High Voltage EL Lamp Driver IC

Features

- Processed with HVCMOS ${ }^{\circledR}$ technology
- 1.0 to 1.6 V operating supply voltage
- DC to AC conversion
- Output load of typically up to 6.0 nF
- Adjustable output lamp frequency
- Adjustable converter frequency
- Enable function

Applications

- Pagers
- Portable transceivers
- Cellular phones
- Remote control units
- Calculators

General Description

The Supertex HV825 is a high voltage driver designed for driving EL lamps typically up to 6.0 nF . The input supply voltage range is from 1.0 V to 1.6 V . The device uses a single inductor and a minimum number of passive components. The typical output voltage that can be applied to the EL lamp is $\pm 56 \mathrm{~V}$.

The HV825 can be enabled/disabled by connecting the $\mathrm{R}_{\text {sw-osc }}$ resistor to VDD/GND.

The HV825 has two internal oscillators, a switching bipolar junction transistor (BJT), and a high voltage EL lamp driver. The frequency for the switching BJT is set by an external resistor connected between the RSW-Osc pin and the VDD supply pin. The EL lamp driver frequency is set by an external resistor connected between REL-Osc pin and the VDD pin. An external inductor is connected between the LX and VDD pins. A 0.01 to $0.1 \mu \mathrm{~F}, 100 \mathrm{~V}$ capacitor is connected between the CS pin and the GND pin. The EL lamp is connected between the VA pin and the VB pin.

The switching BJT charges the external inductor and discharges it into the 0.01 to $0.1 \mu \mathrm{~F}, 100 \mathrm{~V}$ capacitor at the CS pin. The voltage at the CS pin will start to increase. The outputs VA and VB are configured as an H -bridge and are switching in opposite states to achieve a peak-to-peak voltage of two times the V_{cs} voltage across the EL lamp.
For additional information, see Application Notes AN-H33 and AN-H34.

Block Diagram

Ordering Information

Package Options		
	8-Lead SOIC	8-Lead MSOP
	4.90x3.90mm body	3.00x3.00mm body
	1.75mm height (max)	1.10mm height (max)
	1.27mm pitch	$0.65 m m$ pitch
HV825	HV825LG-G	HV825MG-G

-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings

Parameter	Value
Supply voltage, V_{DD}	0.5 V to +2.5 V
Operating Temperature Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
MSOP-8 Power Dissipation	300 mW
SO-8 Power Dissipation	400 mW

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Pin Configuration

8-Lead SOIC (LG) / 8-Lead MSOP (MG)

Product Marking

Top Marking

(7) YYWW	Y = Last Digit of Year Sealed
HV825	WW = Week Sealed
LLLL	L = Lot Number $\ldots=\text { "Green" Packagi }$

8-Lead SOIC (LG)

L = Lot Number
YY = Year Sealed
WW = Week Sealed
= "Green" Packaging

Electrical Characteristics

DC Characteristics (Over recommended operating conditions unless otherwise specified $-T_{A}=25^{\circ} \mathrm{C}$)

Sym	Parameter	Min	Typ	Max	Units	Conditions
$R_{D S(O N)}$	On-resistance of switching transistor	-	-	15	Ω	$\mathrm{I}=50 \mathrm{~mA}$
I_{IN}	V_{DD} supply current (including inductor current)	-	30	38	mA	$\mathrm{~V}_{\mathrm{DD}}=1.5 \mathrm{~V}$. See test circuit
$\mathrm{I}_{\mathrm{DDQ}}$	Quiescent V_{DD} supply current	-	-	1.0	$\mu \mathrm{~A}$	$\mathrm{R}_{\mathrm{SW} \text {-osc }}=\mathrm{GND}$
V_{CS}	Output voltage on V_{CS}	52	56	62	V	$\mathrm{~V}_{\mathrm{DD}}=1.5 \mathrm{~V}$. See test circuit
$\mathrm{V}_{\mathrm{A} \cdot \mathrm{B}}$	Differential output voltage across lamp	104	112	124	V	$\mathrm{~V}_{\mathrm{DD}}=1.5 \mathrm{~V}$. See test circuit
f_{EL}	V_{A-B} output drive frequency	400	-	-	Hz	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$. See test circuit
f_{SW}	Switching transistor frequency	-	30	-	KHz	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$. See test circuit
D	Switching transistor duty cycle	-	88	-	$\%$	---

Recommended Operating Conditions

V_{DD}	Supply voltage	1.0	-	1.6	V	---
C_{L}	Load Capacitance	0	6.0	-	nF	---
T_{A}	Operating temperature	-25	-	+85	${ }^{\circ} \mathrm{C}$	---

Enable/Disable Table

$\mathrm{V}_{I L}$	Low level input voltage to $\mathrm{R}_{\mathrm{SW} \text {-osc }}$ resistor	0	-	0.2	V	$\mathrm{~V}_{\mathrm{DD}}=1.0-1.6 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{IH}}$	High level input voltage to $\mathrm{R}_{\mathrm{SW} \text {-osc }}$ resistor	$\mathrm{V}_{\mathrm{DD}}-0.5$	-	V_{DD}	V	$\mathrm{V}_{\mathrm{DD}}=1.0-1.6 \mathrm{~V}$

Supertex inc. • 1235 Bordeaux Drive, Sunnyvale, CA 94089 • Tel: (408) 222-8888•FAX: (408) 222-4895 • www.supertex.com

Test Circuit

For additional information, see Application Notes AN-H33 and AN-H34.

Typical Performance

Lamp Size	$\mathbf{V}_{I N}$	\mathbf{I}_{DD}	\mathbf{V}_{cs}	\mathbf{f}_{EL}	Brightness
$1.5 \mathrm{in}^{2}$	1.5 V	30 mA	56 V	450 Hz	$3.65 \mathrm{ft}-\mathrm{Im}$

Notes:

1. Murata part \# LQH4N561K04 (Max DC resistance $=14.5 \Omega$)

External Component Description

External Component	Selection Guide Line
Diode	Fast reverse recovery, 1N4148 or equivalent.
$\mathrm{C}_{\text {s }}$ Capacitor	0.01 to $0.1 \mu \mathrm{~F}, 100 \mathrm{~V}$ capacitor to GND is used to store the energy transferred from the inductor.
$\mathrm{R}_{\text {EL-Osc }}$ Resistor	The lamp frequency is controlled via the $\mathrm{R}_{\mathrm{EL} \text {-osc }}$. The lamp frequency increases as the $\mathrm{R}_{\mathrm{EL}-\mathrm{Osc}}$ decreases. As the lamp frequency increases, the amount of current drawn from the battery will increase and the output voltage V_{cs} will decrease. This is because the lamp will draw more current from V_{cs} when driven at higher frequencies. In general, as the lamp size increases, a larger $\mathrm{R}_{\mathrm{EL} \text {-osc }}$ is recommended to provide higher V_{CS}. However, the color of the lamp is dependent upon its frequency and the shade of the color will change slightly with different frequencies.
$\mathrm{R}_{\text {sw-Osc }}$ Resistor	The switching frequency of the inductor is controlled via the $R_{\text {sw-osc }}$. The switching frequency increases as the $R_{\text {sw-osc }}$ decreases. As the switching frequency increases, the amount of current drawn from the battery will decrease and the output voltage V_{CS} will also decrease.
L_{x} Inductor	The inductor L_{x} is used to boost up the low input voltage. When the internal switch is on, the inductor is being charged. When the internal switch is off, the charge in the inductor will be transferred to the high voltage capacitor C_{s}. The energy stored in the capacitor is connected to the internal H -bridge and therefore to the lamp. In general smaller value inductors, which can handle more current, are more suitable to drive larger size lamps. As the inductor value decreases, the switching frequency of the inductor (controlled by $\mathrm{R}_{\text {sw-osc }}$) should be increased to avoid saturation. The test circuit uses a Murata (LQH4N561) $560 \mu \mathrm{H}$ inductor. Using different inductor values or inductors from different manufacturers will affect the performance. As the inductor value decreases, smaller $R_{\text {sw-osc }}$ values should be used. This will prevent inductor saturation. An inductor with the same inductance value, $(560 \mu \mathrm{H})$, but lower series resistance, will charge faster. The $\mathrm{R}_{\text {sw-osc }}$ resistor value needs to be decreased to prevent inductor saturation and high current consumption.
C_{sw} Capacitor	A 1 nF capacitor is recommended from the RSW-Osc pin to GND. This capacitor is used to shunt any switching noise that may couple into the RSW-Osc pin. A C S_{sw} larger than 1.0 nF is not recommended.

Supertex inc. • 1235 Bordeaux Drive, Sunnyvale, CA 94089 • Tel: (408) 222-8888 • FAX: (408) 222-4895 • www.supertex.com

8-Lead SOIC (Narrow Body) Package Outline (LG) 4.90x3.90mm body, 1.75 mm height (max), 1.27 mm pitch

Note:

1. This chamfer feature is optional. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	D	E	E1	e	h	L	L1	L2	θ	$\theta 1$
Dimension (mm)	MIN	1.35*	0.10	1.25	0.31	4.80*	5.80*	3.80*	$\begin{aligned} & 1.27 \\ & \text { BSC } \end{aligned}$	0.25	0.40	$\begin{aligned} & 1.04 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°	5°
	NOM	-	-	-	-	4.90	6.00	3.90		-	-			-	-
	MAX	1.75	0.25	1.65*	0.51	5.00*	6.20*	4.00*		0.50	1.27			8°	15°

[^0]
8-Lead MSOP Package Outline (MG)

$3.00 \times 3.00 \mathrm{~mm}$ body, 1.10 mm height (max), 0.65 mm pitch

View B

View A-A

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbol		A	A1	A2	b	D	E	E1	e	L	L1	L2	θ	01
Dimension (mm)	MIN	0.75*	0.00	0.75	0.22	2.80*	4.65*	2.80*	$\begin{aligned} & 0.65 \\ & \text { BSC } \end{aligned}$	0.40	$\begin{aligned} & 0.95 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	0°	5°
	NOM	-	-	0.85	-	3.00	4.90	3.00		0.60			-	-
	MAX	1.10	0.15	0.95	0.38	3.20*	5.15*	3.20*		0.80			8°	15°

JEDEC Registration MO-187, Variation AA, Issue E, Dec. 2004.

* This dimension is not specified in the original JEDEC drawing. The value listed is for reference only.

Drawings are not to scale.
Supertex Doc. \#: DSPD-8MSOPMG, Version G101008.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^1]
[^0]: JEDEC Registration MS-012, Variation AA, Issue E, Sept. 2005.

 * This dimension is not specified in the original JEDEC drawing. The value listed is for reference only.

 Drawings are not to scale.
 Supertex Doc. \#: DSPD-8SOLGTG, Version H101708.

[^1]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." Supertex inc. does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the Supertex inc. website: http//www.supertex.com.

