

Vishay Semiconductors

Backlighting LED in Ø 3 mm Tinted Non-Diffused Package

DESCRIPTION

The TLV.420. series was developed for backlighting. Due to its special shape the spatial distribution of the radiation is qualified for backlighting.

To optimize the brightness of backlighting a custombuilt reflector (with scattering) is required. Uniform illumination can be enhanced by covering the front of the reflector with diffusor material.

This is a flexible solution for backlighting different areas.

PRODUCT GROUP AND PACKAGE DATA

• Product group: LED

Package: 3 mm backlighting
Product series: standard
Angle of half intensity: ± 85°

FEATURES

- High light output
- · Wide viewing angle
- · Categorized for luminous flux
- Tinted clear package
- Low power dissipation
- Low self heating
- Rugged design
- High reliability
- Lead (Pb)-free device
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

APPLICATIONS

- Backlighting of display panels, LCD displays, symbols on switches, keyboards, graphic boards and measuring scales
- Illumination of large areas e.g. dot matrix displays

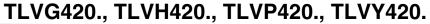
PARTS TABLE		
PART	COLOR, LUMINOUS FLUX	TECHNOLOGY
TLVH4200	Red, $\phi_V > 10 \text{ mlm}$	GaAsP on GaP
TLVH4201	Red, $\phi_V = (40 \text{ to } 125) \text{ m/m}$	GaAsP on GaP
TLVY4200	Yellow, _{♦V} > 10 mlm	GaAsP on GaP
TLVG4200	Green, _{♦V} > 10 mlm	GaP on GaP
TLVP4200	Pure green, _{♦V} > 4 mlm	GaP on GaP

Document Number 83057 Rev. 1.8 19-Feb-09

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS ¹⁾ TLVH420., TLVY4200, TLVG4200, TLVP4200							
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT			
Reverse voltage ²⁾		V_{R}	6	V			
DC Forward current	T _{amb} ≤ 60 °C	I _F	30	mA			
Surge forward current	t _p ≤ 10 μs	I _{FSM}	1	Α			
Power dissipation		P_V	90	mW			
Junction temperature		T _j	100	°C			
Operating temperature range		T _{amb}	- 40 to + 100	°C			
Storage temperature range		T _{stg}	- 55 to + 100	°C			
Soldering temperature	$t \le 5$ s, 2 mm from body	T _{sd}	260	°C			
Thermal resistance junction/ ambient		R _{thJA}	400	K/W			

Note:


 $^{^{1)}}$ T_{amb} = 25 °C, unless otherwise specified $^{2)}$ Driving the LED in reverse direction is suitable for a short term application

OPTICAL AND ELECTRICAL CHARACTERISTICS 1) TLVH420., RED							
PARAMETER	TEST CONDITION	PART	SYMBOL	MIN.	TYP.	MAX.	UNIT
Lumin and floor	I _E = 15 mA	TLVH4200	φV	10	25		mlm
Luminous flux	IF = 13 IIIA	TLVH4201	φV	40		125	mlm
Dominant wavelength	I _F = 10 mA		λ_{d}	612		625	nm
Peak wavelength	I _F = 10 mA		λ_{p}		635		nm
Angle of half intensity	I _F = 10 mA		φ		± 85		deg
Forward voltage	I _F = 20 mA		V _F		2.4	3	V
Reverse voltage	I _R = 10 μA		V_{R}	6	15		V
Junction capacitance	V _R = 0, f = 1 MHz		C _j		50		pF

 $^{^{1)}}$ T_{amb} = 25 $^{\circ}C,\ unless$ otherwise specified

OPTICAL AND ELECTRICAL CHARACTERISTICS 1) TLVY4200, YELLOW							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Luminous flux	I _F = 15 mA	φ _V	10	20		mlm	
Dominant wavelength	I _F = 10 mA	λ _d	581		594	nm	
Peak wavelength	I _F = 10 mA	λρ		585		nm	
Angle of half intensity	I _F = 10 mA	φ		± 85		deg	
Forward voltage	I _F = 20 mA	V _F		2.4	3	V	
Reverse voltage	I _R = 10 μA	V _R	6	15		V	
Junction capacitance	$V_R = 0$, $f = 1$ MHz	C _j		50		pF	

 $^{^{1)}}$ T_{amb} = 25 °C, unless otherwise specified

Vishay Semiconductors

OPTICAL AND ELECTRICAL CHARACTERISTICS 1) TLVG4200, GREEN							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Luminous flux	I _F = 15 mA	φV	10	30		mlm	
Dominant wavelength	I _F = 10 mA	λ_{d}	562		575	nm	
Peak wavelength	I _F = 10 mA	λ_{p}		565		nm	
Angle of half intensity	I _F = 10 mA	φ		± 85		deg	
Forward voltage	I _F = 20 mA	V _F		2.4	3	V	
Reverse voltage	I _R = 10 μA	V _R	6	15		V	
Junction capacitance	V _R = 0, f = 1 MHz	C _j		50		pF	

Note:

¹⁾ T_{amb} = 25 °C, unless otherwise specified

OPTICAL AND ELECTRICAL CHARACTERISTICS 1) TLVP4200, PURE GREEN							
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT	
Luminous flux	I _F = 15 mA	φV	4	10		mlm	
Dominant wavelength	I _F = 10 mA	λ_{d}	555		565	nm	
Peak wavelength	I _F = 10 mA	λρ		555		nm	
Angle of half intensity	I _F = 10 mA	φ		± 85		deg	
Forward voltage	I _F = 20 mA	V _F		2.4	3	V	
Reverse voltage	I _R = 10 μA	V _R	6	15		V	
Junction capacitance	V _R = 0, f = 1 MHz	C _j		50		pF	

Note:

 $^{^{1)}}$ T_{amb} = 25 °C, unless otherwise specified

LUMINOUS FLUX CLASSIFICATION					
GROUP	LUMINOUS FLUX (mlm)				
STANDARD	MIN.	MAX.			
Р	4.0	8.0			
Q	6.3	12.5			
R	10	20			
S	16	32			
Т	25	50			
U	40	80			
V	63	125			
W	100	200			
X	130	260			
Y	180	360			
Z	240	480			

Note:

Luminous flux is tested at a current pulse duration of 25 ms and an accuracy of \pm 11 %.

The above type numbers represent the order groups which include only a few brightness groups. Only one group will be shipped on each bag (there will be no mixing of two groups in each bag).

In order to ensure availability, single brightness groups will not be orderable.

In a similar manner for colors where wavelength groups are measured and binned, single wavelength groups will be shipped on any one bag. In order to ensure availability, single wavelength groups will not be orderable.

Document Number 83057 Rev. 1.8 19-Feb-09

Vishay Semiconductors

COLOR CLASSIFICATION									
	DOM. WAVELENGTH (nm)								
GROUP	YE	YELLOW		EEN	PURE GREEN				
	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.			
0					555	559			
1	581	584			558	561			
2	583	586			560	563			
3	585	588	562	565	562	565			
4	587	590	564	567					
5	589	592	566	569					
6	591	594	568	571					
7			570	573					
8			572	575					

Note:

Wavelengths are tested at a current pulse duration of 25 ms.

TYPICAL CHARACTERISTICS

T_{amb} = 25 °C, unless otherwise specified

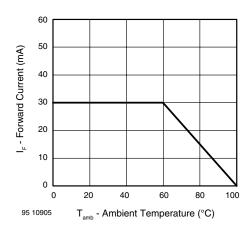


Figure 1. Forward Current vs. Ambient Temperature

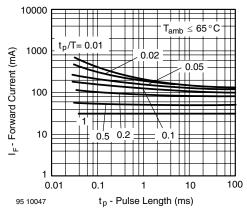


Figure 2. Forward Current vs. Pulse Length

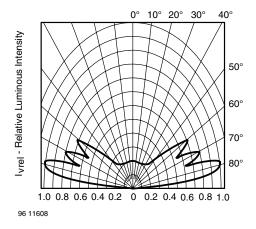


Figure 3. Rel. Luminous Intensity vs. Angular Displacement for 90 $^{\circ}$ Emission Angle

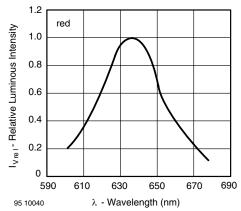


Figure 4. Relative Intensity vs. Wavelength

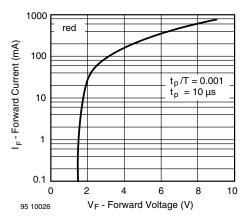


Figure 5. Forward Current vs. Forward Voltage

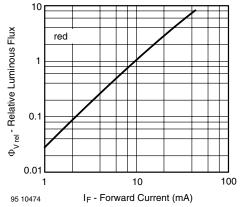


Figure 6. Relative Luminous Flux vs. Forward Current

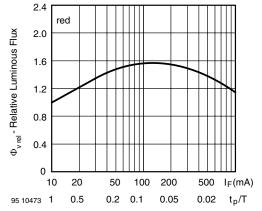


Figure 7. Rel. Luminous Flux vs. Forw. Current/Duty Cycle

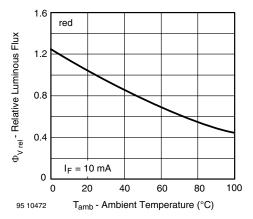


Figure 8. Rel. Luminous Flux vs. Ambient Temperature

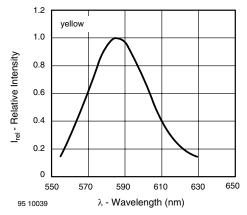


Figure 9. Relative Intensity vs. Wavelength

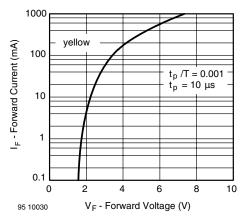


Figure 10. Forward Current vs. Forward Voltage

Vishay Semiconductors

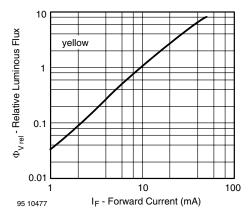


Figure 11. Relative Luminous Flux vs. Forward Current

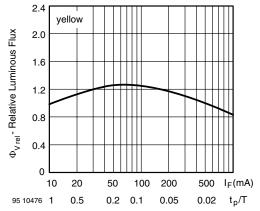


Figure 12. Rel. Luminous Flux vs. Forw. Current/Duty Cycle

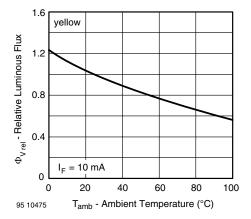


Figure 13. Rel. Luminous Flux vs. Ambient Temperature

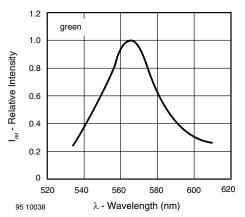


Figure 14. Relative Intensity vs. Wavelength

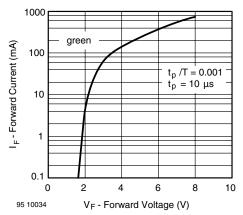


Figure 15. Forward Current vs. Forward Voltage

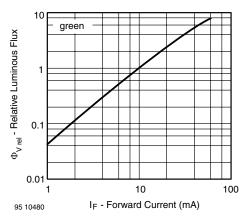


Figure 16. Relative Luminous Flux vs. Forward Current

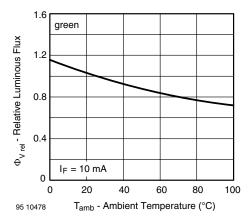


Figure 17. Rel. Luminous Flux vs. Ambient Temperature

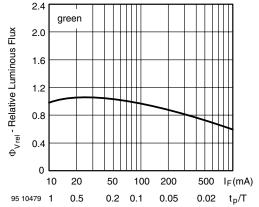


Figure 18. Rel. Luminous Flux vs. Forw. Current/Duty Cycle

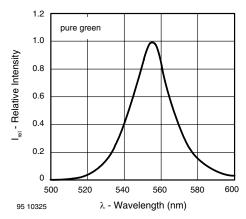


Figure 19. Relative Intensity vs. Wavelength

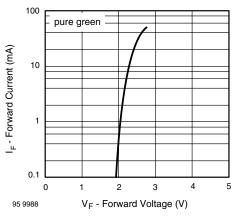


Figure 20. Forward Current vs. Forward Voltage

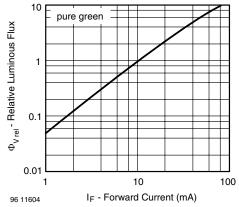


Figure 21. Relative Luminous Flux vs. Forward Current

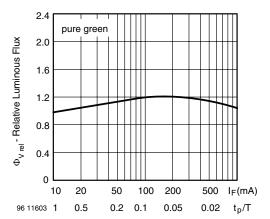


Figure 22. Rel. Luminous Flux vs. Forw. Current/Duty Cycle

Vishay Semiconductors

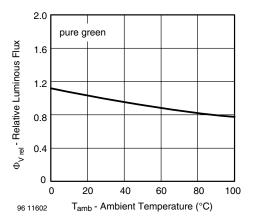
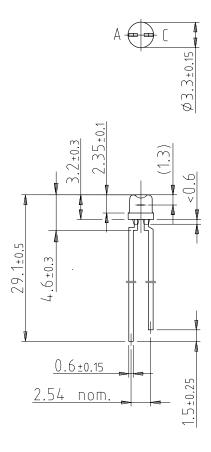
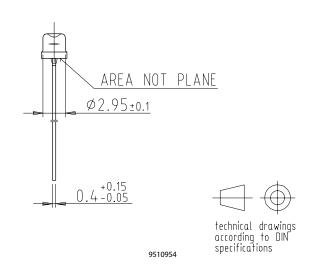




Figure 23. Rel. Luminous Flux vs. Ambient Temperature

PACKAGE DIMENSIONS in millimeters

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com
Revision: 11-Mar-11 1