
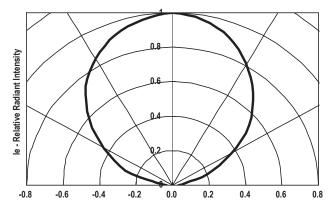



Figure 2. Forward Current Vs Forward Voltage

0.12

Figure 3. Forward Current Vs Radiant Intensity

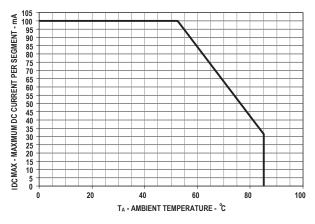
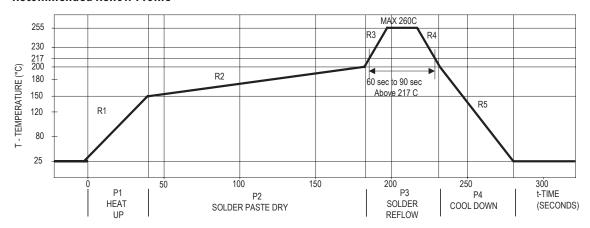



Figure 4. Angular Displacement Vs Relative Radiant Intensity

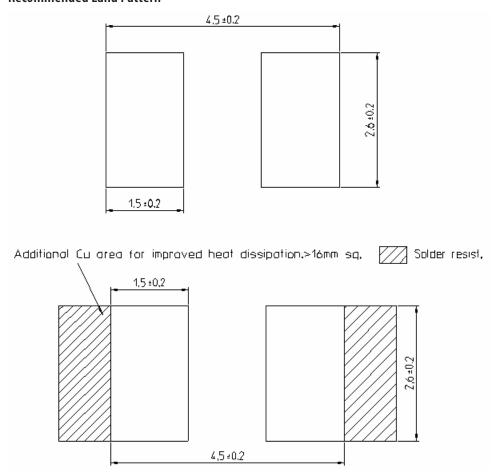
Figure 5. Forward Current Vs Ambient Temperature derated based on Tj $-110\,^{\circ}\text{C}$ and thermal resistance at 250 $^{\circ}\text{C/W}$

Recommended Reflow Profile

Process Zone	Symbol	ΔΤ	Maximum ∆T/∆time or Duration
Heat Up	P1, R1	25°C to 150°C	3°C/s
Solder Paste Dry	P2, R2	150°C to 200°C	100s to 180s
Solder Reflow	P3, R3 P3, R4	200°C to 260°C 260°C to 200°C	3°C/s -6°C/s
Cool Down	P4, R5	200°C to 25°C	-6°C/s
Time maintained above liquidus point , 217°C		> 217°C	60s to 90s
Peak Temperature		260°C	-
Time within 5°C of actual Peak Temperature		-	20s to 40s
Time 25°C to Peak Temperature		25°C to 260°C	8mins

The reflow profile is a straight-line representation of a nominal temperature profile for a convective reflow solder process. The temperature profile is divided into four process zones, each with different $\Delta T/\Delta t$ time temperature change rates or duration. The $\Delta T/\Delta t$ time rates or duration are detailed in the above table. The temperatures are measured at the component to printed circuit board connections.

In process zone P1, the PC board and component pins are heated to a temperature of 150°C to activate the flux in the solder paste. The temperature ramp up rate, R1, is limited to 3°C per second to allow for even heating of both the PC board and component pins.


Process zone P2 should be of sufficient time duration (100 to 180 seconds) to dry the solder paste. The temperature is raised to a level just below the liquidus point of the solder.

Process zone P3 is the solder reflow zone. In zone P3, the temperature is quickly raised above the liquidus point of solder to 260°C (500°F) for optimum results. The dwell time above the liquidus point of solder should be between 60 and 90 seconds. This is to assure proper coalescing of the solder paste into liquid solder and the formation of good solder connections. Beyond the recommended dwell time the intermetallic growth within the solder connections becomes excessive, resulting in the formation of weak and unreliable connections. The temperature is then rapidly reduced to a point below the solidus temperature of the solder to allow the solder within the connections to freeze solid.

Process zone P4 is the cool down after solder freeze. The cool down rate, R5, from the liquidus point of the solder to 25°C (77°F) should not exceed 6°C per second maximum. This limitation is necessary to allow the PC board and component pins to change dimensions evenly, putting minimal stresses on the component.

It is recommended to perform reflow soldering no more than twice.

Recommended Land Pattern

All Dimensions are in Millimeters

For company and product information, please go to our web site: $\begin{tabular}{ll} WWW.liteon.com or \\ http://optodatabook.liteon.com/databook/databook.aspx \end{tabular}$

Data subject to change. Copyright © 2007 Lite-On Technology Corporation. All rights reserved.

