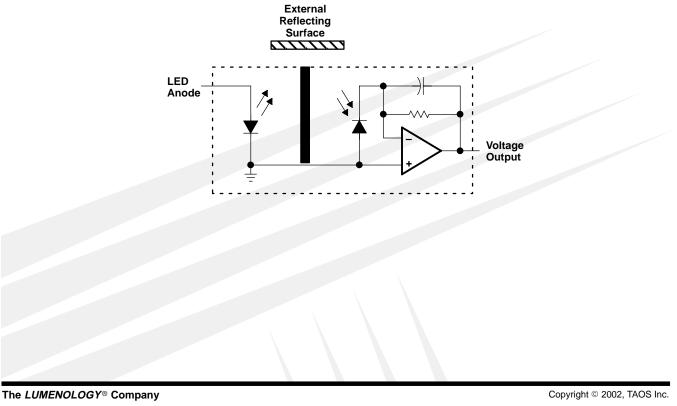


- Converts Reflected Light Intensity to Output Voltage
- Integral Color LEDs and Matching Color Filters on Sensors
- Sensor is a Monolithic Silicon IC Containing a Photodiode, Operational Amplifier, Feedback Components, and Color Filter
- High-Output LEDs and High-Sensitivity Sensors
- Single Voltage Supply Operation
- Surface-Mount Package


PACKAGE (TOP VIEW)

Description

The TRS1722, TRS1755, and TRS1766 are high-sensitivity reflective color sensors in red (630 nm), green (567 nm), and blue (470 nm) — respectively — with light-to-voltage converters. Each device consists of a colored LED light source, a photodiode light sensor with matching optical color filter, a transimpedance amplifier, and on-board signal conditioning. Output voltage is directly proportional to the reflected light intensity on the photodiode plus any ambient light (which may be considered noise).

Functional Block Diagram

Texas Advanced Optoelectronic Solutions Inc. 800 Jupiter Road, Suite 205 • Plano, TX 75074 • (972) 673-0759

www.taosinc.com

TAOS034 – NOVEMBER 2002

Terminal Functions

TERMINAL		
NAME	DESCRIPTION	
GND	2	Ground. LED cathode and sensor ground. All voltages are referenced to GND.
ANODE	1	LED anode drive input
OUT	4	Output voltage
V _{DD}	3	Supply voltage

Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{DD} (see Note 1) Output current, I _O Duration of short-circuit current at (or below) 25°C	±10 mA
LED DC forward current	30 mA
LED peak forward current (5% duty cycle @ 1 kHz or more)	100 mA
LED junction temperature, LED T _J	125°C
Operating free-air temperature range, T _A	−25°C to 85°C
Storage temperature range, T _{stg}	−25°C to 85°C
Lead temperature in solder contact zone for 10 seconds	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltages are with respect to GND.

Recommended Operating Conditions

	MIN	MAX	UNIT
Supply voltage, V _{DD}	3	5.5	V
LED forward current	0	10	mA
Operating free-air temperature, T _A	0	70	°C

LED

	DADAMETED	TEST CONDITIONS	TRS1722			TRS1755			TRS1766			
	PARAMETER		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Vf	Forward voltage	l _f = 20 mA		2.2	3		2.3	3		2.7	4	V
l _r	Reverse leakage	$V_r = 5 V$			10			10			10	μA
Po	Radiant flux	l _f = 5 mA		14			5			300		μW
λ	Wavelength	I _f = 5 mA		630			567			468		nm
BW	Bandwidth	I _f = 5 mA		40			26			26		nm

Copyright © 2002, TAOS Inc.

TAOS034 - NOVEMBER 2002

Electrical Characteristics at V_{DD} = 5 V, T_A = 25°C, R_L = 10 k Ω (unless otherwise noted) (continued)

		TEAT CONDITIONS	Т	RS172	2	Т	TRS1755		Т	RS176	6	
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V_{D}	Dark voltage	$E_e = 0$	0		20	0		20	0		20	mV
v	Maximum output voltage	No Load		4.49			4.49			4.49		v
V _{OM}	swing	$R_L = 10 \ k\Omega$	4	4.2		4	4.2		4	4.2		
α_{VD}	Temperature coefficient of dark voltage (V _D)	$T_A = 0^{\circ}C$ to $70^{\circ}C$		-15			-15			-15		μV/°C
	Irradiance responsivity	$\lambda_p = 470 \text{ nm},$ see Notes 4 and 7		20			90			300		mV/ (μW/ cm ²)
		$\lambda_p = 524 \text{ nm},$ see Notes 5 and 7		35			300			130		
R _e		λ_p =565 nm, see Notes 7 and 8		90			300			22		
		$\lambda_p = 635 \text{ nm},$ see Notes 6 and 7		460			35			13		
	Illuminance responsivity	$\lambda_p = 470 \text{ nm},$ see Notes 4 and 7		0.12			0.47			1.57		
		$\lambda_p = 524 \text{ nm},$ see Notes 5 and 7		0.027			0.24			0.10		V/Ix
R_V		$\lambda_p = 565 \text{ nm},$ see Notes 7 and 8		0.06			0.20			0.015		
		$\lambda_p = 635 \text{ nm},$ see Notes 6 and 7		1.21			0.093			0.033		
PSRR	Power supply rejection	f _{ac} = 100 Hz, see Note 10		55			55			55		٩D
	ratio	f _{ac} = 1 kHz, see Note 10		35			35			35		dB
I _{DD}	Supply current	$V_0 = 2 V$ (typical)		1.9	3.5		1.9	3.5		1.9	3.5	mA

Detector (see Notes 2 and 3)

NOTES: 2. Measured with $R_L = 10 \text{ k}\Omega$ between output and ground.

- 3. Optical measurements are made using small-angle incident radiation from a light-emitting diode (LED) optical source.
- 4. The input irradiance is supplied by an InGaN light-emitting diode with the following characteristics: peak wavelength λ_p = 470 nm, spectral halfwidth $\Delta\lambda^{1/2}$ = 35 nm, luminous efficacy = 75 lm/W.
- 5. The input irradiance is supplied by an InGaN light-emitting diode with the following characteristics: peak wavelength λ_p = 524 nm, spectral halfwidth $\Delta\lambda^{1/2}$ = 47 nm, luminous efficacy = 520 lm/W.
- 6. The input irradiance is supplied by an AIInGaP light-emitting diode with the following characteristics: peak wavelength λ_p = 635 nm, spectral halfwidth $\Delta \lambda^{1/2}$ = 17 nm, luminous efficacy = 150 lm/W.
- 7. Responsivity is characterized over the range V_O = 0.1 V to 4.5 V. The best-fit straight line of Output Voltage V_O versus Irradiance E_e over this range will typically have a positive extrapolated V_O value for $E_e = 0$.
- 8. The input irradiance is supplied by a GaP light-emitting diode with the following characteristics: peak wavelength λ_p = 565 nm, spectral halfwidth $\Delta \lambda^{1/2}$ = 28 nm, luminous efficacy = 595 lm/W.
- Illuminance responsivity R_V is calculated from the irradiance responsivity by using the LED luminous efficacy values stated in Notes 4, 5, 6, and 8, and using 1 $lx = 1 lm/m^2$.
- 10. Power supply rejection ratio PSRR is defined as 20 log ($\Delta V_{DD}(f)/\Delta V_O(f)$) with $V_{DD}(f = 0) = 5$ V and $V_O(f = 0) = 2$ V.

TAOS034 – NOVEMBER 2002

Electrical Characteristics at V_{DD} = 5 V, T_A = 25°C, R_L = 10 k Ω (unless otherwise noted) (continued)

Coupled (see Note 2)

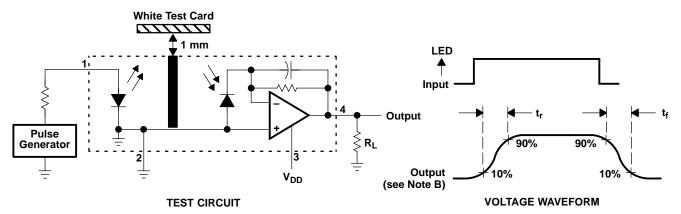
			TRS1722			TRS1755			Т			
	PARAMETER	TEST CONDITIONS MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
I _F	LED forward current	V _O = 2 V, d = 1 mm (Note 11)	0.5	2.1	4	2	5	8	0.1	0.4	1.75	mA
	Output voltage	I _f = 2.5 mA, d = 1 mm (Note 11)		2.4								
Vo		I _f = 5 mA, d = 1 mm (Note 11)					2					V
		I _f = 0.25 mA, d = 1 mm (Note 11)								1.3		
	Crosstalk	I _f = 5 mA, no surface (see Note 12)	0	80	300	0	30	200				
V _{ox}		I _f = 1 mA, no surface (see Note 12)							0	130	500	mV

NOTES: 11. Measured using Eastman Kodak neutral white test card having 90% diffuse reflectance located a distance from the front surface of the reflective sensors. Reference: Eastman Kodak catalog number #1257795.

12. Crosstalk is the output voltage measured with the indicated current on the LED and with no reflecting surface. Ambient light is excluded with a black box approximately 20 cm in each dimension.

Switching Characteristics at V_{DD} = 5 V, T_A = 25°C, R_L = 10 k Ω (unless otherwise noted)

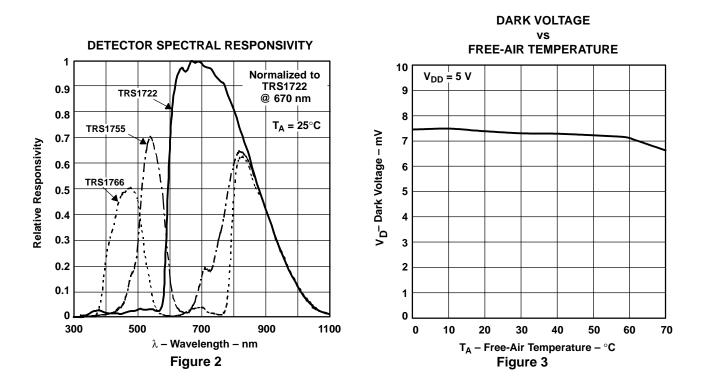
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tr	Output pulse rise time, 10% to 90% of final value	See Note 13 and Figure 1		160	250	μs
t _f	Output pulse fall time, 10% to 90% of final value	See Note 13 and Figure 1		150	250	μs
t _s	Output settling time to 1% of final value	See Note 13 and Figure 1		330		μs
	Integrated noise voltage	$f = dc to 1 kHz$ $E_e = 0$		200		μVrms
		f = 10 Hz E _e = 0		6		
Vn	Output noise voltage, rms	$f = 100 \text{ Hz}$ $E_e = 0$		6		μV/√ Hz rms
		$f = 1 \text{ kHz}$ $E_e = 0$		7		


NOTE 13: Switching characteristics apply over the range $V_0 = 0.1$ V to 4.5 V.

Copyright © 2002, TAOS Inc.

TAOS034 - NOVEMBER 2002

PARAMETER MEASUREMENT INFORMATION

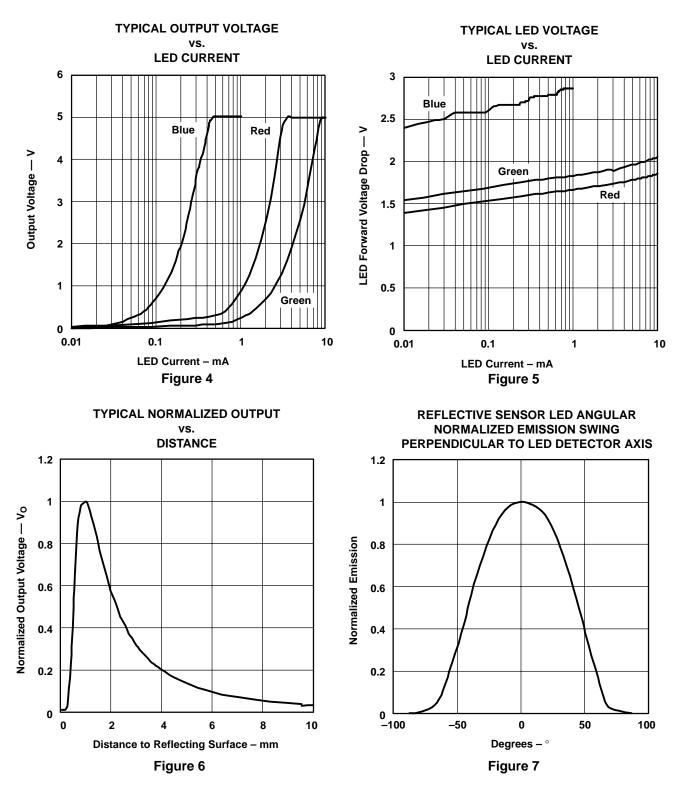


NOTES: A. The input irradiance is supplied by pulsing the LED with a white test card positioned 1 mm from the face of the device.

- B. The output waveform is monitored on an oscilloscope with the following characteristics: $t_r < 100$ ns, $Z_i \ge 1$ M Ω , $C_i \le 20$ pF.
 - C. The pulse generator output drive is adjusted until the sensor output voltage reaches 2 volts.

Figure 1. Switching Times

TYPICAL CHARACTERISTICS

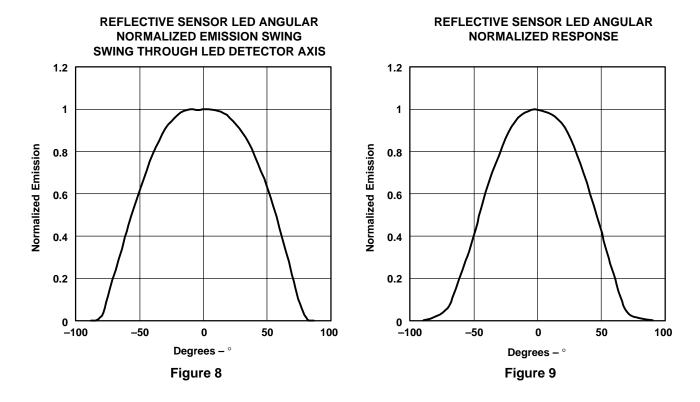


TEXAS ADVANCED OPTOELECTRONIC SOLUTIONS ™ www.taosinc.com

The LUMENOLOGY® Company

Copyright © 2002, TAOS Inc.

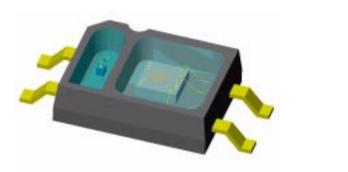
TYPICAL CHARACTERISTICS

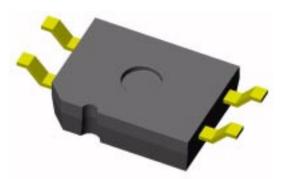


Copyright © 2002, TAOS Inc.

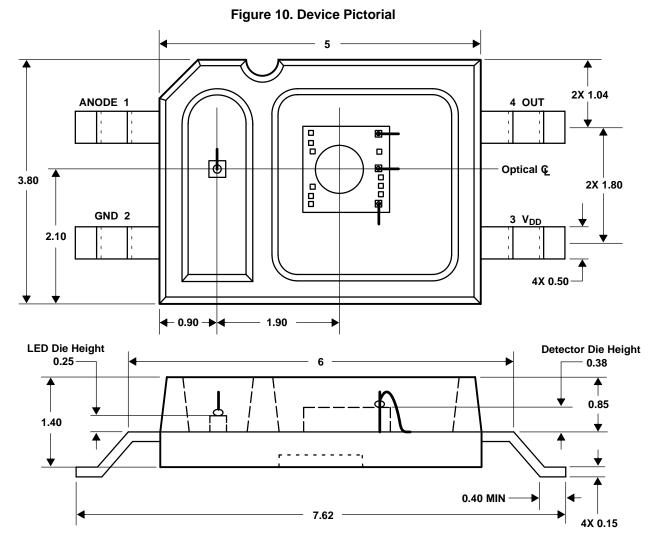
TAOS034 - NOVEMBER 2002

TYPICAL CHARACTERISTICS


The LUMENOLOGY® Company


Copyright © 2002, TAOS Inc.

TAOS034 - NOVEMBER 2002


MECHANICAL DATA

Тор

Bottom

NOTES: A. All linear dimensions are in millimeters.

B. Tolerances: die placement: \pm 0.2, plastic package: \pm 0.4, leads: \pm 0.8.

C. This drawing is subject to change without notice.

Figure 11. Package Configuration

Copyright © 2002, TAOS Inc.

PRODUCTION DATA — information in this document is current at publication date. Products conform to specifications in accordance with the terms of Texas Advanced Optoelectronic Solutions, Inc. standard warranty. Production processing does not necessarily include testing of all parameters.

NOTICE

Texas Advanced Optoelectronic Solutions, Inc. (TAOS) reserves the right to make changes to the products contained in this document to improve performance or for any other purpose, or to discontinue them without notice. Customers are advised to contact TAOS to obtain the latest product information before placing orders or designing TAOS products into systems.

TAOS assumes no responsibility for the use of any products or circuits described in this document or customer product design, conveys no license, either expressed or implied, under any patent or other right, and makes no representation that the circuits are free of patent infringement. TAOS further makes no claim as to the suitability of its products for any particular purpose, nor does TAOS assume any liability arising out of the use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages.

TEXAS ADVANCED OPTOELECTRONIC SOLUTIONS, INC. PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN CRITICAL APPLICATIONS IN WHICH THE FAILURE OR MALFUNCTION OF THE TAOS PRODUCT MAY RESULT IN PERSONAL INJURY OR DEATH. USE OF TAOS PRODUCTS IN LIFE SUPPORT SYSTEMS IS EXPRESSLY UNAUTHORIZED AND ANY SUCH USE BY A CUSTOMER IS COMPLETELY AT THE CUSTOMER'S RISK.

LUMENOLOGY is a registered trademark, and TAOS, the TAOS logo, and Texas Advanced Optoelectronic Solutions are trademarks of Texas Advanced Optoelectronic Solutions Incorporated.

Copyright © 2002, TAOS Inc.

Copyright © 2002, TAOS Inc.

10

ADVANCED OPTOELECTRONIC SOLUTIONS TM