34-Channel Symmetric Row Driver

Ordering Information

Device	Package Options			
	44 J-Lead Quad Ceramic Chip Carrier	44 J-Lead Quad Plastic Chip Carrier	Die in waffle pack	44 J-Lead Quad Ceramic Chip Carrier (MIL-Std-883 Processed*)
	HV7022DJ-C	HV7022PJ-C	HV7022X-C	RBHV7022DJ-C

*For Hi-Rel process flows, refer to page 5-3 of the databook.

Features

- Processed with $\mathrm{HVCMOS}^{\circledR}$ technology
- Symmetric row drive (reduces latent imaging in ACTFEL displays)
- Output voltages up to 230V
- Low-power level shifting
- Source/Sink current 70mA (min.)
- Shift register speed 4 MHz
- Pin-programmable shift direction
- 44-lead plastic \& ceramic surface-mount packages
- Hi-Rel processing available

Absolute Maximum Ratings

Supply voltage, $\mathrm{V}_{\mathrm{DD}}{ }^{1}$	-0.3 V to +15 V	
Supply voltage, $\mathrm{V}_{\mathrm{PP}}{ }^{1}$	-0.3 V to +250 V	
Logic input levels ${ }^{1}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$	
Ground current ${ }^{2}$	1.5 A	
Continuous total power dissipation ${ }^{3}:$	Plastic Ceramic	1200 mW
	1500 mW	
Operating temperature range	Plastic Ceramic	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$5^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		
Storage temperature range		$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead temperature $1.6 \mathrm{~mm}(1 / 16$ inch)		
from case for 10 seconds	$260^{\circ} \mathrm{C}$	

Notes:

1. All voltages are referenced to GND.
2. Duty cycle is limited by the total power dissipated in the package.
3. For operation above $25^{\circ} \mathrm{C}$ ambient derate linearly to maximum operating temperature at $25 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for plastic and at $15 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for ceramic.

General Description

The HV7022-C is a low-voltage serial to high-voltage parallel converter with push-pull outputs. It is especially suited for use as a symmetric row driver in AC thin-film electroluminescent (ACTFEL) displays. The HV70 offers 34 output lines, a direction (DIR) pin to give CW or CCW shift register loading, output enable (OE), and polarity (POL) control. After DATA INPUT is entered (on the falling edge of CLOCK), a logic high will cause the output to swing to V_{PP} if POL is high, or to GND if POL is low.

For Detailed circuit and application information, please refer to Application Note AN-H3.

Electrical Characteristics

(over recommended operating conditions of $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{PP}}=230 \mathrm{~V}$ unless otherwise noted)
DC Characteristics

Symbol	Parameter		Min	Max	Units	Conditions
I_{DD}	V_{DD} supply current			10	mA	$\mathrm{f}_{\mathrm{CLK}}=4 \mathrm{MHz}$
$\mathrm{I}_{\text {PP }}$	High voltage supply current			4	mA	1 Output high 1
				100	$\mu \mathrm{A}$	All Outputs low or High-Z
				750	$\mu \mathrm{A}$	All Outputs low or High-Z $\left(125^{\circ} \mathrm{C}\right)$
$\mathrm{I}_{\text {DDQ }}$	Quiescent $\mathrm{V}_{\text {DD }}$ supply current			100	$\mu \mathrm{A}$	All $\mathrm{V}_{\text {IN }}=\mathrm{GND}$ or V_{DD}
V_{OH}	High-level output	HV ${ }_{\text {OUT }}$	195		V	$\mathrm{I}_{\mathrm{O}}=-70 \mathrm{~mA}(-50 \mathrm{~mA})^{2}$
		Data out	11		V	$\mathrm{I}_{\mathrm{O}}=-500 \mu \mathrm{~A}$
V_{OL}	Low-level output	HV ${ }_{\text {OUT }}$		30	V	$\mathrm{I}_{\mathrm{O}}=70 \mathrm{~mA}(+50 \mathrm{~mA})^{2}$
		Data out		1	V	$\mathrm{I}_{\mathrm{O}}=500 \mu \mathrm{~A}$
I_{H}	High-level logic input current			1	$\mu \mathrm{A}$	$\mathrm{V}_{1 H}=12 \mathrm{~V}$
$\mathrm{I}_{\text {LL }}$	Low-level logic input current			-1	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$

Notes:

1. The total number of $O N$ outputs times the duty cycle must not exceed the allowable package power disspation.
2. Over military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.125^{\circ} \mathrm{C}\right)$.

AC Characteristics ($\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Min	Max	Units	Conditions
$\mathrm{f}_{\text {CLK }}$	Clock frequency		4	MHz	
t_{w}	Pulse duration clock high or low	125		ns	
$\mathrm{t}_{\text {SUD }}$	Data set-up time before falling clock	100		ns	
$\mathrm{t}_{\text {HD }}$	Data hold time after falling clock	100		ns	
$\mathrm{t}_{\text {Suc }}$	Setup time clock low before $\mathrm{V}_{\mathrm{PP}} \uparrow$ or GND \downarrow	300		ns	
$\mathrm{t}_{\text {SUE }}$	Setup time enable high before $\mathrm{V}_{\text {PP }} \uparrow$ or GND \downarrow	300		ns	
$\mathrm{t}_{\text {SUP }}$	Setup time polarity high or low before $\mathrm{V}_{\mathrm{PP}} \uparrow$ or $\mathrm{GND} \downarrow$	300		ns	
t_{HC}	Hold time clock high after $\mathrm{V}_{\text {PP }} \uparrow$ or GND \downarrow	500		ns	
$\mathrm{t}_{\text {HE }}$	Hold time enable high after $\mathrm{V}_{\text {PP }} \uparrow$ or GND \downarrow	300		ns	
t_{HP}	Hold time polarity high or low after $\mathrm{V}_{\text {PP }} \uparrow$ or GND \downarrow	300		ns	
$\mathrm{t}_{\text {DHL }}$	Delay time high to low level output from clock		150	ns	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$
$\mathrm{t}_{\text {DLH }}$	Delay time low to high level output from clock		200	ns	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$
$\mathrm{t}_{\text {THL }}$	Transition time high to low level serial output		200	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\mathrm{t}_{\text {TLH }}$	Transition time low to high level serial output		100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$
$\mathrm{t}_{\text {ONH }}$	High level turn-on time Q outputs from enable		500	ns	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=-50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OH}}=195 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 95 \mathrm{~V} \end{aligned}$
$\mathrm{t}_{\mathrm{ONL}}$	Low level turn-on time Q outputs from enable		500	ns	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OH}}=130 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 30 \mathrm{~V} \end{aligned}$
$\mathrm{t}_{\text {OFFH }}$	High level turn-off time Q outputs from enable		1000	ns	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=-50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OH}}=195 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 95 \mathrm{~V} \end{aligned}$
$\mathrm{t}_{\text {OFFL }}$	Low level turn-off time Q outputs from enable		500	ns	$\begin{aligned} & \mathrm{I}_{\mathrm{O}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{OH}}=130 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \text { to } 30 \mathrm{~V} \end{aligned}$
	Slew rate, V_{PP} or GND		45	V/us	With one active output driving a 4.7 nF load to $V_{\text {PP }}$ or GND

Recommended Operating Conditions

Symbol	Parameter		Min	Max	Units
V_{DD}	Logic supply voltage		10.8	13.2	V
$V_{P P}$	High voltage supply			230	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage	$\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}$	8.1		V
		$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}$	9.9		
V_{IL}	Low-level input voltage	$\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}$		2.7	V
		$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}$		3.3	
$\mathrm{f}_{\text {CLK }}$	Clock frequency			4	MHz
T_{A}	Operating free-air temperature	Plastic	-40	+85	${ }^{\circ} \mathrm{C}$
		Ceramic	-55	+125	${ }^{\circ} \mathrm{C}$
I_{OD}	Allowable pulse current through output diodes			± 300	mA

Note:
Power-up sequence should be the following:

1. Connect ground.
2. Apply V_{DD}.
3. Set all inputs (Data, CLK, Enable, etc.) to a known state.
4. Apply VPp.
5. The V_{PP} should not drop below V_{DD} or float during operation.

Power-down sequence should be the reverse of the above.

Input and Output Equivalent Circuits

Switching Waveforms

Functional Block Diagram

Function Table

I/O Relations	Inputs					Outputs		
	CLK	DIR	Data	POL	OE	Shift Reg	HV Outputs	Data Out
O/P HIGH	X	X	H	H	H	*	H	
O/P OFF	X	X	L	H	H	*	HIGH-Z	*
O/P LOW	X	X	H	L	H	*	L	*
O/P OFF	X	X	L	L	H	*	HIGH-Z	*
O/P OFF	X	X	X	X	L	*	All O/P HIGH-Z	*
Load S/R, set DIR	\downarrow	L	X	X	X	$\mathrm{Q}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}+1}$	*	Q_{34}
	\downarrow	H	X	X	X	$\mathrm{Q}_{\mathrm{n}} \rightarrow \mathrm{Q}_{\mathrm{n}-1}$	*	Q_{1}
	No \downarrow	X	X	X	X	*	No Change	No Change

Notes:

$H=$ logic high level, $L=$ logic low level, $X=$ irrelevant, $\downarrow=$ high-to-low transition,
$Q_{1}=H V_{\text {OUT }} 1, Q_{n}=H V_{\text {OUT }}(n)$, etc.

* $=$ dependent on previous state and whether an O / P or S / R command occured.

$\mathrm{HV}_{\text {out }}$ Characteristics

Output N-Channel Characteristics through FET

Pin Configurations

HV70
44 Pin J-Lead Package

Pin	Function	Pin	Function
1	HV ${ }_{\text {OUT }} 18 / 17$	23	DIR
2	HV ${ }_{\text {OUT }} 17 / 18$	24	$V_{\text {D }}$
3	HV ${ }_{\text {OUt }} 16 / 19$	25	Polarity
4	HV ${ }_{\text {OUT }} 15 / 20$	26	Data In
5	HV ${ }_{\text {OUT }} 14 / 21$	27	$\mathrm{V}_{\text {PP }}$
6	HV ${ }_{\text {OUT }} 13 / 22$	28	N/C
7	HV ${ }_{\text {OUT }} 12 / 23$	29	$\mathrm{HV}_{\text {OUT }} 34 / 1$
8	HV ${ }_{\text {OUT }} 11 / 24$	30	$\mathrm{HV}_{\text {OUT }} 33 / 2$
9	HV ${ }_{\text {OUT }} 10 / 25$	31	$\mathrm{HV}_{\text {OUT }} 32 / 3$
10	$\mathrm{HV}_{\text {OUT }} 9 / 26$	32	$\mathrm{HV}_{\text {OUT }} 31 / 4$
11	$\mathrm{HV}_{\text {OUT }} 8 / 27$	33	$\mathrm{HV}_{\text {OUT }} 30 / 5$
12	$\mathrm{HV}_{\text {OUT }} 7 / 28$	34	$\mathrm{HV}_{\text {OUT }} 29 / 6$
13	$\mathrm{HV}_{\text {OUt }} 6 / 29$	35	$\mathrm{HV}_{\text {OUT }} 28 / 7$
14	$\mathrm{HV}_{\text {OUT }} 5 / 30$	36	$\mathrm{HV}_{\text {OUT }} 27 / 8$
15	$\mathrm{HV}_{\text {OUT }} 4 / 31$	37	$\mathrm{HV}_{\text {OUT }} 26 / 9$
16	$\mathrm{HV}_{\text {OUT }} 3 / 32$	38	$\mathrm{HV}_{\text {OUT }} 25 / 10$
17	$\mathrm{HV}_{\text {OUT }} 2 / 33$	39	HV OUT $24 / 11$
18	HV ${ }_{\text {OUT }} 1 / 34$	40	$\mathrm{HV}_{\text {OUT }} 23 / 12$
19	Data Out	41	$\mathrm{HV}_{\text {OUT }} 22 / 13$
20	Output Enable	42	$\mathrm{HV}_{\text {OUT }} 21 / 14$
21	Clock	43	$\mathrm{HV}_{\text {OUT }} 20 / 15$
22	GND	44	HV ${ }_{\text {OUT }} 19 / 16$

Output P-Channel Characteristics through FET

Package Outline

top view
44-pin J-Lead Package

Note:

Pin designation for DIR L/H

$$
\text { Example:For DIR }=\mathrm{L} \text {, pin } 1 \text { is } \mathrm{HV}_{\text {out }} 18
$$

$$
\text { For DIR }=\mathrm{H}, \text { pin } 1 \text { is } \mathrm{HV}_{\text {out }} 17
$$

44-Lead PQFP Package Outline (PG)

View B

Note 1:
A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier may be either a mold, or an embedded metal or marked feature.

Symbol		A	A1	A2	b	D	D1	E	E1	e	L	L1	L2	θ	01
Dimension (mm)	MIN	-	0.25	1.95	0.30	13.65	9.80	13.65	9.80	$\begin{aligned} & 0.80 \\ & \text { BSC } \end{aligned}$	0.73	$\begin{aligned} & 1.95 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & 0.25 \\ & \text { BSC } \end{aligned}$	$3.5{ }^{\circ}$	5°
	NOM	-	-	2.00	-	13.90	10.00	13.90	10.00		0.88			-	-
	MAX	2.45	-	2.10	0.45	14.15	10.20	14.15	10.20		1.03			7°	16°

[^0]Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell its products for use in such applications, unless it receives an adequate "product liability indemnification insurance agreement". Supertex does not assume responsibility for use of devices described and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the Supertex website: http//www.supertex.com.

44-Lead PLCC Package Outline (PJ)

 .653x.653in body, .180in height (max.), .050in pitch

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier may be either a mold, or an embedded metal or marked feature. 2. Exact shape of this feature is optional.

Symbol		A	A1	A2	b	b1	D	D1	E	E1	e
Dimension (inches)	MIN	. 165	. 090	. 062	. 013	. 026	. 685	. 650	. 685	. 650	$\begin{aligned} & .050 \\ & \text { BSC } \end{aligned}$
	NOM	. 172	. 105	-	-	-	. 690	. 653	. 690	. 653	
	MAX	. 180	. 120	. 083	. 021	. 036	. 695	. 656	. 695	. 656	

JEDEC Registration MS-018, Variation AC, Issue A, June, 1993.
Drawings are not to scale.
Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell its products for use in such applications, unless it receives an adequate "product liability indemnification insurance agreement". Supertex does not assume responsibility for use of devices described and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the Supertex website: http//www.supertex.com.

[^0]: JEDEC Registration M0-112, Variation AA-2, Issue B, Sep. 1995.

