

PN512

Transmission module

Rev. 3.6 — 10 March 2011 111336 Product data sheet COMPANY PUBLIC

1. Introduction

This document describes the functionality and electrical specifications of the transceiver IC PN512.

2. General description

The PN512 is a highly integrated transceiver IC for contactless communication at 13.56 MHz. This transceiver IC utilizes an outstanding modulation and demodulation concept completely integrated for different kinds of contactless communication methods and protocols at 13.56 MHz.

The PN512 transceiver ICs support 4 different operating modes

- Reader/Writer mode supporting ISO/IEC 14443A/MIFARE and FeliCa scheme
- Reader/Writer mode supporting ISO/IEC 14443B
- Card Operation mode supporting ISO/IEC 14443A/MIFARE and FeliCa scheme
- NFCIP-1 mode

Enabled in Reader/Writer mode for ISO/IEC 14443A/MIFARE, the PN512's internal transmitter part is able to drive a reader/writer antenna designed to communicate with ISO/IEC 14443A/ MIFARE cards and transponders without additional active circuitry. The receiver part provides a robust and efficient implementation of a demodulation and decoding circuitry for signals from ISO/IEC 14443A/MIFARE compatible cards and transponders. The digital part handles the complete ISO/IEC 14443A framing and error detection (Parity & CRC).

The PN512 supports MIFARE 1K or MIFARE 4K emulation products. The PN512 supports contactless communication using MIFARE higher transfer speeds up to 424 kbit/s in both directions.

Enabled in Reader/Writer mode for FeliCa, the PN512 transceiver IC supports the FeliCa communication scheme. The receiver part provides a robust and efficient implementation of the demodulation and decoding circuitry for FeliCa coded signals. The digital part handles the FeliCa framing and error detection like CRC. The PN512 supports contactless communication using FeliCa Higher transfer speeds up to 424 kbit/s in both directions.

The PN512 supports all layers of the ISO/IEC 14443B reader/writer communication scheme, given correct implementation of additional components, like oscillator, power supply, coil etc. and provided that standardized protocols, e.g. like ISO/IEC 14443-4 and/or ISO/IEC 14443B anticollision are correctly implemented.

Transmission module

In Card Operation mode, the PN512 transceiver IC is able to answer to a reader/writer command either according to the FeliCa or ISO/IEC 14443A/MIFARE card interface scheme. The PN512 generates the digital load modulated signals and in addition with an external circuit the answer can be sent back to the reader/writer. A complete card functionality is only possible in combination with a secure IC using the S²C interface.

Additionally, the PN512 transceiver IC offers the possibility to communicate directly to an NFCIP-1 device in the NFCIP-1 mode. The NFCIP-1 mode offers different communication mode and transfer speeds up to 424 kbit/s according to the Ecma 340 and ISO/IEC 18092 NFCIP-1 Standard. The digital part handles the complete NFCIP-1 framing and error detection.

Various host controller interfaces are implemented:

- 8-bit parallel interface¹
- SPI interface
- serial UART (similar to RS232 with voltage levels according pad voltage supply)
- I²C interface.

A purchaser of this NXP IC has to take care for appropriate third party patent licenses.

PN512

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2011. All rights reserved

^{1. 8-}bit parallel Interface only available in HVQFN40 package.

Transmission module

3. Features and benefits

- Highly integrated analog circuitry to demodulate and decode responses
- Buffered output drivers for connecting an antenna with the minimum number of external components
- Integrated RF Level detector
- Integrated data mode detector
- Supports ISO/IEC 14443 A/MIFARE
- Supports ISO/IEC 14443 B Read/Write modes
- Typical operating distance in Read/Write mode up to 50 mm depending on the antenna size and tuning
- Typical operating distance in NFCIP-1 mode up to 50 mm depending on the antenna size and tuning and power supply
- Typical operating distance in ISO/IEC 14443A/MIFARE card or FeliCa Card Operation mode of about 100 mm depending on the antenna size and tuning and the external field strength
- Supports MIFARE 1K or MIFARE 4K emulation encryption in Reader/Writer mode
- ISO/IEC 14443A higher transfer speed communication at 212 kbit/s and 424 kbit/s
- Contactless communication according to the FeliCa scheme at 212 kbit/s and 424 kbit/s
- Integrated RF interface for NFCIP-1 up to 424 kbit/s
- S²C interface
- Additional power supply to directly supply the smart card IC connected via S²C
- Supported host interfaces
 - ◆ SPI up to 10 Mbit/s
 - ◆ I²C-bus interface up to 400 kBd in Fast mode, up to 3400 kBd in High-speed mode
 - RS232 Serial UART up to 1228.8 kBd, with voltage levels dependent on pin voltage supply
 - ◆ 8-bit parallel interface with and without Address Latch Enable
- FIFO buffer handles 64 byte send and receive
- Flexible interrupt modes
- Hard reset with low power function
- Power-down mode per software
- Programmable timer
- Internal oscillator for connection to 27.12 MHz quartz crystal
- 2.5 V to 3.6 V power supply
- CRC coprocessor
- Programmable I/O pins
- Internal self-test

Transmission module

4. Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{DDA}	analog supply voltage	$V_{DD(PVDD)} \le V_{DDA} = V_{DDD} = V_{DD(TVDD)};$	[1][2]	2.5	-	3.6	V
V_{DDD}	digital supply voltage	$V_{SSA} = V_{SSD} = V_{SS(PVSS)} = V_{SS(TVSS)} = 0 V$					
V _{DD(TVDD)}	TVDD supply voltage						
V _{DD(PVDD)}	PVDD supply voltage		[3]	1.6	-	3.6	V
V _{DD(SVDD)}	SVDD supply voltage	$V_{SSA} = V_{SSD} = V_{SS(PVSS)} = V_{SS(TVSS)} = 0 \text{ V}$		1.6	-	3.6	V
I _{pd}	power-down current	$V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)} = 3 \text{ V}$					
		hard power-down; pin NRSTPD set LOW	[4]	-	-	5	μΑ
		soft power-down; RF level detector on	<u>[4]</u>	-	-	10	μΑ
I _{DDD}	digital supply current	pin DVDD; V _{DDD} = 3 V		-	6.5	9	mA
I _{DDA}	analog supply current	pin AVDD; $V_{DDA} = 3 V$, CommandReg register's RcvOff bit = 0		-	7	10	mA
		pin AVDD; receiver switched off; $V_{DDA} = 3 \text{ V}$, CommandReg register's RcvOff bit = 1		-	3	5	mA
I _{DD(PVDD)}	PVDD supply current	pin PVDD	<u>[5]</u>	-	-	40	mA
$I_{DD(TVDD)}$	TVDD supply current	pin TVDD; continuous wave	[6][7][8]	-	60	100	mA
T _{amb}	ambient temperature	HVQFN32, HVQFN40		-30		+85	°C

^[1] Supply voltages below 3 V reduce the performance in, for example, the achievable operating distance.

5. Ordering information

Table 2. Ordering information

Type number	Package							
	Name	Description	Version					
PN5120A0HN1/C2	HVQFN32	plastic thermal enhanced very thin quad flat package; no leads; 32 terminal; body 5 \times 5 \times 0.85 mm	SOT617-1					
PN5120A0HN/C2	HVQFN40	plastic thermal enhanced very thin quad flat package; no leads; 40 terminals; body $6\times6\times0.85$ mm	SOT618-1					

^[2] V_{DDA} , V_{DDD} and $V_{DD(TVDD)}$ must always be the same voltage.

^[3] $V_{DD(PVDD)}$ must always be the same or lower voltage than V_{DDD} .

^[4] I_{pd} is the total current for all supplies.

^[5] I_{DD(PVDD)} depends on the overall load at the digital pins.

^[6] $I_{DD(TVDD)}$ depends on $V_{DD(TVDD)}$ and the external circuit connected to pins TX1 and TX2.

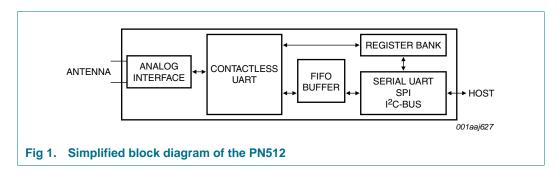
^[7] During typical circuit operation, the overall current is below 100 mA.

^[8] Typical value using a complementary driver configuration and an antenna matched to 40 Ω between pins TX1 and TX2 at 13.56 MHz.

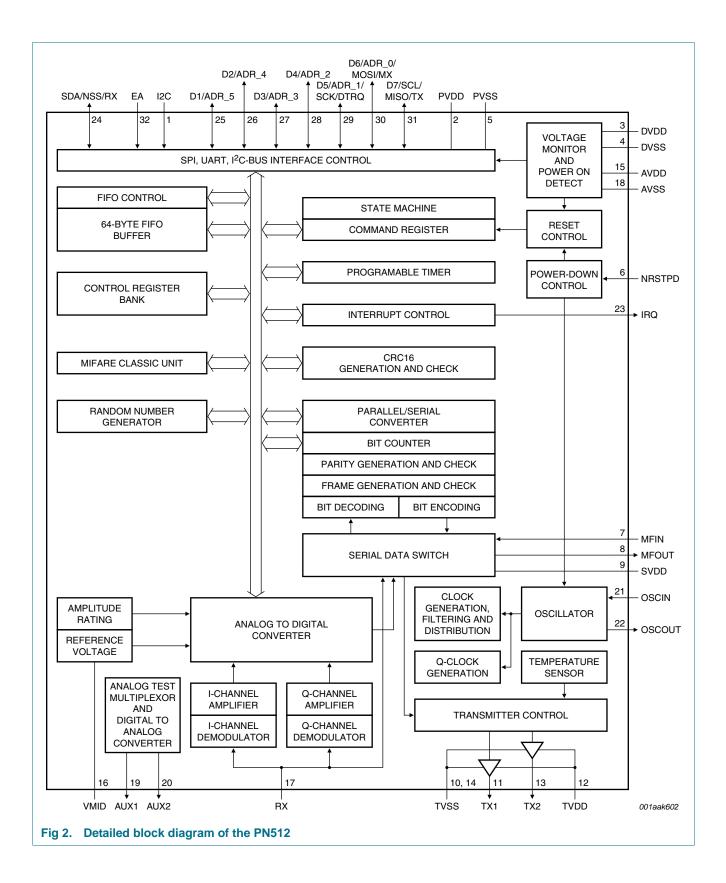
Transmission module

6. Block diagram

The analog interface handles the modulation and demodulation of the analog signals according to the Card Receiving mode, Reader/Writer mode and NFCIP-1 mode communication scheme.

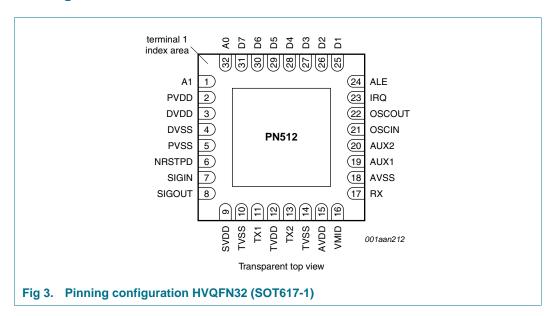

The RF level detector detects the presence of an external RF-field delivered by the antenna to the RX pin.

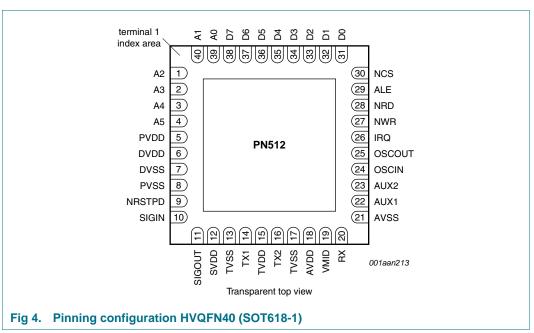
The Data mode detector detects a MIFARE, FeliCa or NFCIP-1 mode in order to prepare the internal receiver to demodulate signals, which are sent to the PN512.


The communication (S²C) interface provides digital signals to support communication for transfer speeds above 424 kbit/s and digital signals to communicate to a secure IC.

The contactless UART manages the protocol requirements for the communication protocols in cooperation with the host. The FIFO buffer ensures fast and convenient data transfer to and from the host and the contactless UART and vice versa.

Various host interfaces are implemented to meet different customer requirements.


Transmission module



Transmission module

7. Pinning information

7.1 Pinning

Transmission module

7.2 Pin description

Table 3. Pin description HVQFN32

Table 5.	i ili descrip		· · · · · · ·
Pin	Symbol	Type	Description
1	A1	I	Address Line
2	PVDD	PWR	Pad power supply
3	DVDD	PWR	Digital Power Supply
4	DVSS	PWR	Digital Ground
5	PVSS	PWR	Pad power supply ground
6	NRSTPD	I	Not Reset and Power Down: When LOW, internal current sinks are switched off, the oscillator is inhibited, and the input pads are disconnected from the outside world. With a positive edge on this pin the internal reset phase starts.
7	SIGIN	I	Communication Interface Input: accepts a digital, serial data stream
8	SIGOUT	0	Communication Interface Output: delivers a serial data stream
9	SVDD	PWR	S2C Pad Power Supply: provides power to the S2C pads
10	TVSS	PWR	Transmitter Ground: supplies the output stage of TX1 and TX2
11	TX1	0	Transmitter 1: delivers the modulated 13.56 MHz energy carrier
12	TVDD	PWR	Transmitter Power Supply: supplies the output stage of TX1 and TX2
13	TX2	0	Transmitter 2: delivers the modulated 13.56 MHz energy carrier
14	TVSS	PWR	Transmitter Ground: supplies the output stage of TX1 and TX2
15	AVDD	PWR	Analog Power Supply
16	VMID	PWR	Internal Reference Voltage: This pin delivers the internal reference voltage.
17	RX	I	Receiver Input
18	AVSS	PWR	Analog Ground
19	AUX1	0	Auxiliary Outputs: These pins are used for testing.
20	AUX2	0	
21	OSCIN	I	Crystal Oscillator Input: input to the inverting amplifier of the oscillator. This pin is also the input for an externally generated clock ($f_{osc} = 27.12 \text{ MHz}$).
22	OSCOUT	0	Crystal Oscillator Output: Output of the inverting amplifier of the oscillator.
23	IRQ	0	Interrupt Request: output to signal an interrupt event
24	ALE	I	Address Latch Enable: signal to latch AD0 to AD5 into the internal address latch when HIGH.
25 to 31	D1 to D7	I/O	8-bit Bi-directional Data Bus.
			Remark: An 8-bit parallel interface is not available.
			Remark: If the host controller selects I ² C as digital host controller interface, these pins can be used to define the I ² C address.
			Remark: For serial interfaces this pins can be used for test signals or I/Os.
32	A0	1	Address Line

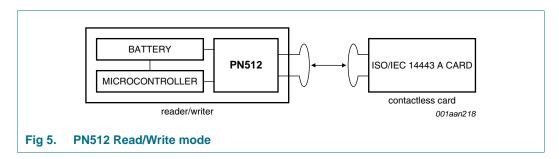
Transmission module

Table 4. Pin description HVQFN40

Table 4.	riii descrip	tion my Qi	1440
Pin	Symbol	Type	Description
1 to 4	A2 to A5	I	Address Line
5	PVDD	PWR	Pad power supply
6	DVDD	PWR	Digital Power Supply
7	DVSS	PWR	Digital Ground
8	PVSS	PWR	Pad power supply ground
9	NRSTPD	I	Not Reset and Power Down: When LOW, internal current sinks are switched off, the oscillator is inhibited, and the input pads are disconnected from the outside world. With a positive edge on this pin the internal reset phase starts.
10	SIGIN	I	Communication Interface Input: accepts a digital, serial data stream
11	SIGOUT	0	Communication Interface Output: delivers a serial data stream
12	SVDD	PWR	S ² C Pad Power Supply: provides power to the S ² C pads
13	TVSS	PWR	Transmitter Ground: supplies the output stage of TX1 and TX2
14	TX1	0	Transmitter 1: delivers the modulated 13.56 MHz energy carrier
15	TVDD	PWR	Transmitter Power Supply: supplies the output stage of TX1 and TX2
16	TX2	0	Transmitter 2: delivers the modulated 13.56 MHz energy carrier
17	TVSS	PWR	Transmitter Ground: supplies the output stage of TX1 and TX2
18	AVDD	PWR	Analog Power Supply
19	VMID	PWR	Internal Reference Voltage: This pin delivers the internal reference voltage.
20	RX	I	Receiver Input
21	AVSS	PWR	Analog Ground
22	AUX1	0	Auxiliary Outputs: These pins are used for testing.
23	AUX2	0	
24	OSCIN	I	Crystal Oscillator Input: input to the inverting amplifier of the oscillator. This pin is also the input for an externally generated clock ($f_{osc} = 27.12 \text{ MHz}$).
25	OSCOUT	0	Crystal Oscillator Output: Output of the inverting amplifier of the oscillator.
26	IRQ	0	Interrupt Request: output to signal an interrupt event
27	NWR	I	Not Write: strobe to write data (applied on D0 to D7) into the PN512 register
28	NRD	I	Not Read: strobe to read data from the PN512 register (applied on D0 to D7)
29	ALE	I	Address Latch Enable: signal to latch AD0 to AD5 into the internal address latch when HIGH.
30	NCS	I	Not Chip Select: selects and activates the host controller interface of the PN512
31 to 38	D0 to D7	I/O	8-bit Bi-directional Data Bus.
			Remark: For serial interfaces this pins can be used for test signals or I/Os.
			Remark: If the host controller selects I ² C as digital host controller interface, these pins can be used to define the I ² C address.
39 to 40	A0 to A1	ı	Address Line

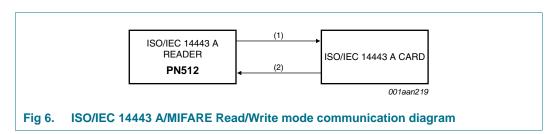
Transmission module

8. Functional description


The PN512 transmission module supports the Read/Write mode for ISO/IEC 14443 A/MIFARE and ISO/IEC 14443 B using various transfer speeds and modulation protocols.

PN512 transceiver IC supports the following operating modes:

- Reader/Writer mode supporting ISO/IEC 14443A/MIFARE and FeliCa scheme
- Card Operation mode supporting ISO/IEC 14443A/MIFARE and FeliCa scheme
- NFCIP-1 mode


The modes support different transfer speeds and modulation schemes. The following chapters will explain the different modes in detail.

Note: All indicated modulation indices and modes in this chapter are system parameters. This means that beside the IC settings a suitable antenna tuning is required to achieve the optimum performance.

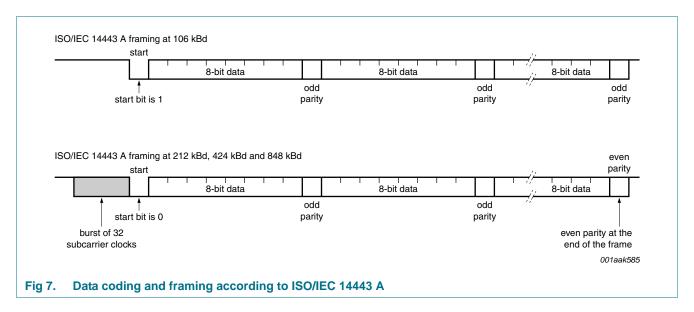
8.1 ISO/IEC 14443 A/MIFARE functionality

The physical level communication is shown in Figure 6.

The physical parameters are described in Table 4.

Table 5. Communication overview for ISO/IEC 14443 A/MIFARE reader/writer

Communication	Signal type	Transfer speed					
direction		106 kBd	212 kBd	424 kBd			
Reader to card (send data from the PN512	reader side modulation	100 % ASK	100 % ASK	100 % ASK			
to a card)	bit encoding	modified Miller encoding	modified Miller encoding	modified Miller encoding			
	bit length	128 (13.56 μs)	64 (13.56 μs)	32 (13.56 μs)			


PN512

Transmission module

Table 5. Communication overview for ISO/IEC 14443 A/MIFARE reader/writer ...continued

Communication	Signal type	Transfer speed					
direction		106 kBd	212 kBd	424 kBd			
Card to reader (PN512 receives data	card side modulation	subcarrier load modulation	subcarrier load modulation	subcarrier load modulation			
from a card)	subcarrier frequency	13.56 MHz/16	13.56 MHz/16	13.56 MHz/16			
	bit encoding	Manchester encoding	BPSK	BPSK			

The PN512's contactless UART and dedicated external host must manage the complete ISO/IEC 14443 A/MIFARE protocol. <u>Figure 7</u> shows the data coding and framing according to ISO/IEC 14443 A/MIFARE.

The internal CRC coprocessor calculates the CRC value based on ISO/IEC 14443 A part 3 and handles parity generation internally according to the transfer speed. Automatic parity generation can be switched off using the ManualRCVReg register's ParityDisable bit.

8.2 ISO/IEC 14443 B functionality

The MFRC523 reader IC fully supports international standard ISO 14443 which includes communication schemes ISO 14443 A and ISO 14443 B.

Refer to the ISO 14443 reference documents *Identification cards - Contactless integrated circuit cards - Proximity cards* (parts 1 to 4).

Remark: NXP Semiconductors does not offer a software library to enable design-in of the ISO 14443 B protocol.

Transmission module

8.3 FeliCa reader/writer functionality

The FeliCa mode is the general reader/writer to card communication scheme according to the FeliCa specification. The following diagram describes the communication on a physical level, the communication overview describes the physical parameters.

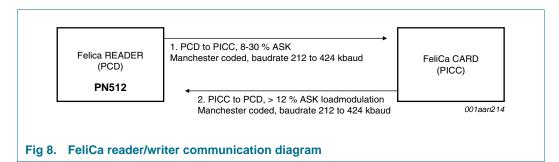


Table 6. Communication overview for FeliCa reader/writer

Communication direction		FeliCa	FeliCa Higher transfer speeds		
	Transfer speed	212 kbit/s	424 kbit/s		
PN512 → card	Modulation on reader side	8-30 % ASK	8-30 % ASK		
	bit coding	Manchester Coding	Manchester Coding		
	Bitlength	(64/13.56) μs	(32/13.56) μs		
card \rightarrow PN512	Loadmodulation on card side	> 12 % ASK	> 12 % ASK		
	bit coding	Manchester coding	Manchester coding		

The contactless UART of PN512 and a dedicated external host controller are required to handle the complete FeliCa protocol.

8.3.1 FeliCa framing and coding

Table 7. FeliCa framing and coding

Preamble					Sync		Len	n-Data	1		CRC		
00h	00h	00h	00h	00h	00h	B2h	4Dh						

To enable the FeliCa communication a 6 byte preamble (00h, 00h, 00h, 00h, 00h, 00h) and 2 bytes Sync bytes (B2h, 4Dh) are sent to synchronize the receiver.

The following Len byte indicates the length of the sent data bytes plus the LEN byte itself. The CRC calculation is done according to the FeliCa definitions with the MSB first.

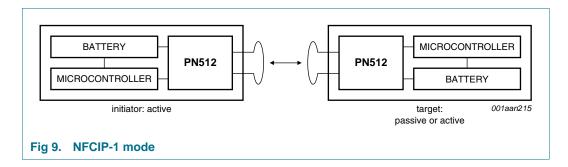
To transmit data on the RF interface, the host controller has to send the Len- and databytes to the PN512's FIFO-buffer. The preamble and the sync bytes are generated by the PN512 automatically and must not be written to the FIFO by the host controller. The PN512 performs internally the CRC calculation and adds the result to the data frame.

Example for FeliCa CRC Calculation:

Table 8. Start value for the CRC Polynomial: (00h), (00h)

Preamble					Sync		Len	2 Data Bytes		CRC		
00h	00h	00h	00h	00h	00h	B2h	4Dh	03h	ABh	CDh	90h	35h

PN512


Transmission module

8.4 NFCIP-1 mode

The NFCIP-1 communication differentiates between an active and a Passive Communication mode.

- Active Communication mode means both the initiator and the target are using their own RF field to transmit data.
- Passive Communication mode means that the target answers to an initiator command in a load modulation scheme. The initiator is active in terms of generating the RF field.
- Initiator: generates RF field at 13.56 MHz and starts the NFCIP-1 communication
- Target: responds to initiator command either in a load modulation scheme in Passive Communication mode or using a self generated and self modulated RF field for Active Communication mode.

In order to fully support the NFCIP-1 standard the PN512 supports the Active and Passive Communication mode at the transfer speeds 106 kbit/s, 212 kbit/s and 424 kbit/s as defined in the NFCIP-1 standard.

Transmission module

8.4.1 Active communication mode

Active communication mode means both the initiator and the target are using their own RF field to transmit data.

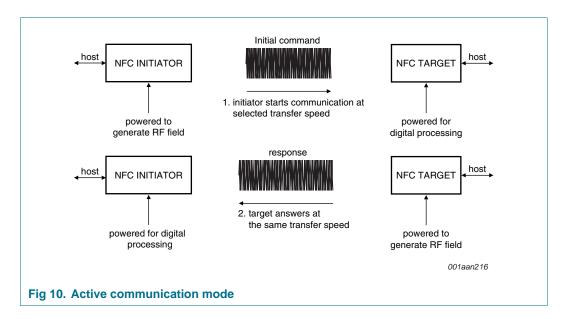


Table 9. Communication overview for Active communication mode

Communication direction	106 kbit/s	212 kbit/s	424 kbit/s	848 kbit/s	1.69 Mbit/s, 3.39 Mbit/s
$\begin{array}{l} \text{Initiator} \rightarrow \text{Target} \\ \text{Target} \rightarrow \text{Initiator} \end{array}$	According to ISO/IEC 14443A 100 % ASK, Modified Miller Coded	According to F ASK Manches		digital capabili this communic	•

The contactless UART of PN512 and a dedicated host controller are required to handle the NFCIP-1 protocol.

Note: Transfer Speeds above 424 kbit/s are not defined in the NFCIP-1 standard. The PN512 supports these transfer speeds only with dedicated external circuits.

Transmission module

8.4.2 Passive communication mode

Passive Communication mode means that the target answers to an initiator command in a load modulation scheme. The initiator is active meaning generating the RF field.

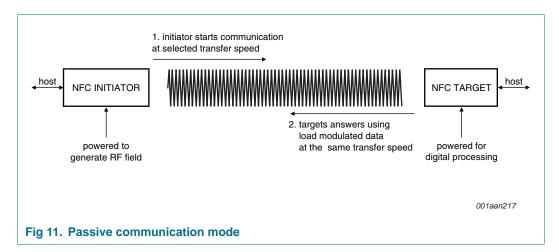


Table 10. Communication overview for Passive communication mode

Communication direction	106 kbit/s	212 kbit/s	424 kbit/s	848 kbit/s	1.69 Mbit/s, 3.39 Mbit/s	
Initiator → Target	According to ISO/IEC 14443A 100 % ASK, Modified Miller Coded	According to F % ASK Manch	•	digital capability to handle this communication		
Target → Initiator	According to ISO/IEC 14443A subcarrier load modulation, Manchester Coded	According to F ASK Manches	•			

The contactless UART of PN512 and a dedicated host controller are required to handle the NFCIP-1 protocol.

Note: Transfer Speeds above 424 kbit/s are not defined in the NFCIP-1 standard. The PN512 supports these transfer speeds only with dedicated external circuits.

Transmission module

8.4.3 NFCIP-1 framing and coding

The NFCIP-1 framing and coding in Active and Passive Communication mode is defined in the NFCIP-1 standard.

Table 11. Framing and coding overview

Transfer speed	Framing and Coding
106 kbit/s	According to the ISO/IEC 14443A/MIFARE scheme
212 kbit/s	According to the FeliCa scheme
424 kbit/s	According to the FeliCa scheme

8.4.4 NFCIP-1 protocol support

The NFCIP-1 protocol is not completely described in this document. For detailed explanation of the protocol refer to the NFCIP-1 standard. However the datalink layer is according to the following policy:

- Speed shall not be changed while continuum data exchange in a transaction.
- Transaction includes initialization and anticollision methods and data exchange (in continuous way, meaning no interruption by another transaction).

In order not to disturb current infrastructure based on 13.56 MHz general rules to start NFCIP-1 communication are defined in the following way.

- 1. Per default NFCIP-1 device is in Target mode meaning its RF field is switched off.
- 2. The RF level detector is active.
- 3. Only if application requires the NFCIP-1 device shall switch to Initiator mode.
- 4. Initiator shall only switch on its RF field if no external RF field is detected by RF Level detector during a time of TIDT.
- 5. The initiator performs initialization according to the selected mode.

8.4.5 MIFARE Card operation mode

Table 12. MIFARE Card operation mode

Communication direction		ISO/IEC 14443A/ MIFARE	MIFARE Higher transfer speeds		
	transfer speed	106 kbit/s	212 kbit/s	424 kbit/s	
reader/writer → PN512	Modulation on reader side	100 % ASK	100 % ASK	100 % ASK	
	bit coding	Modified Miller	Modified Miller	Modified Miller	
	Bitlength	(128/13.56) μs	(64/13.56) μs	(32/13.56) μs	
PN512 → reader/ writer	Modulation on PN512 side	subcarrier load modulation	subcarrier load modulation	subcarrier load modulation	
	subcarrier frequency	13.56 MHz/16	13.56 MHz/16	13.56 MHz/16	
	bit coding	Manchester coding	BPSK	BPSK	

Transmission module

8.4.6 FeliCa Card operation mode

Table 13. FeliCa Card operation mode

Communication direction		FeliCa	FeliCa Higher transfer speeds	
	Transfer speed	212 kbit/s	424 kbit/s	
reader/writer \rightarrow	Modulation on reader side	8-30 % ASK	8-30 % ASK	
PN512	bit coding	Manchester Coding	Manchester Coding	
	Bitlength	(64/13.56) μs	(32/13.56) μs	
PN512 → reader/ writer	Load modulation on PN512 side	> 12 % ASK load modulation	> 12 % ASK load modulation	
	bit coding	Manchester coding	Manchester coding	

9. PN512 register SET

9.1 PN512 registers overview

Table 14. PN512 registers overview

Addr (hex)	Register Name	Function
Page 0	Command and S	tatus
0	PageReg	Selects the register page
1	CommandReg	Starts and stops command execution
2	ComlEnReg	Controls bits to enable and disable the passing of Interrupt Requests
3	DivlEnReg	Controls bits to enable and disable the passing of Interrupt Requests
4	ComlrqReg	Contains Interrupt Request bits
5	DivIrqReg	Contains Interrupt Request bits
6	ErrorReg	Error bits showing the error status of the last command executed
7	Status1Reg	Contains status bits for communication
8	Status2Reg	Contains status bits of the receiver and transmitter
9	FIFODataReg	In- and output of 64 byte FIFO-buffer
Α	FIFOLevelReg	Indicates the number of bytes stored in the FIFO
В	WaterLevelReg	Defines the level for FIFO under- and overflow warning
С	ControlReg	Contains miscellaneous Control Registers
D	BitFramingReg	Adjustments for bit oriented frames
Е	CollReg	Bit position of the first bit collision detected on the RF-interface
F	RFU	Reserved for future use
Page 1	Command	
0	PageReg	Selects the register page
1	ModeReg	Defines general modes for transmitting and receiving
2	TxModeReg	Defines the data rate and framing during transmission
3	RxModeReg	Defines the data rate and framing during receiving
4	TxControlReg	Controls the logical behavior of the antenna driver pins TX1 and TX2
5	TxAutoReg	Controls the setting of the antenna drivers

Transmission module

 Table 14.
 PN512 registers overview ...continued

Addr (hex)	Register Name	Function
6	TxSelReg	Selects the internal sources for the antenna driver
7	RxSelReg	Selects internal receiver settings
8	RxThresholdReg	Selects thresholds for the bit decoder
9	DemodReg	Defines demodulator settings
Α	FeINFC1Reg	Defines the length of the valid range for the receive package
В	FeINFC2Reg	Defines the length of the valid range for the receive package
С	MifNFCReg	Controls the communication in ISO/IEC 14443/MIFARE and NFC target mode at 106 kbit
D	ManualRCVReg	Allows manual fine tuning of the internal receiver
Е	TypeBReg	Configure the ISO/IEC 14443 type B
F	SerialSpeedReg	Selects the speed of the serial UART interface
Page 2:	CFG	
0	PageReg	Selects the register page
1	CRCResultReg	Shows the actual MSB and LSB values of the CRC calculation
2		
3	GsNOffReg	Selects the conductance of the antenna driver pins TX1 and TX2 for modulation, when the driver is switched off
4	ModWidthReg	Controls the setting of the ModWidth
5	TxBitPhaseReg	Adjust the TX bit phase at 106 kbit
6	RFCfgReg	Configures the receiver gain and RF level
7	GsNOnReg	Selects the conductance of the antenna driver pins TX1 and TX2 for modulation when the drivers are switched on
8	CWGsPReg	Selects the conductance of the antenna driver pins TX1 and TX2 for modulation during times of no modulation
9	ModGsPReg	Selects the conductance of the antenna driver pins TX1 and TX2 for modulation during modulation
Α	TModeReg	Defines settings for the internal timer
В	TPrescalerReg	
С	TReloadReg	Describes the 16-bit timer reload value
D		
Е	TCounterValReg	Shows the 16-bit actual timer value
F		
Page 3:	TestRegister	
0	PageReg	selects the register page
1	TestSel1Reg	General test signal configuration
2	TestSel2Reg	General test signal configuration and PRBS control
3	TestPinEnReg	Enables pin output driver on 8-bit parallel bus (Note: For serial interfaces only)
4	TestPin ValueReg	Defines the values for the 8-bit parallel bus when it is used as I/O bus
5	TestBusReg	Shows the status of the internal testbus
6	AutoTestReg	Controls the digital selftest

Transmission module

Table 14. PN512 registers overview ...continued

Addr (hex)	Register Name	Function
7	VersionReg	Shows the version
8	AnalogTestReg	Controls the pins AUX1 and AUX2
9	TestDAC1Reg	Defines the test value for the TestDAC1
Α	TestDAC2Reg	Defines the test value for the TestDAC2
В	TestADCReg	Shows the actual value of ADC I and Q
C-F	RFT	Reserved for production tests

9.1.1 Register bit behavior

Depending on the functionality of a register, the access conditions to the register can vary. In principle bits with same behavior are grouped in common registers. In <u>Table 15</u> the access conditions are described.

Table 15. Behavior of register bits and its designation

Abbreviation	Behavior	Description
r/w	read and write	These bits can be written and read by the $\mu\text{-}Controller.$ Since they are used only for control means, there content is not influenced by internal state machines, e.g. the PageSelect-Register may be written and read by the $\mu\text{-}Controller.$ It will also be read by internal state machines, but never changed by them.
dy	dynamic	These bits can be written and read by the μ -Controller. Nevertheless, they may also be written automatically by internal state machines, e.g. the Command-Register changes its value automatically after the execution of the actual command.
r	read only	These registers hold bits, which value is determined by internal states only, e.g. the CRCReady bit can not be written from external but shows internal states.
W	write only	Reading these registers returns always ZERO.
RFU	-	These registers are reserved for future use.
		In case of a PN512 Version V1.2 (VersionReg = 82h) a read access to these registers returns always the value "0". Nevertheless this is not guaranteed for future chips versions where the value is undefined. In case of a write access, it is recommended to write always the value "0".
RFT	-	These registers are reserved for production tests and shall not be changed.

Transmission module

9.2 Register description

9.2.1 Page 0: Command and status

9.2.1.1 PageReg

Selects the register page.

Table 16. PageReg register (address 00h); reset value: 00h, 0000000b

	• • •	•						
	7	6	5	4	3	2	1	0
	UsePage Select	0	0	0	0	0	Page	Select
Access Rights	r/w	RFU	RFU	RFU	RFU	RFU	r/w	r/w

Table 17. Description of PageReg bits

Bit	Symbol	Description
7	UsePageSelect	Set to logic 1, the value of PageSelect is used as register address A5 and A4. The LSB-bits of the register address are defined by the address pins or the internal address latch, respectively.
		Set to logic 0, the whole content of the internal address latch defines the register address. The address pins are used as described in Section 10.1 "Automatic microcontroller interface detection".
6 to 2	-	Reserved for future use.
1 to 0	PageSelect	The value of PageSelect is used only if UsePageSelect is set to logic 1. In this case it specifies the register page (which is A5 and A4 of the register address).

9.2.1.2 CommandReg

Starts and stops command execution.

Table 18. CommandReg register (address 01h); reset value: 20h, 00100000b

				,,		,		
	7	6	5	4	3	2	1	0
	0	0	RcvOff	Power Down		Comi	mand	
Access Rights	RFU	RFU	r/w	dy	dy	dy	dy	dy

Table 19. Description of CommandReg bits

Bit	Symbol	Description
7 to 6	-	Reserved for future use.
5	RcvOff	Set to logic 1, the analog part of the receiver is switched off.
4	PowerDown	Set to logic 1, Soft Power-down mode is entered.
		Set to logic 0, the PN512 starts the wake up procedure. During this procedure this bit still shows a 1. A 0 indicates that the PN512 is ready for operations; see Section 16.2 "Soft power-down mode".
		Note: The bit Power Down cannot be set, when the command SoftReset has been activated.
3 to 0	Command	Activates a command according to the Command Code. Reading this register shows, which command is actually executed (see <u>Section 19.3 "PN512 command overview"</u>).

Transmission module

9.2.1.3 CommlEnReg

Control bits to enable and disable the passing of interrupt requests.

Table 20. CommlEnReg register (address 02h); reset value: 80h, 10000000b

	7	6	5	4	3	2	1	0
	IRqInv	TxIEn	RxIEn	IdleIEn	HiAlertIEn	LoAlertIEn	ErrlEn	TimerIEn
Access Rights	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Table 21. Description of CommlEnReg bits

Bit	Symbol	Description
DIL	Symbol	
7	IRqInv	Set to logic 1, the signal on pin IRQ is inverted with respect to bit IRq in the register Status1Reg. Set to logic 0, the signal on pin IRQ is equal to bit IRq. In combination with bit IRqPushPull in register DivIEnReg, the default value of 1 ensures, that the output level on pin IRQ is 3-state.
6	TxIEn	Allows the transmitter interrupt request (indicated by bit TxIRq) to be propagated to pin IRQ.
5	RxIEn	Allows the receiver interrupt request (indicated by bit RxIRq) to be propagated to pin IRQ.
4	IdleIEn	Allows the idle interrupt request (indicated by bit IdleIRq) to be propagated to pin IRQ.
3	HiAlertIEn	Allows the high alert interrupt request (indicated by bit HiAlertIRq) to be propagated to pin IRQ.
2	LoAlertIEn	Allows the low alert interrupt request (indicated by bit LoAlertIRq) to be propagated to pin IRQ.
1	ErrlEn	Allows the error interrupt request (indicated by bit ErrIRq) to be propagated to pin IRQ.
0	TimerIEn	Allows the timer interrupt request (indicated by bit TimerIRq) to be propagated to pin IRQ.
		propagated to pin IRQ.

Product data sheet COMPANY PUBLIC

Transmission module

9.2.1.4 DivIEnReg

Control bits to enable and disable the passing of interrupt requests.

Table 22. DivlEnReg register (address 03h); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0
	IRQPushPull	0	0	SiginActIEn	ModelEn	CRCIEn	RFOnlEn	RFOffIEn
Access Rights	r/w	RFU	RFU	r/w	r/w	r/w	r/w	r/w

Table 23. Description of DivlEnReg bits

		- 2111 <u>2</u> 11110 g 2110
Bit	Symbol	Description
7	IRQPushPull	Set to logic 1, the pin IRQ works as standard CMOS output pad.
		Set to logic 0, the pin IRQ works as open drain output pad.
6 to 5	-	Reserved for future use.
4	SiginActIEn	Allows the SIGIN active interrupt request to be propagated to pin IRQ.
3	ModelEn	Allows the mode interrupt request (indicated by bit ModelRq) to be propagated to pin IRQ.
2	CRCIEn	Allows the CRC interrupt request (indicated by bit CRCIRq) to be propagated to pin IRQ.
1	RfOnlEn	Allows the RF field on interrupt request (indicated by bit RfOnIRq) to be propagated to pin IRQ.
0	RfOfflEn	Allows the RF field off interrupt request (indicated by bit RfOffIRq) to be propagated to pin IRQ.

Transmission module

9.2.1.5 CommlRqReg

Contains Interrupt Request bits.

Table 24. CommlRqReg register (address 04h); reset value: 14h, 00010100b

	7	6	5	4	3	2	1	0
	Set1	TxIRq	RxIRq	IdleIRq	HiAlertIRq	LoAlertIRq	ErrlRq	TimerIRq
Access Rights	W	dy	dy	dy	dy	dy	dy	dy

Table 25. Description of CommlRqReg bits

All bits in the register CommlRqReg shall be cleared by software.

Bit	Symbol	Description
7	Set1	Set to logic 1, Set1 defines that the marked bits in the register CommlRqReg are set.
		Set to logic 0, Set1 defines, that the marked bits in the register CommlRqReg are cleared.
6	TxIRq	Set to logic 1 immediately after the last bit of the transmitted data was sent out.
5	RxIRq	Set to logic 1 when the receiver detects the end of a valid datastream.
		If the bit RxNoErr in register RxModeReg is set to logic 1, bit RxIRq is only set to logic 1 when data bytes are available in the FIFO.
4	IdleIRq	Set to logic 1, when a command terminates by itself e.g. when the CommandReg changes its value from any command to the Idle Command.
		If an unknown command is started, the CommandReg changes its content to the idle state and the bit IdleIRq is set. Starting the Idle Command by the $\mu\text{-Controller}$ does not set bit IdleIRq.
3	HiAlertIRq	Set to logic 1, when bit HiAlert in register Status1Reg is set. In opposition to HiAlert, HiAlertIRq stores this event and can only be reset as indicated by bit Set1.
2	LoAlertIRq	Set to logic 1, when bit LoAlert in register Status1Reg is set. In opposition to LoAlert, LoAlertIRq stores this event and can only be reset as indicated by bit Set1.
1	ErrlRq	Set to logic 1 if any error bit in the Error Register is set.
0	TimerIRq	Set to logic 1 when the timer decrements the TimerValue Register to zero.

Transmission module

9.2.1.6 DivIRqReg

Contains Interrupt Request bits

Table 26. DivIRqReg register (address 05h); reset value: XXh, 000X00XXb

	7	6	5	4	3	2	1	0
	Set2	0	0	SiginActIRq	ModelRq	CRCIRq	RFOnIRq	RFOffIRq
Access Rights	W	RFU	RFU	dy	dy	dy	dy	dy

Table 27. Description of DivIRqReg bits

All bits in the register DivIRqReg shall be cleared by software.

Bit	Symbol	Description
7	Set2	Set to logic 1, Set2 defines that the marked bits in the register DivIRqReg are set.
		Set to logic 0, Set2 defines, that the marked bits in the register DivIRqReg are cleared
6 to 5	-	Reserved for future use.
4	SiginActIRq	Set to logic 1, when SIGIN is active. See Section 12.6 "S2C interface support". This interrupt is set when either a rising or falling signal edge is detected.
3	ModelRq	Set to logic 1, when the mode has been detected by the Data mode detector.
		Note: The Data mode detector can only be activated by the AutoColl command and is terminated automatically having detected the Communication mode.
		Note: The Data mode detector is automatically restarted after each RF Reset.
2	CRCIRq	Set to logic 1, when the CRC command is active and all data are processed.
1	RFOnIRq	Set to logic 1, when an external RF field is detected.
0	RFOffIRq	Set to logic 1, when a present external RF field is switched off.

Transmission module

9.2.1.7 ErrorReg

Error bit register showing the error status of the last command executed.

Table 28. ErrorReg register (address 06h); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0
	WrErr	TempErr	RFErr	BufferOvfl	CollErr	CRCErr	ParityErr	ProtocolErr
Access Rights	r	r	r	r	r	r	r	r

Table 29. Description of ErrorReg bits

Bit	Symbol	Description			
7	WrErr	Set to logic 1, when data is written into FIFO by the host controller during the AutoColl command or MFAuthent command or if data is written into FIFO by the host controller during the time between sending the last bit on the RF interface and receiving the last bit on the RF interface.			
6	TempErr[1]	Set to logic 1, if the internal temperature sensor detects overheating. In this case, the antenna drivers are switched off automatically.			
5	RFErr	Set to logic 1, if in Active Communication mode the counterpart does not switch on the RF field in time as defined in NFCIP-1 standard.			
		Note: RFErr is only used in Active Communication mode. The bits RxFraming or the bits TxFraming has to be set to 01 to enable this functionality.			
4	BufferOvfl	Set to logic 1, if the host controller or a PN512's internal state machine e.g. receiver) tries to write data into the FIFO-bufferFIFO-buffer although the FIFO-buffer is already full.			
3	CollErr	Set to logic 1, if a bit-collision is detected. It is cleared automatically at receiver start-up phase. This bit is only valid during the bitwise anticollision at 106 kbit. During communication schemes at 212 and 424 kbit this bit is always set to logic 1.			
2	CRCErr	Set to logic 1, if bit RxCRCEn in register RxModeReg is set and the CRC calculation fails. It is cleared to 0 automatically at receiver start-up phase.			
1	ParityErr	Set to logic 1, if the parity check has failed. It is cleared automatically at receiver start-up phase. Only valid for ISO/IEC 14443A/MIFARE or NFCIP-1 communication at 106 kbit.			
0	ProtocolErr	Set to logic 1, if one out of the following cases occur:			
		 Set to logic 1 if the SOF is incorrect. It is cleared automatically at receiver start-up phase. The bit is only valid for 106 kbit in Active and Passive Communication mode. 			
		 If bit DetectSync in register ModeReg is set to logic 1 during FeliCa communication or active communication with transfer speeds higher than 106 kbit, the bit ProtocolErr is set to logic 1 in case of a byte length violation. 			
		 During the AutoColl command, bit ProtocolErr is set to logic 1, if the bit Initiator in register ControlReg is set to logic 1. 			
		 During the MFAuthent Command, bit ProtocolErr is set to logic 1, if the number of bytes received in one data stream is incorrect. 			
		 Set to logic 1, if the Miller Decoder detects 2 pulses below the minimum time according to the ISO/IEC 14443A definitions. 			
[1] Comm	and execution will	clear all error bits except for bit TempErr. A setting by software is impossible.			

^[1] Command execution will clear all error bits except for bit TempErr. A setting by software is impossible.

Transmission module

9.2.1.8 Status1Reg

Contains status bits of the CRC, Interrupt and FIFO-buffer.

Table 30. Status1Reg register (address 07h); reset value: XXh, X100X01Xb

	7	6	5	4	3	2	1	0
	RFFreqOK	CRCOk	CRCReady	IRq	TRunning	RFOn	HiAlert	LoAlert
Access Rights	r	r	r	r	r	r	r	r

Table 31. Description of Status1Reg bits

Bit	Symbol	Description	
	-	•	
7	RFFreqOK	Indicates if the frequency detected at the RX pin is in the range of 13.56 MHz.	
		Set to logic 1, if the frequency at the RX pin is in the range 12 MHz < RX pin frequency < 15 MHz.	
		Note: The value of RFFreqOK is not defined if the external RF frequency is in the range from 9 to 12 MHz or in the range from 15 to 19 MHz.	
6	CRCOk	Set to logic 1, if the CRC Result is zero. For data transmission and reception the bit CRCOk is undefined (use CRCErr in register ErrorReg). CRCOk indicates the status of the CRC co-processor, during calculation the value changes to ZERO, when the calculation is done correctly, the value changes to ONE.	
5	CRCReady	Set to logic 1, when the CRC calculation has finished. This bit is onl valid for the CRC co-processor calculation using the command CalcCRC.	
4	IRq	This bit shows, if any interrupt source requests attention (with respect to the setting of the interrupt enable bits, see register CommlEnReg and DivIEnReg).	
3	TRunning	Set to logic 1, if the PN512's timer unit is running, e.g. the timer will decrement the TCounterValReg with the next timer clock.	
		Note: In the gated mode the bit TRunning is set to logic 1, when the timer is enabled by the register bits. This bit is not influenced by the gated signal.	
2	RFOn	Set to logic 1, if an external RF field is detected. This bit does not store the state of the RF field.	
1	HiAlert	Set to logic 1, when the number of bytes stored in the FIFO-buffer fulfills the following equation: $HiAlert = (64 - FIFOLength) \leq WaterLevel$	
		Example:	
		FIFOLength = 60, WaterLevel = 4 → HiAlert = 1	
		FIFOLength = 59, WaterLevel = $4 \rightarrow \text{HiAlert} = 0$	
0	LoAlert	Set to logic 1, when the number of bytes stored in the FIFO-buffer fulfills the following equation: $LoAlert = FIFOLength \le WaterLevel$	
		Example:	
		FIFOLength = 4, WaterLevel = $4 \rightarrow LoAlert = 1$	
		FIFOLength = 5, WaterLevel = $4 \rightarrow LoAlert = 0$	

Transmission module

9.2.1.9 Status2Reg

Contains status bits of the Receiver, Transmitter and Data mode detector.

Table 32. Status2Reg register (address 08h); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0
	TempSensClear	I ² CForceHS	0	TargetActivated	MFCrypto1On	Mode	em St	tate
Access Rights	r/w	r/w	RFU	dy	dy	r	r	r

Table 33. Description of Status2Reg bits

Bit	Symbol	Descri	ption				
7	TempSensClear		ogic 1, this bit clears the temperature error, if the temperature \emph{w} the alarm limit of 125 °C.				
6	I ² CForceHS	High-sp	ut filter settings. Set to logic 1, the I^2C input filter is set to the beed mode independent of the I^2C protocol. Set to logic 0, the ut filter is set to the used I^2C protocol.				
5	-	Reserv	Reserved for future use.				
4	TargetActivated	Set to logic 1 if the Select command or if the Polling commar answered. Note: This bit can only be set during the AutoColl command in Passive Communication mode.					
			Note: This bit is cleared automatically by switching off the external RF field.				
3	MFCrypto1On		This bit indicates that the MIFARE Crypto1 unit is switched on and therefore all data communication with the card is encrypted.				
		This bit can only be set to logic 1 by a successful execution of the MFAuthent Command. This bit is only valid in Reader/Writer mode for MIFARE cards. This bit shall be cleared by software.					
2 to 0	Modem State	ModemState shows the state of the transmitter and receiver state machines.					
		Value	Description				
		000	IDLE				
		001	Wait for StartSend in register BitFramingReg				
		010	TxWait: Wait until RF field is present, if the bit TxWaitRF is set to logic 1. The minimum time for TxWait is defined by the TxWaitReg register.				
		011	Sending				
		100	RxWait: Wait until RF field is present, if the bit RxWaitRF is set to logic 1. The minimum time for RxWait is defined by the RxWaitReg register.				
		101	Wait for data				
		110	Receiving				

Transmission module

9.2.1.10 FIFODataReg

In- and output of 64 byte FIFO-buffer.

Table 34. FIFODataReg register (address 09h); reset value: XXh, XXXXXXXb

	7	6	5	4	3	2	1	0
				FIFC	Data			
Access Rights	dy	dy	dy	dy	dy	dy	dy	dy

Table 35. Description of FIFODataReg bits

Bit	Symbol	Description
7 to 0	FIFOData	Data input and output port for the internal 64 byte FIFO-buffer. The FIFO-buffer acts as parallel in/parallel out converter for all serial data stream in- and outputs.

9.2.1.11 FIFOLevelReg

Indicates the number of bytes stored in the FIFO.

Table 36. FIFOLevelReg register (address 0Ah); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0
	FlushBuffer			F	IFOLevel			
Access Rights	W	r	r	r	r	r	r	r

Table 37. Description of FIFOLevelReg bits

Bit	Symbol	Description
7	FlushBuffer	Set to logic 1, this bit clears the internal FIFO-buffer's read- and write-pointer and the bit BufferOvfl in the register ErrReg immediately. Reading this bit will always return 0.
6 to 0	FIFOLevel	Indicates the number of bytes stored in the FIFO-buffer. Writing to the FIFODataReg increments, reading decrements the FIFOLevel.

Transmission module

9.2.1.12 WaterLevelReg

Defines the level for FIFO under- and overflow warning.

Table 38. WaterLevelReg register (address 0Bh); reset value: 08h, 00001000b

	7	6	5	4	3	2	1	0
	0	0			Water	rLevel		
Access Rights	RFU	RFU	r/w	r/w	r/w	r/w	r/w	r/w

Table 39. Description of WaterLevelReg bits

Bit	Symbol	Description
7 to 6	-	Reserved for future use.
5 to 0	WaterLevel	This register defines a warning level to indicate a FIFO-buffer over- or underflow:
		The bit HiAlert in Status1Reg is set to logic 1, if the remaining number of bytes in the FIFO-buffer space is equal or less than the defined number of WaterLevel bytes.
		The bit LoAlert in Status1Reg is set to logic 1, if equal or less than WaterLevel bytes are in the FIFO.
		Note: For the calculation of HiAlert and LoAlert see Table 30

9.2.1.13 ControlReg

Miscellaneous control bits.

Table 40. ControlReg register (address 0Ch); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0
	TStopNow	TStartNow	WrNFCIDtoFIFO	Initiator	0	R	RxLastBit	S
Access Rights	W	W	dy	r/w	RFU	r	r	r

Table 41. Description of ControlReg bits

Bit	Symbol	Description			
7	TStopNow	Set to logic 1, the timer stops immediately.			
		Reading this bit will always return 0.			
6	TStartNow	Set to logic 1 starts the timer immediately.			
		Reading this bit will always return 0.			
5	WrNFCIDtoFIFO	Set to logic 1, the internal stored NFCID (10 bytes) is copied into the FIFO.			
		Afterwards the bit is cleared automatically			
4	Initiator	Set to logic 1, the PN512 acts as initiator, otherwise it acts as target			
3	-	Reserved for future use.			
2 to 0	RxLastBits	Shows the number of valid bits in the last received byte. If zero, the whole byte is valid.			

Transmission module

9.2.1.14 BitFramingReg

Adjustments for bit oriented frames.

Table 42. BitFramingReg register (address 0Dh); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0
	StartSend		RxAlign		0		TxLastBits	
Access Rights	W	r/w	r/w	r/w	RFU	r/w	r/w	r/w

Table 43. Description of BitFramingReg bits

Table 43.	Description	of bit failingiteg bits				
Bit	Symbol	Description				
7	StartSend	Set to logic 1, the transmission of data starts.				
		This bit is only valid in combination with the Transceive command.				
6 to 4	RxAlign	Used for reception of bit oriented frames: RxAlign defines the bit position for the first bit received to be stored in the FIFO. Further received bits are stored at the following bit positions.				
		Example:				
		RxAlign = 0: the LSB of the received bit is stored at bit 0, the second received bit is stored at bit position 1.				
		RxAlign = 1: the LSB of the received bit is stored at bit 1, the second received bit is stored at bit position 2.				
		RxAlign = 7: the LSB of the received bit is stored at bit 7, the second received bit is stored in the following byte at bit position 0.				
		This bit shall only be used for bitwise anticollision at 106 kbit/s in Passive Communication mode. In all other modes it shall be set to logic 0.				
3	-	Reserved for future use.				
2 to 0	TxLastBits	Used for transmission of bit oriented frames: TxLastBits defines the number of bits of the last byte that shall be transmitted. A 000 indicates that all bits of the last byte shall be transmitted.				

Transmission module

9.2.1.15 CollReg

Defines the first bit collision detected on the RF interface.

Table 44. CollReg register (address 0Eh); reset value: XXh, 101XXXXXb

	7	6	5	4	3	2	1	0
	Values AfterColl	0	CollPos NotValid			CollPos		
Access Rights	r/w	RFU	r	r	r	r	r	r

Table 45. Description of CollReg bits

Bit	Symbol	Description				
7	ValuesAfterColl	If this bit is set to logic 0, all receiving bits will be cleared after a collision. This bit shall only be used during bitwise anticollision at 106 kbit, otherwise it shall be set to logic 1.				
6	-	Reserved for future use.				
5	CollPosNotValid	Set to logic 1, if no Collision is detected or the Position of the Collision is out of the range of bits CollPos. This bit shall only be interpreted in Passive Communication mode at 106 kbit or ISO/IEC 14443A/MIFARE Reader/Writer mode.				
4 to 0	CollPos	These bits show the bit position of the first detected collision in a received frame, only data bits are interpreted.				
		Example:				
		00h indicates a bit collision in the 32 th bit				
		01h indicates a bit collision in the 1st bit				
		08h indicates a bit collision in the 8 th bit				
		These bits shall only be interpreted in Passive Communication mode at 106 kbit or ISO/IEC 14443A/MIFARE Reader/Writer mode if bit CollPosNotValid is set to logic 0.				

Transmission module

9.2.2 Page 1: Communication

9.2.2.1 PageReg

Selects the register page.

Table 46. PageReg register (address 10h); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0
	UsePage Select	0	0	0	0	0	Page	Select
Access Rights	r/w	RFU	RFU	RFU	RFU	RFU	r/w	r/w

Table 47. Description of PageReg bits

	•	
Bit	Symbol	Description
7	UsePage Select	Set to logic 1, the value of PageSelect is used as register address A5 and A4. The LSB-bits of the register address are defined by the address pins or the internal address latch, respectively.
		Set to logic 0, the whole content of the internal address latch defines the register address. The address pins are used as described in Section 10.1 "Automatic microcontroller interface detection".
6 to 2	-	Reserved for future use.
1 to 0	PageSelect	The value of PageSelect is used only, if UsePageSelect is set to logic 1. In this case it specifies the register page (which is A5 and A4 of the register address).

Transmission module

9.2.2.2 ModeReg

Defines general mode settings for transmitting and receiving.

Table 48. ModeReg register (address 11h); reset value: 3Bh, 00111011b

	7	6	5	4	3	2	1	0
	MSBFirst	Detect Sync	TxWaitRF	RxWaitRF	PolSigin	ModeDetOff	CRCF	reset
Access Rights	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Table 49. Description of ModeReg bits

Table 49.	Description of	Modereg bits						
Bit	Symbol	Descrip	tion					
7	MSBFirst	first and	Set to logic 1, the CRC co-processor calculates the CRC with MSB first and the CRCResultMSB and the CRCResultLSB in the CRCResultReg register are bit reversed.					
		Note: Du	uring RF communication this bit is ignored.					
6	Detect Sync		ogic 1, the contactless UART waits for the value F0h before iver is activated and F0h is added as a Sync-byte for sion.					
		This bit i protocol.	s only valid for 106 kbit during NFCIP-1 data exchange					
		In all oth	er modes it shall be set to logic 0.					
5	TxWaitRF		Set to logic 1 the transmitter in reader/writer or initiator mode for NFCIP-1 can only be started, if an RF field is generated.					
4	RxWaitRF	Set to logic 1, the counter for RxWait starts only if an external RF field is detected in Target mode for NFCIP-1 or in Card Communication mode.						
3	PolSigin	PolSigin defines the polarity of the SIGIN pin. Set to logic 1, the polarity of SIGIN pin is active high. Set to logic 0 the polarity of SIGI pin is active low.						
		Note: Th	e internal envelope signal is coded active low.					
		Note: Ch	nanging this bit will generate a SiginActIRq event.					
2	ModeDetOff	Set to lo	gic 1, the internal mode detector is switched off.					
		Note: Th	e mode detector is only active during the AutoColl command.					
1 to 0	CRCPreset	Defines CalCRC	the preset value for the CRC co-processor for the command .					
			uring any communication, the preset values is selected ically according to the definition in the bits RxMode and .					
		Value	Description					
		00	0000					
		01	6363					
		10	A671					
		11	FFFF					
-								

Transmission module

9.2.2.3 TxModeReg

Defines the data rate and framing during transmission.

Table 50. TxModeReg register (address 12h); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0
	TxCRCEn		TxSpeed		InvMod	TxMix	TxFra	aming
Access Rights	r/w	dy	dy	dy	r/w	r/w	dy	dy

Table 51. Description of TxModeReg bits

Bit	Symbol	Descrip	tion
7	TxCRCEn	•	gic 1, this bit enables the CRC generation during data
		Note: Th	nis bit shall only be set to logic 0 at 106 kbit.
6 to 4	TxSpeed	Defines	the bit rate while data transmission.
		Value	Description
		000	106 kbit
		001	212 kbit
		010	424 kbit
		011	848 kbit
		100	1696 kbit
		101	3392 kbit
		110	Reserved
		111	Reserved
			ne bit coding for transfer speeds above 424 kbit is equivalent to oding of Active Communication mode 424 kbit (Ecma 340).
3	InvMod	Set to lo	gic 1, the modulation for transmitting data is inverted.
2	TxMix		gic 1, the signal at pin SIGIN is mixed with the internal coder ction 12.6 "S ² C interface support").
1 to 0	TxFraming	Defines	the framing used for data transmission.
		Value	Description
		00	ISO/IEC 14443A/MIFARE and Passive Communication mode 106 kbit
		01	Active Communication mode
		10	FeliCa and Passive communication mode 212 and 424 kbit
		11	ISO/IEC 14443B

Transmission module

9.2.2.4 RxModeReg

Defines the data rate and framing during reception.

Table 52. RxModeReg register (address 13h); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0
	RxCRCEn		RxSpeed		RxNoErr	RxMultiple	RxFra	aming
Access Rights	r/w	dy	dy	dy	r/w	r/w	dy	dy

Table 53. Description of RxModeReg bits

Table 53.	Description	of RxMod	of RxModeReg bits					
Bit	Symbol	Descript	Description					
7	RxCRCEn	Set to log	gic 1, this bit enables the CRC calculation during reception.					
		Note: Th	is bit shall only be set to logic 0 at 106 kbit.					
6 to 4	RxSpeed	Defines t	the bit rate while data transmission.					
			The PN512's analog part handles only transfer speeds up to 424 kbit internally, the digital UART handles the higher transfer speeds as well.					
		Value	Description					
		000	106 kbit					
		001	212 kbit					
		010	424 kbit					
		011	848 kbit					
		100	1696 kbit					
		101	3392 kbit					
		110	Reserved					
		111	Reserved					
			e bit coding for transfer speeds above 424 kbit is equivalent to oding of Active Communication mode 424 kbit (Ecma 340).					
3	RxNoErr		ogic 1 a not valid received data stream (less than 4 bits) will be ignored. The receiver will remain active.					
		For ISO/valid data	IEC14443B also RxSOFReq logic 1 is required to ignore a non astream.					
2	RxMultiple	Set to logic 0, the receiver is deactivated after receiving a data fram Set to logic 1, it is possible to receive more than one data frame. Ha set this bit, the receive and transceive commands will not terminate automatically. In this case the multiple receiving can only be deactive by writing any command (except the Receive command) to the CommandReg register or by clearing the bit by the host controller.						
			ogic 1, at the end of a received data stream an error byte is the FIFO. The error byte is a copy of the ErrorReg register.					
1 to 0	RxFraming	Defines t	the expected framing for data reception.					
		Value	Description					
		00	ISO/IEC 14443A/MIFARE and Passive Communication mode 106 kbit					
		01	Active Communication mode					
		10	FeliCa and Passive Communication mode 212 and 424 kbit					
		11	ISO/IEC 14443B					

Transmission module

9.2.2.5 TxControlReg

Controls the logical behavior of the antenna driver pins Tx1 and Tx2.

Table 54. TxControlReg register (address 14h); reset value: 80h, 10000000b

	7	6	5	4	3	2	1	0
	InvTx2RF On	InvTx1RF On	InvTx2RF Off	InvTx1RF Off	Tx2CW	CheckRF	Tx2RF En	Tx1RF En
Access Rights	r/w	r/w	r/w	r/w	r/w	W	r/w	r/w

Table 55. Description of TxControlReg bits

Bit	Symbol	Description
7	InvTx2RFOn	Set to logic 1, the output signal at pin TX2 will be inverted, if driver TX2 is enabled.
6	InvTx1RFOn	Set to logic 1, the output signal at pin TX1 will be inverted, if driver TX1 is enabled.
5	InvTx2RFOff	Set to logic 1, the output signal at pin TX2 will be inverted, if driver TX2 is disabled.
4	InvTx1RFOff	Set to logic 1, the output signal at pin TX1 will be inverted, if driver TX1 is disabled.
3	Tx2CW	Set to logic 1, the output signal on pin TX2 will deliver continuously the un-modulated 13.56 MHz energy carrier.
		Set to logic 0, Tx2CW is enabled to modulate the 13.56 MHz energy carrier.
2	CheckRF	Set to logic 1, Tx2RFEn and Tx1RFEn can not be set if an external RF field is detected. Only valid when using in combination with bit Tx2RFEn or Tx1RFEn
1	Tx2RFEn	Set to logic 1, the output signal on pin TX2 will deliver the 13.56 MHz energy carrier modulated by the transmission data.
0	Tx1RFEn	Set to logic 1, the output signal on pin TX1 will deliver the 13.56 MHz energy carrier modulated by the transmission data.

Transmission module

9.2.2.6 TxAutoReg

Controls the settings of the antenna driver.

Table 56. TxAutoReg register (address 15h); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0
	AutoRF OFF	Force100 ASK	Auto WakeUp	0	CAOn	InitialRF On	Tx2RFAut oEn	Tx1RFAuto En
Access Rights	r/w	r/w	r/w	RFU	r/w	r/w	r/w	r/w

Table 57. Description of TxAutoReg bits

	•	
Bit	Symbol	Description
7	AutoRFOFF	Set to logic 1, all active antenna drivers are switched off after the last data bit has been transmitted as defined in the NFCIP-1.
6	Force100ASK	Set to logic 1, Force100ASK forces a 100% ASK modulation independent of the setting in register ModGsPReg.
5	AutoWakeUp	Set to logic 1, the PN512 in soft Power-down mode will be started by the RF level detector.
4	-	Reserved for future use.
3	CAOn	Set to logic 1, the collision avoidance is activated and internally the value n is set in accordance to the NFCIP-1 Standard.
2	InitialRFOn	Set to logic 1, the initial RF collision avoidance is performed and the bit InitialRFOn is cleared automatically, if the RF is switched on.
		Note: The driver, which should be switched on, has to be enabled by bit Tx2RFAutoEn or bit Tx1RFAutoEn.
1	Tx2RFAutoEn	Set to logic 1, the driver Tx2 is switched on after the external RF field is switched off according to the time TADT. If the bits InitialRFOn and Tx2RFAutoEn are set to logic 1, Tx2 is switched on if no external RF field is detected during the time TIDT.
		Note: The times TADT and TIDT are defined in the NFC IP-1 standard (ISO/IEC 18092).
0	Tx1RFAutoEn	Set to logic 1, the driver Tx1 is switched on after the external RF field is switched off according to the time TADT. If the bit InitialRFOn and Tx1RFAutoEn are set to logic 1, Tx1 is switched on if no external RF field is detected during the time TIDT.
		Note: The times TADT and TIDT are defined in the NFC IP-1 standard (ISO/IEC 18092).

Transmission module

9.2.2.7 TxSelReg

Selects the sources for the analog part.

Table 58. TxSelReg register (address 16h); reset value: 10h, 00010000b

	7	6	5	4	3	2	1	0
	0	0	Drive	erSel		SigO	utSel	
Access Rights	RFU	RFU	r/w	r/w	r/w	r/w	r/w	r/w

Table 59. Description of TxSelReg bits

			-					
Bit	Symbol	Description	1					
7 to 6	-	Reserved for	Reserved for future use.					
5 to 4	DriverSel	Selects the	input of driver Tx1 and Tx2.					
		Value	Description					
		00	Tristate					
			Note: In soft power down the drivers are only in Tristate mode if DriverSel is set to Tristate mode.					
		01	Modulation signal (envelope) from the internal coder					
		10	Modulation signal (envelope) from SIGIN					
		11	HIGH					
			Note: The HIGH level depends on the setting of InvTx1RFOn/InvTx1RFOff and InvTx2RFOn/InvTx2RFOff.					

Transmission module

 Table 59.
 Description of TxSelReg bits ...continued

Bit	Symbol	Description	1
3 to 0	SigOutSel	Selects the	input for the SIGOUT Pin.
		Value	Description
		0000	Tristate
		0001	Low
		0010	High
		0011	TestBus signal as defined by bit TestBusBitSel in register TestSel1Reg.
		0100	Modulation signal (envelope) from the internal coder
		0101	Serial data stream to be transmitted
		0110	Output signal of the receiver circuit (card modulation signal regenerated and delayed). This signal is used as data output signal for SAM interface connection using 3 lines.
			Note: To have a valid signal the PN512 has to be set to the receiving mode by either the Transceive or Receive command. The bit RxMultiple can be used to keep the PN512 in receiving mode.
			Note: Do not use this setting in MIFARE mode. Manchester coding as data collisions will not be transmitted on the SIGOUT line.
		0111	Serial data stream received.
			Note: Do not use this setting in MIFARE mode. Miller coding parameters as the bit length can vary.
		1000-1011	FeliCa Sam modulation
			1000 RX*
			1001 TX
			1010 Demodulator comparator output 1011 RFU
			Note: * To have a valid signal the PN512 has to be set to the receiving mode by either the Transceive or Receive command. The bit RxMultiple can be used to keep the PN512 in receiving mode.
		1100-1111	MIFARE Sam modulation
			1100 RX* with RF carrier
			1101 TX with RF carrier
			1110 RX with RF carrier un-filtered
			1111 RX envelope un-filtered
			Note: *To have a valid signal the PN512 has to be set to the receiving mode by either the Transceive or Receive command. The bit RxMultiple can be used to keep the PN512 in receiving mode.

Transmission module

9.2.2.8 RxSelReg

Selects internal receiver settings.

Table 60. RxSelReg register (address 17h); reset value: 84h, 10000100b

	7	6	5	4	3	2	1	0
	Uar	tSel			Rx\	<i>N</i> ait		
Access Rights	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Table 61. Description of RxSelReg bits

	<u> </u>		<u> </u>				
Bit	Symbol	Descript	ion				
7 to 6	UartSel	Selects t	Selects the input of the contactless UART				
		Value	Description				
		00	Constant Low				
		01	Envelope signal at SIGIN				
		10	Modulation signal from the internal analog part				
		11	Modulation signal from SIGIN pin. Only valid for transfer speeds above 424 kbit				
5 to 0	RxWait	RxWait b is ignored other cor paramete different. last mode Commun	a transmission, the activation of the receiver is delayed for officelocks. During this 'frame guard time' any signal at pin RX d. This parameter is ignored by the Receive command. All mmands (e.g. Transceive, Autocoll, MFAuthent) use this er. Depending on the mode of the PN512, the counter starts. In Passive Communication mode the counter starts with the ulation pulse of the transmitted data stream. In Active sication mode the counter starts immediately after the external is switched on.				

9.2.2.9 RxThresholdReg

Selects thresholds for the bit decoder.

Table 62. RxThresholdReg register (address 18h); reset value: 84h, 10000100b

	7	6	5	4	3	2	1	0
		MinL	_evel		0		CollLevel	
Access Rights	r/w	r/w	r/w	r/w	RFU	r/w	r/w	r/w

Table 63. Description of RxThresholdReg bits

Bit	Symbol	Description
7 to 4	MinLevel	Defines the minimum signal strength at the decoder input that shall be accepted. If the signal strength is below this level, it is not evaluated.
3	-	Reserved for future use.
2 to 0	CollLevel	Defines the minimum signal strength at the decoder input that has to be reached by the weaker half-bit of the Manchester-coded signal to generate a bit-collision relatively to the amplitude of the stronger half-bit.

Transmission module

9.2.2.10 DemodReg

Defines demodulator settings.

Table 64. DemodReg register (address 19h); reset value: 4Dh, 01001101b

	7	6	5	4	3	2	1	0
	Add	dIQ	FixIQ	TPrescal Even	Tau	ıRcv	Taus	Sync
Access Rights	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Table 65. Description of DemodReg bits

Bit	Symbol	Descrip	otion				
7 to 6	AddIQ	Defines	the use of I and Q channel during reception				
		Note: FixIQ has to be set to logic 0 to					
		enable t	the following settings.				
		Value	Description				
		00	Select the stronger channel				
		01	Select the stronger and freeze the selected during communication				
		10	combines the I and Q channel				
		11	Reserved				
5	FixIQ	If set to	logic 1 and the bits of AddIQ are set to X0, the reception is fixed to el.				
		If set to Q chann	logic 1 and the bits of AddIQ are set to X1, the reception is fixed to nel.				
		_	If SIGIN/SIGOUT is used as S2C interface FixIQ set to 1 and AddIQ 0 is rewired.				
4	TPrescalE ven	If set to prescale	logic 0 the following formula is used to calculate fTimer of the er:				
		f _{Timer} :	= 13.56 MHz / (2 * TPreScaler + 1).				
			logic 1 the following formula is used to calculate fTimer of the				
		If set to	logic 1 the following formula is used to calculate fTimer of the				
		If set to prescale fTime	logic 1 the following formula is used to calculate fTimer of the er:				
3 to 2	TauRcv	If set to prescale fTime (Defa	logic 1 the following formula is used to calculate fTimer of the er: $r = 13.56 \text{ MHz} / (2 * \text{TPreScaler} + 2).$				
3 to 2	TauRcv	If set to prescale fTime (Defa Change	logic 1 the following formula is used to calculate fTimer of the er: $r=13.56\ \text{MHz}/(2\ ^*\ \text{TPreScaler}+2).$ ult TPrescalEven is logic 0)				

Transmission module

9.2.2.11 FeINFC1Reg

Defines the length of the FeliCa Sync bytes and the minimum length of the received packet.

Table 66. FeINFC1Reg register (address 1Ah); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0
	FelSy	ncLen			DataL	enMin		
Access Rights	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Table 67. Description of FelNFC1Reg bits

Bit	Symbol	Descrip	otion				
7 to 6	FelSyncLen	Defines the length of the Sync bytes.					
			Sync- bytes in hex				
		00	B2 4D				
		01	00 B2 4D				
		10	00 00 B2 4D				
		11	00 00 00 B2 4D				
5 to 0	DataLenMin		oits define the minimum length of the accepted packet length: nMin * 4 ≤ data packet length				
		ModeRe	This parameter is ignored at 106 kbit if the bit DetectSync in register ModeReg is set to logic 0. If a received data packet is shorter than the defined DataLenMin value, the data packet will be ignored.				

Transmission module

9.2.2.12 FeINFC2Reg

Defines the maximum length of the received packet.

Table 68. FeINFC2Reg register (address1Bh); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0
	WaitForSelected	ShortTimeSlot			DataL	enMax		
Access Rights	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Table 69. Description of FeINFC2Reg bits

	onti oznog sito					
Symbol	Description					
WaitForSelected	Set to logic 1, the AutoColl command is only terminated automatically when:					
	 A valid command has been received after performing a valid Select procedure according ISO/IEC 14443A. 					
	A valid command has been received after performing a valid Polling procedure according to the FeliCa specification.					
	Note: If this bit is set, no active communication is possible.					
	Note: Setting this bit reduces the host controller interaction in case of a communication to another device in the same RF field during Passive Communication mode.					
ShortTimeSlot	Defines the time slot length for Passive Communication mode at 424 kbit. Set to logic 1 a short time slot is used (half of the timeslot at 212 kbit). Set to logic 0 a long timeslot is used (equal to the timeslot for 212 kbit).					
DataLenMax	These bits define the maximum length of the accepted packet length: DataLenMax * 4 ≥ data packet length					
	Note: If set to logic 0 the maximum data length is 256 bytes.					
	This parameter is ignored at 106 kbit if the bit DetectSync in register ModeReg is set to logic 0. If a received packet is larger than the defined DataLenMax value, the packet will be ignored.					
	WaitForSelected ShortTimeSlot					

Transmission module

9.2.2.13 **MifNFCReg**

Defines ISO/IEC 14443A/MIFARE/NFC specific settings in target or Card Operating mode.

Table 70. MifNFCReg register (address 1Ch); reset value: 62h, 01100010b

	7	6	5	4	3	2	1	0
	SensMiller			Taul	∕liller	MFHalted	Tx\	Vait
Access Rights	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Table 71. Description of MifNFCReg bits

Bit	Symbol	Description
7 to 5	SensMiller	These bits define the sensitivity of the Miller decoder.
4 to 3	TauMiller	These bits define the time constant of the Miller decoder.
2	MFHalted	Set to logic 1, this bit indicates that the PN512 is set to HALT mode in Card Operation mode at 106 kbit. This bit is either set by the host controller or by the internal state machine and indicates that only the code 52h is accepted as a request command. This bit is cleared automatically by a RF reset.
1 to 0	TxWait	These bits define the additional response time for the target at 106 kbit in Passive Communication mode and during the AutoColl command. Per default 7 bits are added to the value of the register bit.

Transmission module

9.2.2.14 ManualRCVReg

Allows manual fine tuning of the internal receiver.

Remark: For standard applications it is not recommended to change this register settings.

Table 72. ManualRCVReg register (address 1Dh); reset value: 00h, 00000000b

			-					
	7	6	5	4	3	2	1	0
	0	FastFilt MF_SO	Delay MF_SO	Parity Disable	LargeBW PLL	Manual HPCF	HPFC	
Access Rights	RFU	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Table 73. Description of ManualRCVReg bits

Table 73.	Description of	r ManualRCvReg bits
Bit	Symbol	Description
7	-	Reserved for future use.
6	FastFilt MF_SO	If this bit is set to logic 1, the internal filter for the Miller-Delay Circuit is set to Fast mode.
		Note: This bit should only set to logic 1, if Millerpulses of less than 400 ns Pulse length are expected. At 106 kBaud the typical value is 3 us.
5	Delay MF_SO	If this bit is set to logic 1, the Signal at SIGOUT-pin is delayed, so that in SAM mode the Signal at SIGIN must be 128/fc faster compared to the ISO/IEC 14443A, to reach the ISO/IEC 14443A restrictions on the RF-Field.
		Note: This delay shall only be activated for setting bits SigOutSel to (1110b) or (1111b) in register TxSelReg.
4	Parity Disable	If this bit is set to logic 1, the generation of the Parity bit for transmission and the Parity-Check for receiving is switched off. The received Parity bit is handled like a data bit.
3	LargeBWPLL	Set to logic 1, the bandwidth of the internal PLL used for clock recovery is extended.
2	ManualHPCF	Set to logic 0, the HPCF bits are ignored and the HPCF settings are adapted automatically to the receiving mode. Set to logic 1, values of HPCF are valid.
1 to 0	HPFC	Selects the High Pass Corner Frequency (HPCF) of the filter in the internal receiver chain
		00 For signals with frequency spectrum down to 106 kHz.
		01 For signals with frequency spectrum down to 212 kHz.
		10 For signals with frequency spectrum down to 424 kHz.
		11 For signals with frequency spectrum down to 848 kHz

Transmission module

9.2.2.15 **TypeBReg**

Table 74. TypeBReg register (address 1Eh); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0
	RxSOF Req	RxEOF Req	0	EOFSO FWidth	NoTxSOF	NoTxEOF	TxE	GT
Access Rights	r/w	r/w	RFU	r/w	r/w	r/w	r/w	r/w

Table 75. Description of TypeBReg bits

Description of	ion of TypeBReg bits						
Symbol	Description						
RxSOFReq	If this bit is set to logic 1, the SOF is required. A datastream starting without SOF is ignored.						
	If this bit is cleared, a datastream with and without SOF is accepted. The SOF will be removed and not written into the FIFO.						
RxEOFReq	If this bit is set to logic 1, the EOF is required. A datastream ending without EOF will generate a Protocol-Error. If this bit is cleared, a datastream with and without EOF is accepted. The EOF will be removed and not written into the FIFO.						
-	Reserved for future use.						
EOFSOFWidth	If this bit is set to logic 1 and EOFSOFAdjust bit is logic 0, the SOF and EOF will have the maximum length defined in ISO/IEC 14443B.						
	If this bit is cleared and EOFSOFAdjust bit is logic 0, the SOF and EOF will have the minimum length defined in ISO/IEC 14443B.						
	If this bit is set to 1 and the EOFSOFadjust bit is logic 1 will result in SOF low = $(11etu - 8 \text{ cycles})/fc$						
	SOF high = (2 etu + 8 cycles)/fc						
	EOF low = $(11 \text{ etu} - 8 \text{ cycles})/\text{fc}$						
	If this bit is set to 0 and the EOFSOFAdjust bit is logic 1 will result in an incorrect system behavior in respect to ISO specification.						
NoTxSOF	If this bit is set to logic 1, the generation of the SOF is suppressed.						
NoTxEOF	If this bit is set to logic 1, the generation of the EOF is suppressed.						
TxEGT	These bits define the length of the EGT.						
	Value Description						
	00 0 bit						
	01 1 bit						
	10 2 bits						
	11 3 bits						
	Symbol RxSOFReq RxEOFReq - EOFSOFWidth NoTxSOF NoTxEOF						

9.2.2.16 SerialSpeedReg

Selects the speed of the serial UART interface.

Table 76. SerialSpeedReg register (address 1Fh); reset value: EBh, 11101011b

	7	6	5	4	3	2	1	0
		BR_T0				BR_T1		
Access Rights	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Transmission module

Table 77. Description of SerialSpeedReg bits

Bit	Symbol	Description
7 to 5	BR_T0	Factor BR_T0 to adjust the transfer speed, for description see <u>Section</u> 10.3.2 "Selectable UART transfer speeds".
3 to 0	BR_T1	Factor BR_T1 to adjust the transfer speed, for description see <u>Section</u> 10.3.2 "Selectable UART transfer speeds".

Transmission module

9.2.3 Page 2: Configuration

9.2.3.1 PageReg

Selects the register page.

Table 78. PageReg register (address 20h); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0	
	UsePageSelect	0	0	0	0	0	Page	PageSelect	
Access Rights	r/w	RFU	RFU	RFU	RFU	RFU	r/w	r/w	

Table 79. Description of PageReg bits

	Doodingston of Fagoring Disc						
Bit	Symbol	Description					
7	UsePageSelect	Set to logic 1, the value of PageSelect is used as register address A5 and A4. The LSB-bits of the register address are defined by the address pins or the internal address latch, respectively.					
		Set to logic 0, the whole content of the internal address latch defines the register address. The address pins are used as described in Section 10.1 "Automatic microcontroller interface detection".					
6 to 2	-	Reserved for future use.					
1 to 0	PageSelect	The value of PageSelect is used only if UsePageSelect is set to logic 1. In this case, it specifies the register page (which is A5 and A4of the register address).					

9.2.3.2 CRCResultReg

Shows the actual MSB and LSB values of the CRC calculation.

Note: The CRC is split into two 8-bit register.

Note: Setting the bit MSBFirst in ModeReg register reverses the bit order, the byte order is not changed.

Table 80. CRCResultReg register (address 21h); reset value: FFh, 11111111b

	7	6	5	4	3	2	1	0	
		CRCResultMSB							
Access Rights	r	r	r	r	r	r	r	r	

Table 81. Description of CRCResultReg bits

Bit	Symbol	Description
7 to 0	CRCResultMSB	This register shows the actual value of the most significant byte of the CRCResultReg register. It is valid only if bit CRCReady in register Status1Reg is set to logic 1.

Table 82. CRCResultReg register (address 22h); reset value: FFh, 11111111b

	7	6	5	4	3	2	1	0		
		CRCResultLSB								
Access Rights	r	r	r	r	r	r	r	r		

Table 83. Description of CRCResultReg bits

Bit	Symbol	Description
7 to 0	CRCResultLSB	This register shows the actual value of the least significant byte of the CRCResult register. It is valid only if bit CRCReady in register Status1Reg is set to logic 1.

PN512

Transmission module

9.2.3.3 GsNOffReg

Selects the conductance for the N-driver of the antenna driver pins TX1 and TX2 when the driver is switched off.

Table 84. GsNOffReg register (address 23h); reset value: 88h, 10001000b

	7	6	5	4	3	2	1	0
		CWG	sNOff	ModGsNOff				
Access Rights	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Table 85. Description of GsNOffReg bits

Bit	Symbol	Description
7 to 4	CWGsNOff	The value of this register defines the conductance of the output N-driver during times of no modulation.
		Note: The conductance value is binary weighted.
		Note: During soft Power-down mode the highest bit is forced to 1.
		Note: The value of the register is only used if the driver is switched off. Otherwise the bit value CWGsNOn of register GsNOnReg is used.
		Note: This value is used for LoadModulation.
3 to 0	ModGsNOff	The value of this register defines the conductance of the output N-driver for the time of modulation. This may be used to regulate the modulation index.
		Note: The conductance value is binary weighted.
		Note: During soft Power-down mode the highest bit is forced to 1.
		Note: The value of the register is only used if the driver is switched off. Otherwise the bit value ModGsNOn of register GsNOnReg is used
		Note: This value is used for LoadModulation.

Transmission module

9.2.3.4 ModWidthReg

Controls the modulation width settings.

Table 86. ModWidthReg register (address 24h); reset value: 26h, 00100110b

	7	6	5	4	3	2	1	0
				Mod\	Vidth			
Access Rights	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Table 87. Description of ModWidthReg bits

Bit	Symbol	Description							
7 to 0	ModWidth	These bits define the width of the Miller modulation as initiator in Active and Passive Communication mode as multiples of the carrier frequency (ModWidth + 1/fc). The maximum value is half the bit period.							
		Acting as a target in Passive Communication mode at 106 kbit or in Card Operating mode for ISO/IEC 14443A/MIFARE these bits are used to change the duty cycle of the subcarrier frequency.							
		The resulting number of carrier periods are calculated according to the following formulas:							
		LOW value: #clocksLOW = (ModWidth modulo 8) + 1.							
		HIGH value: #clocksHIGH = 16-#clocksLOW.							

9.2.3.5 TxBitPhaseReg

Adjust the bitphase at 106 kbit during transmission.

Table 88. TxBitPhaseReg register (address 25h); reset value: 87h, 10000111b

	7	6	5	4	3	2	1	0
	RcvClkChange			7	TxBitPhase	Э		
Access Rights	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Table 89. Description of TxBitPhaseReg bits

Bit	Symbol	Description
7	RcvClkChange	Set to logic 1, the demodulator's clock is derived by the external RF field.
6 to 0	TxBitPhase	These bits are representing the number of carrier frequency clock cycles, which are added to the waiting period before transmitting data in all communication modes. TXBitPhase is used to adjust the TX bit synchronization during passive NFCIP-1 communication mode at 106 kbit and in ISO/IEC 14443A/MIFARE card mode.

Transmission module

9.2.3.6 RFCfgReg

Configures the receiver gain and RF level detector sensitivity.

Table 90. RFCfgReg register (address 26h); reset value: 48h, 01001000b

	7	6	5	4	3	2	1	0
	RFLevelAmp		RxC	Gain			RFLevel	
Access Rights	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Table 91. Description of RFCfgReg bits

Bit	Symbol	Descripti	on
7	RFLevelAmp	Set to logi	ic 1, this bit activates the RF level detectors' amplifier.
6 to 4	RxGain	This regis	ter defines the receivers signal voltage gain factor:
		Value	Description
		000	18 dB
		001	23 dB
		010	18 dB
		011	23 dB
		100	33 dB
		101	38 dB
		110	43 dB
		111	48 dB
3 to 0	RFLevel		ne sensitivity of the RF level detector, for description see 2.3 "RF level detector".

Transmission module

9.2.3.7 GsNOnReg

Selects the conductance for the N-driver of the antenna driver pins TX1 and TX2 when the driver is switched on.

Table 92. GsNOnReg register (address 27h); reset value: 88h, 10001000b

	7	6	5	4	3	2	1	0	
CWGsNOn					ModGsNOn				
Access Rights	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w	

Table 93. Description of GsNOnReg bits

Bit	Symbol	Description
7 to 4	CWGsNOn	The value of this register defines the conductance of the output N-driver during times of no modulation. This may be used to regulate the output power and subsequently current consumption and operating distance.
		Note: The conductance value is binary weighted.
		Note: During soft Power-down mode the highest bit is forced to 1.
		Note: This value is only used if the driver TX1 or TX2 are switched on. Otherwise the value of the bits CWGsNOff of register GsNOffReg is used.
3 to 0	ModGsNOn	The value of this register defines the conductance of the output N-driver for the time of modulation. This may be used to regulate the modulation index.
		Note: The conductance value is binary weighted.
		Note: During soft Power-down mode the highest bit is forced to 1.
		Note: This value is only used if the driver TX1 or Tx2 are switched on. Otherwise the value of the bits ModsNOff of register GsNOffReg is used.

9.2.3.8 CWGsPReg

Defines the conductance of the P-driver during times of no modulation

Table 94. CWGsPReg register (address 28h); reset value: 20h, 00100000b

	7	6	5	4	3	2	1	0
	0	0			CW	GsP		
Access Rights	RFU	RFU	r/w	r/w	r/w	r/w	r/w	r/w

Table 95. Description of CWGsPReg bits

Bit	Symbol	Description
7 to 6	-	Reserved for future use.
5 to 0	CWGsP	The value of this register defines the conductance of the output P-driver. This may be used to regulate the output power and subsequently current consumption and operating distance.
		Note: The conductance value is binary weighted. Note: During soft Power-down mode the highest bit is forced to 1.

Transmission module

9.2.3.9 ModGsPReg

Defines the driver P-output conductance during modulation.

Table 96. ModGsPReg register (address 29h); reset value: 20h, 00100000b

	7	6	5	4	3	2	1	0
	0	0			Mod	GsP		
Access Rights	RFU	RFU	r/w	r/w	r/w	r/w	r/w	r/w

Table 97. Description of ModGsPReg bits

Bit	Symbol	Description
7 to 6	-	Reserved for future use.
5 to 0	ModGsP[1]	The value of this register defines the conductance of the output P-driver for the time of modulation. This may be used to regulate the modulation index.
		Note: The conductance value is binary weighted.
		Note: During soft Power-down mode the highest bit is forced to 1.

^[1] If Force100ASK is set to logic 1, the value of ModGsP has no effect.

9.2.3.10 TMode Register, TPrescaler Register

Defines settings for the timer.

Note: The Prescaler value is split into two 8-bit registers

Table 98. TModeReg register (address 2Ah); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0
	TAuto	TG	ated	TAutoRestart		TPresc	aler_Hi	
Access Rights	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Table 99. Description of TModeReg bits

Bit	Symbol	Description
7	TAuto	Set to logic 1, the timer starts automatically at the end of the transmission in all communication modes at all speeds or when bit InitialRFOn is set to logic 1 and the RF field is switched on.
		In mode MIFARE and ISO14443-B 106kbit/s the timer stops after the 5th bit (1 startbit, 4 databits) if the bit RxMultiple in the register RxModeReg is not set. In all other modes, the timer stops after the 4th bit if the bit RxMultiple the register RxModeReg is not set.
		If RxMultiple is set to logic 1, the timer never stops. In this case the timer can be stopped by setting the bit TStopNow in register ControlReg to 1. Set to logic 0 indicates, that the timer is not influenced by the protocol.

Transmission module

Table 99. Description of TModeReg bits ...continued

100100	01		Tree bitscontinued			
Bit	Symbol	Descript	ion			
6 to 5	TGated	The inter	nal timer is running in gated mode.			
		Note: In the gated mode, the bit TRunning is 1 when the timer is enabled by the register bits. This bit does not influence the gating signal.				
		Value	Description			
		00	Non gated mode			
		01	Gated by SIGIN			
		10	Gated by AUX1			
		11	Gated by A3			
4	TAutoRestart	Set to logic 1, the timer automatically restart its count-down from TReloadValue, instead of counting down to zero.				
		Set to log to logic 1	gic 0 the timer decrements to ZERO and the bit TimerIRq is set .			
3 to 0	TPrescaler_Hi	Defines h	nigher 4 bits for TPrescaler.			
			wing formula is used to calculate f _{Timer} if TPrescalEven bit in eg is set to logic 0:			
		f _{Timer} =	13.56 MHz/(2*TPreScaler+1).			
			PreScaler = [TPrescaler_Hi:TPrescaler_Lo] (TPrescaler value s) (Default TPrescalEven is logic 0)			
			wing formula is used to calculate fTimer if TPrescalEven bit in eg is set to logic 1:			
		f _{Timer} =	13.56 MHz/(2*TPreScaler+2).			
		For detai	led description see Section 15 "Timer unit".			

Table 100. TPrescalerReg register (address 2Bh); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0
				TPresc	aler_Lo			
Access Rights	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Table 101. Description of TPrescalerReg bits

Bit	Symbol	Description
7 to 0	TPrescaler_Lo	Defines lower 8 bits for TPrescaler.
		The following formula is used to calculate f_{Timer} if TPrescalEven bit in Demot Reg is set to logic 0:
		f _{Timer} = 13.56 MHz/(2*TPreScaler+1).
		Where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo] (TPrescaler value on 12 bits)
		The following formula is used to calculate fTimer if TPrescalEven bit in Demot Reg is set to logic 1:
		f _{Timer} = 13.56 MHz/(2*TPreScaler+2).
		Where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo] (TPrescaler value on 12 bits)
		For detailed description see Section 15 "Timer unit".

Transmission module

9.2.3.11 TReloadReg

Describes the 16-bit long timer reload value.

Note: The Reload value is split into two 8-bit registers.

Table 102. TReloadReg (Higher bits) register (address 2Ch); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0
				TReloa	dVal_Hi			
Access Rights	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Table 103. Description of the higher TReloadReg bits

Bit	Symbol	Description
7 to 0	TReloadVal_Hi	Defines the higher 8 bits for the TReloadReg.
		With a start event the timer loads the TReloadVal. Changing this register affects the timer only at the next start event.

Table 104. TReloadReg (Lower bits) register (address 2Dh); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0
				TReloa	dVal_Lo			
Access Rights	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Table 105. Description of lower TReloadReg bits

Bit	Symbol	Description
7 to 0	TReloadVal_Lo	Defines the lower 8 bits for the TReloadReg.
		With a start event the timer loads the TReloadVal. Changing this register affects the timer only at the next start event.

Transmission module

9.2.3.12 TCounterValReg

Contains the current value of the timer.

Note: The Counter value is split into two 8-bit register.

Table 106. TCounterValReg (Higher bits) register (address 2Eh); reset value: XXh, XXXXXXXb

	7	6	5	4	3	2	1	0
				TCount	erVal_Hi			
Access Rights	r	r	r	r	r	r	r	r

Table 107. Description of the higher TCounterValReg bits

Bit	Symbol	Description
7 to 0	TCounterVal_Hi	Current value of the timer, higher 8 bits.

Table 108. TCounterValReg (Lower bits) register (address 2Fh); reset value: XXh, XXXXXXXb

	7	6	5	4	3	2	1	0
				TCounte	erVal_Lo			
Access Rights	r	r	r	r	r	r	r	r

Table 109. Description of lower TCounterValReg bits

Bit	Symbol	Description
7 to 0	TCounterVal_Lo	Current value of the timer, lower 8 bits.

9.2.4 Page 3: Test

9.2.4.1 PageReg

Selects the register page.

Table 110. PageReg register (address 30h); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0
	UsePageSelect	0	0	0	0	0	Page	Select
Access Rights	r/w	RFU	RFU	RFU	RFU	RFU	r/w	r/w

Transmission module

Table 111. Description of PageReg bits

Bit	Symbol	Description
7 UsePageSelect		Set to logic 1, the value of PageSelect is used as register address A5 and A4. The LSB-bits of the register address are defined by the address pins or the internal address latch, respectively.
		Set to logic 0, the whole content of the internal address latch defines the register address. The address pins are used as described in Section 10.1 "Automatic microcontroller interface detection".
6 to 2	-	Reserved for future use.
1 to 0	PageSelect	The value of PageSelect is used only if UsePageSelect is set to logic 1. In this case, it specifies the register page (which is A5 and A4 of the register address).

Transmission module

9.2.4.2 TestSel1Reg

General test signal configuration.

Table 112. TestSel1Reg register (address 31h); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0
	-	-	SAMCI	ockSel	SAMCIkD1	٦	stBusBitSe	el
Access Rights	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Table 113. Description of TestSel1Reg bits

Bit	Symbol	Descripti	Description				
7 to 6	-	Reserved	Reserved for future use.				
5 to 4	SAMClockSel	Defines t	he source for the 13.56 MHz SAM clock				
		Value	Description				
		00	GND- Sam Clock switched off				
		01	clock derived by the internal oscillator				
		10	internal UART clock				
		11	clock derived by the RF field				
3	SAMCIkD1	Set to log	ic 1, the SAM clock is delivered to D1.				
		Note: Onl	y possible if the 8bit parallel interface is not used.				
2 to 0	TstBusBitSel	Select the	TestBus bit from the testbus to be propagated to SIGOUT.				

9.2.4.3 TestSel2Reg

General test signal configuration and PRBS control

Table 114. TestSel2Reg register (address 32h); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0
	TstBusFlip	PRBS9	PRBS15			TestBusSe	l	
Access Rights	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Table 115. Description of TestSel2Reg bits

Bit	Symbol	Description
7	TstBusFlip	If set to logic 1, the testbus is mapped to the parallel port by the following order:
		D4, D3, D2, D6, D5, D0, D1. See Section 20 "Testsignals".
6	PRBS9	Starts and enables the PRBS9 sequence according ITU-TO150.
		Note: All relevant registers to transmit data have to be configured before entering PRBS9 mode.
		Note: The data transmission of the defined sequence is started by the send command.
5	PRBS15	Starts and enables the PRBS15 sequence according ITU-TO150.
		Note: All relevant registers to transmit data have to be configured before entering PRBS15 mode.
		Note: The data transmission of the defined sequence is started by the send command.
4 to 0	TestBusSel	Selects the testbus. See Section 20 "Testsignals"

Transmission module

9.2.4.4 TestPinEnReg

Enables the pin output driver on the 8-bit parallel bus.

Table 116. TestPinEnReg register (address 33h); reset value: 80h, 10000000b

	7	6	5	4	3	2	1	0
	RS232LineEn				TestPinEn			
Access Rights	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Table 117. Description of TestPinEnReg bits

Bit	Symbol	Description
7	RS232LineEn	Set to logic 0, the lines MX and DTRQ for the serial UART are disabled.
6 to 0	TestPinEn	Enables the pin output driver on the 8-bit parallel interface.
		Example:
		Setting bit 0 to 1 enables D0
		Setting bit 5 to 1 enables D5
		Note: Only valid if one of serial interfaces is used.
		If the SPI interface is used only D0 to D4 can be used. If the serial UART interface is used and RS232LineEn is set to logic 1 only D0 to D4 can be used.

9.2.4.5 TestPinValueReg

Defines the values for the 7-bit parallel port when it is used as I/O.

Table 118. TestPinValueReg register (address 34h); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0
	UseIO			٦	estPinValu	е		
Access Rights	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Table 119. Description of TestPinValueReg bits

Bit	Symbol	Description
7	UseIO	Set to logic 1, this bit enables the I/O functionality for the 7-bit parallel port in case one of the serial interfaces is used. The input/output behavior is defined by TestPinEn in register TestPinEnReg. The value for the output behavior is defined in the bits TestPinVal. Note: If SAMCIkD1 is set to logic 1, D1 can not be used as I/O.
6 to 0	TestPinValue	Defines the value of the 7-bit parallel port, when it is used as I/O. Each output has to be enabled by the TestPinEn bits in register TestPinEnReg.
		Note: Reading the register indicates the actual status of the pins D6 - D0 if UseIO is set to logic 1. If UseIO is set to logic 0, the value of the register TestPinValueReg is read back.

Transmission module

9.2.4.6 TestBusReg

Shows the status of the internal testbus.

Table 120. TestBusReg register (address 35h); reset value: XXh, XXXXXXXb

	7	6	5	4	3	2	1	0
				Test	tBus			
Access Rights	r	r	r	r	r	r	r	r

Table 121. Description of TestBusReg bits

Bit	Symbol	Description
7 to 0	TestBus	Shows the status of the internal testbus. The testbus is selected by the register TestSel2Reg. See <a a="" href="Section 20 " testsignals"<="">.

9.2.4.7 AutoTestReg

Controls the digital selftest.

Table 122. AutoTestReg register (address 36h); reset value: 40h, 01000000b

	7	6	5	4	3	2	1	0
	0	AmpRcv	0	EOFSO FAdjust		Self	Test	
Access Rights	RFT	r/w	RFU	RFU	r/w	r/w	r/w	r/w

Table 123. Description of bits

Bit	Symbol	Description
7	-	Reserved for production tests.
6	AmpRcv	If set to logic 1, the internal signal processing in the receiver chain is performed non-linear. This increases the operating distance in communication modes at 106 kbit.
		Note: Due to the non linearity the effect of the bits MinLevel and CollLevel in the register RxThreshholdReg are as well non linear.
5	-	Reserved for future use.
4	EOFSOFAdjust	If set to logic 0 and the EOFSOFwidth is set to 1 will result in the Maximum length of SOF and EOF according to ISO/IEC14443B
		If set to logic 0 and the EOFSOFwidth is set to 0 will result in the Minimum length of SOF and EOF according to ISO/IEC14443B
		If this bit is set to 1 and the EOFSOFwidth bit is logic 1 will result in SOF low = $(11 \text{ etu} - 8 \text{ cycles})/\text{fc}$
		SOF high = (2 etu + 8 cycles)/fc
		EOF low = $(11 \text{ etu} - 8 \text{ cycles})/\text{fc}$
3 to 0	SelfTest	Enables the digital self test. The selftest can be started by the selftest command in the command register. The selftest is enabled by 1001.
		Note: For default operation the selftest has to be disabled by 0000.

9.2.4.8 VersionReg

Shows the version.

Transmission module

Table 124. VersionReg register (address 37h); reset value: XXh, XXXXXXXb

	7	6	5	4	3	2	1	0
				Ver	sion			
Access Rights	r	r	r	r	r	r	r	r

Table 125. Description of VersionReg bits

Bit	Symbol	Description
7 to 0	Version	80h indicates PN512 Version V1.0.
		82h indicates PN512 Version V1.2.

Transmission module

9.2.4.9 AnalogTestReg

Controls the pins AUX1 and AUX2

Table 126. AnalogTestReg register (address 38h); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0
		AnalogSelAux1				Analog	SelAux2	
Access Rights	r/w	r/w	r/w	r/w	r/w	r/w	r/w	r/w

Table 127. Description of AnalogTestReg bits

Bit	Symbol	Descri	ption				
7 to 4	AnalogSelAux1	Control	s the AUX pin.				
3 to 0	AnalogSelAux2	Note: All test signals are described in <u>Section 20 "Testsignals"</u> .					
		Value	Description				
		0000	Tristate				
		0001	Output of TestDAC1 (AUX1), output of TESTDAC2 (AUX2)				
			Note: Current output. The use of 1 $k\Omega$ pull-down resistor on AUX is recommended.				
		0010	Testsignal Corr1				
			Note: Current output. The use of 1 $k\Omega$ pull-down resistor on AUX is recommended.				
		0011	Testsignal Corr2				
			Note: Current output. The use of 1 $k\Omega$ pull-down resistor on AUX is recommended.				
		0100	Testsignal MinLevel				
			Note: Current output. The use of 1 $k\Omega$ pull-down resistor on AUX is recommended.				
		0101	Testsignal ADC channel I				
			Note: Current output. The use of 1 $k\Omega$ pull-down resistor on AUX is recommended.				
		0110	Testsignal ADC channel Q				
			Note: Current output. The use of 1 $k\Omega$ pull-down resistor on AUX is recommended.				
		0111	Testsignal ADC channel I combined with Q				
			Note: Current output. The use of 1 $k\Omega$ pull-down resistor on AUX is recommended.				
		1000	Testsignal for production test				
			Note: Current output. The use of 1 $k\Omega$ pull-down resistor on AUX is recommended.				
		1001	SAM clock (13.56 MHz)				
		1010	HIGH				
		1011	LOW				
		1100	TxActive				
			At 106 kbit: HIGH during Startbit, Data bit, Parity and CRC. At 212 and 424 kbit: High during Preamble, Sync, Data and CRC.				
		1101	RxActive				
			At 106 kbit: High during databit, Parity and CRC. At 212 and 424 kbit: High during data and CRC.				
		1110	Subcarrier detected				
			106 kbit: not applicable 212 and 424 kbit: High during last part of Preamble, Sync data and CRC				
		1111	TestBus-Bit as defined by the TstBusBitSel in register TestSel1Reg.				

Transmission module

9.2.4.10 TestDAC1Reg

Defines the testvalues for TestDAC1.

Table 128. TestDAC1Reg register (address 39h); reset value: XXh, 00XXXXXXb

	7	6	5	4	3	2	1	0
	0	0			TestE	DAC1		
Access Rights	RFT	RFU	r/w	r/w	r/w	r/w	r/w	r/w

Table 129. Description of TestDAC1Reg bits

Bit	Symbol	Description
7	-	Reserved for production tests.
6	-	Reserved for future use.
5 to 0	TestDAC1	Defines the testvalue for TestDAC1. The output of the DAC1 can be switched to AUX1 by setting AnalogSelAux1 to 0001 in register AnalogTestReg.

9.2.4.11 TestDAC2Reg

Defines the testvalue for TestDAC2.

Table 130. TestDAC2Reg register (address 3Ah); reset value: XXh, 00XXXXXXb

	7	6	5	4	3	2	1	0
	0	0			Test	DAC2		
Access Rights	RFU	RFU	r/w	r/w	r/w	r/w	r/w	r/w

Table 131. Description of TestDAC2Reg bits

Bit	Symbol	Description
7 to 6	-	Reserved for future use.
5 to 0	TestDAC2	Defines the testvalue for TestDAC2. The output of the DAC2 can be switched to AUX2 by setting AnalogSelAux2 to 0001 in register AnalogTestReg.

9.2.4.12 TestADCReg

Shows the actual value of ADC I and Q channel.

Table 132. TestADCReg register (address 3Bh); reset value: XXh, XXXXXXXb

	7	6	5	4	3	2	1	0
		AD	C_I			AD	C_Q	
Access Rights								

Table 133. Description of TestADCReg bits

Bit	Symbol	Description
7 to 4	ADC_I	Shows the actual value of ADC I channel.
3 to 0	ADC_Q	Shows the actual value of ADC Q channel.

Transmission module

9.2.4.13 RFTReg

Table 134. RFTReg register (address 3Ch); reset value: FFh, 11111111b

	7	6	5	4	3	2	1	0
	1	1	1	1	1	1	1	1
Access Rights	RFT							

Table 135. Description of RFTReg bits

Bit	Symbol	Description
7 to 0	-	Reserved for production tests.

Table 136. RFTReg register (address 3Dh, 3Fh); reset value: 00h, 00000000b

	7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0	0
Access Rights	RFT							

Table 137. Description of RFTReg bits

Bit	Symbol	Description
7 to 0	-	Reserved for production tests.

Table 138. RFTReg register (address 3Eh); reset value: 03h, 00000011b

	7	6	5	4	3	2	1	0
	0	0	0	0	0	0	1	1
Access Rights	RFT							

Table 139. Description of RFTReg bits

Bit	Symbol	Description
7 to 0	-	Reserved for production tests.

10. Digital interfaces

10.1 Automatic microcontroller interface detection

The PN512 supports direct interfacing of hosts using SPI, I²C-bus or serial UART interfaces. The PN512 resets its interface and checks the current host interface type automatically after performing a power-on or hard reset. The PN512 identifies the host interface by sensing the logic levels on the control pins after the reset phase. This is done using a combination of fixed pin connections. <u>Table 140</u> shows the different connection configurations.

Transmission module

Table 140. Connection protocol for detecting different interface types

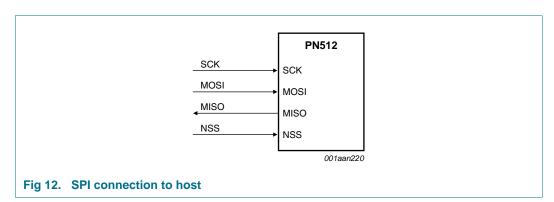
Pin	Interface type							
	UART (input)	SPI (output)	I ² C-bus (I/O)					
SDA	RX	NSS	SDA					
I ² C	0	0	1					
EA	0	1	EA					
D7	TX	MISO	SCL					
D6	MX	MOSI	ADR_0					
D5	DTRQ	SCK	ADR_1					
D4	-	-	ADR_2					
D3	-	-	ADR_3					
D2	-	-	ADR_4					
D1	-	-	ADR_5					

Table 141. Connection scheme for detecting the different interface types

PN512	Parallel Inter	face Type		Serial In	terface Ty	pes	
	Separated Rea	d/Write Strobe	Common Read	d/Write Strobe			
Pin	Dedicated Address Bus	Multiplexed Address Bus	Dedicated Address Bus	Multiplexed Address Bus	UART	SPI	I ² C
ALE	1	ALE	1	AS	RX	NSS	SDA
A5[1]	A5	0	A5	0	0	0	0
A4[1]	A4	0	A4	0	0	0	0
A3[2]	A3	0	A3	0	0	0	0
A2[2]	A2	1	A2	1	0	0	0
A1	A1	1	A1	1	0	0	1
A0	A0	1	A0	0	0	1	EA
NRD[2]	NRD	NRD	NDS	NDS	1	1	1
NWR ^[2]	NWR	NWR	RD/NWR	RD/NWR	1	1	1
NCS[2]	NCS	NCS	NCS	NCS	NCS	NCS	NCS
D7	D7	D7	D7	D7	TX	MISO	SCL
D6	D6	D6	D6	D6	MX	MOSI	ADR_0
D5	D5	AD5	D5	AD5	DTRQ	SCK	ADR_1
D4	D4	AD4	D4	AD4	-	-	ADR_2
D3	D3	AD3	D3	AD3	-	-	ADR_3
D2	D2	AD2	D2	AD2	-	-	ADR_4
D1	D1	AD1	D1	AD1	-	-	ADR_5
D0	D0	AD0	D0	AD0	-	-	ADR_6
Remark:	Overview on	the pin behav	vior				
Pin beha	vior	Input	Output	In/Out			

^[1] only available in HVQFN 40.

^[2] not available in HVQFN 32.


Transmission module

10.2 Serial Peripheral Interface

A serial peripheral interface (SPI compatible) is supported to enable high-speed communication to the host. The interface can handle data speeds up to 10 Mbit/s. When communicating with a host, the PN512 acts as a slave, receiving data from the external host for register settings, sending and receiving data relevant for RF interface communication.

An interface compatible with SPI enables high-speed serial communication between the PN512 and a microcontroller. The implemented interface is in accordance with the SPI standard.

The timing specification is given in Section 25.1 on page 107.

The PN512 acts as a slave during SPI communication. The SPI clock signal SCK must be generated by the master. Data communication from the master to the slave uses the MOSI line. The MISO line is used to send data from the PN512 to the master.

Data bytes on both MOSI and MISO lines are sent with the MSB first. Data on both MOSI and MISO lines must be stable on the rising edge of the clock and can be changed on the falling edge. Data is provided by the PN512 on the falling clock edge and is stable during the rising clock edge.

10.2.1 SPI read data

Reading data using SPI requires the byte order shown in <u>Table 142</u> to be used. It is possible to read out up to n-data bytes.

The first byte sent defines both the mode and the address.

Table 142. MOSI and MISO byte order

Line	Byte 0	Byte 1	Byte 2	То	Byte n	Byte n + 1
MOSI	address 0	address 1	address 2		address n	00
MISO	X[1]	data 0	data 1		data n – 1	data n

[1] X = Do not care.

Remark: The MSB must be sent first.

10.2.2 SPI write data

To write data to the PN512 using SPI requires the byte order shown in <u>Table 143</u>. It is possible to write up to n data bytes by only sending one address byte.

PN512

All information provided in this document is subject to legal disclaimers

© NXP B.V. 2011. All rights reserved.

Transmission module

The first send byte defines both the mode and the address byte.

Table 143. MOSI and MISO byte order

Line	Byte 0	Byte 1	Byte 2	То	Byte n	Byte n + 1
MOSI	address 0	data 0	data 1		data n – 1	data n
MISO	<u>χ[1]</u>	<u>χ[1]</u>	<u>χ[1]</u>		χ <u>[1]</u>	X[1]

^[1] X = Do not care.

Remark: The MSB must be sent first.

10.2.3 SPI address byte

The address byte has to meet the following format.

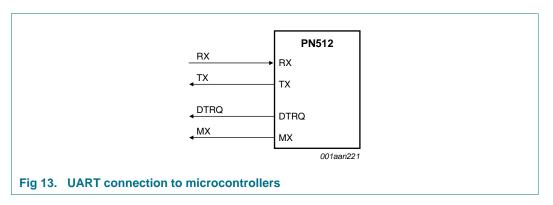

The MSB of the first byte defines the mode used. To read data from the PN512 the MSB is set to logic 1. To write data to the PN512 the MSB must be set to logic 0. Bits 6 to 1 define the address and the LSB is set to logic 0.

Table 144. Address byte 0 register; address MOSI

7 (MSB)	6	5	4	3	2	1	0 (LSB)
1 = read 0 = write	address						0

10.3 UART interface

10.3.1 Connection to a host

Remark: Signals DTRQ and MX can be disabled by clearing TestPinEnReg register's RS232LineEn bit.

10.3.2 Selectable UART transfer speeds

The internal UART interface is compatible with an RS232 serial interface.

The default transfer speed is 9.6 kBd. To change the transfer speed, the host controller must write a value for the new transfer speed to the SerialSpeedReg register. Bits BR_T0[2:0] and BR_T1[4:0] define the factors for setting the transfer speed in the SerialSpeedReg register.

The BR_T0[2:0] and BR_T1[4:0] settings are described in <u>Table 9</u>. Examples of different transfer speeds and the relevant register settings are given in <u>Table 10</u>.

PN512

Transmission module

Table 145. BR_T0 and BR_T1 settings

BR_Tn	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
BR_T0 factor	1	1	2	4	8	16	32	64
BR_T1 range	1 to 32	33 to 64						

Table 146. Selectable UART transfer speeds

Transfer speed (kBd)	SerialSpeedReg value		Transfer speed accuracy (%)[1]
	Decimal	Hexadecimal	
7.2	250	FAh	-0.25
9.6	235	EBh	0.32
14.4	218	DAh	-0.25
19.2	203	CBh	0.32
38.4	171	ABh	0.32
57.6	154	9Ah	-0.25
115.2	122	7Ah	-0.25
128	116	74h	-0.06
230.4	90	5Ah	-0.25
460.8	58	3Ah	-0.25
921.6	28	1Ch	1.45
1228.8	21	15h	0.32

^[1] The resulting transfer speed error is less than 1.5 % for all described transfer speeds.

The selectable transfer speeds shown in $\underline{\text{Table 10}}$ are calculated according to the following equations:

If $BR_T0[2:0] = 0$:

transfer speed =
$$\frac{27.12 \times 10^6}{(BR_T T0 + 1)}$$
 (1)

If $BR_T0[2:0] > 0$:

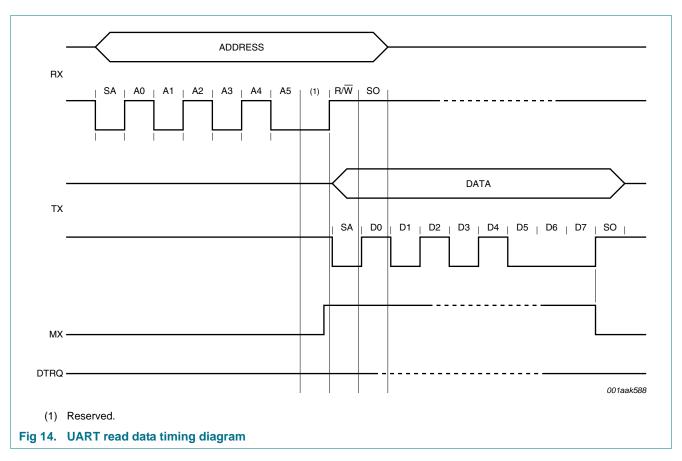
transfer speed =
$$\frac{27.12 \times 10^6}{\frac{(BR_T1 + 33)}{2^{(BR_T0 - 1)}}}$$
 (2)

Remark: Transfer speeds above 1228.8 kBd are not supported.

10.3.3 UART framing

Table 147. UART framing

Bit	Length	Value
Start	1-bit	0
Data	8 bits	data
Stop	1-bit	1


Transmission module

Remark: The LSB for data and address bytes must be sent first. No parity bit is used during transmission.

Read data: To read data using the UART interface, the flow shown in <u>Table 148</u> must be used. The first byte sent defines both the mode and the address.

Table 148. Read data byte order

Pin	Byte 0	Byte 1
RX (pin 24)	address	-
TX (pin 31)	-	data 0

Write data: To write data to the PN512 using the UART interface, the structure shown in Table 149 must be used.

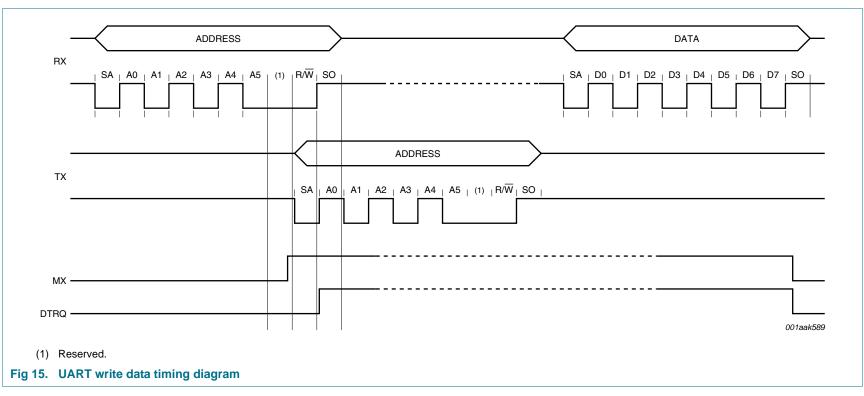

The first byte sent defines both the mode and the address.

Table 149. Write data byte order

Pin	Byte 0	Byte 1
RX (pin 24)	address 0	data 0
TX (pin 31)	-	address 0

NXP

Semiconductors

Remark: The data byte can be sent directly after the address byte on pin RX.

Address byte: The address byte has to meet the following format:

© NXP B.V. 2011. All rights reserved.

Transmission module

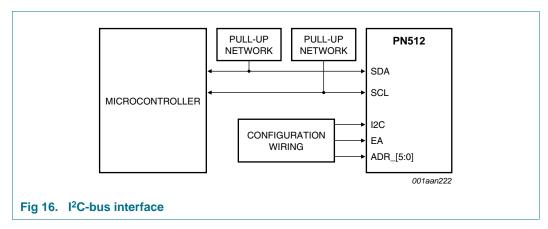

The MSB of the first byte sets the mode used. To read data from the PN512, the MSB is set to logic 1. To write data to the PN512 the MSB is set to logic 0. Bit 6 is reserved for future use, and bits 5 to 0 define the address; see <u>Table 150</u>.

Table 150. Address byte 0 register; address MOSI

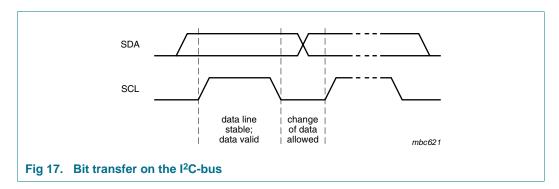
7 (MSB)	6	5	4	3	2	1	0 (LSB)
1 = read 0 = write	reserved	address					

10.4 I²C Bus Interface

An I^2 C-bus (Inter-IC) interface is supported to enable a low-cost, low pin count serial bus interface to the host. The I^2 C-bus interface is implemented according to NXP Semiconductors' I^2 C-bus interface specification, rev. 2.1, January 2000. The interface can only act in Slave mode. Therefore the PN512 does not implement clock generation or access arbitration.

The PN512 can act either as a slave receiver or slave transmitter in Standard mode, Fast mode and High-speed mode.

SDA is a bidirectional line connected to a positive supply voltage using a current source or a pull-up resistor. Both SDA and SCL lines are set HIGH when data is not transmitted. The PN512 has a 3-state output stage to perform the wired-AND function. Data on the I²C-bus can be transferred at data rates of up to 100 kBd in Standard mode, up to 400 kBd in Fast mode or up to 3.4 Mbit/s in High-speed mode.

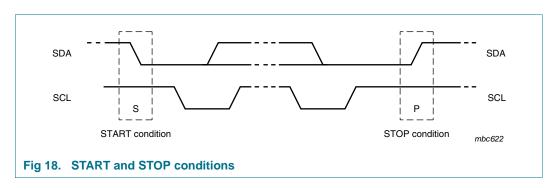

If the I²C-bus interface is selected, spike suppression is activated on lines SCL and SDA as defined in the I²C-bus interface specification.

See Table 170 on page 108 for timing requirements.

Transmission module

10.4.1 Data validity

Data on the SDA line must be stable during the HIGH clock period. The HIGH or LOW state of the data line must only change when the clock signal on SCL is LOW.


10.4.2 START and STOP conditions

To manage the data transfer on the I²C-bus, unique START (S) and STOP (P) conditions are defined.

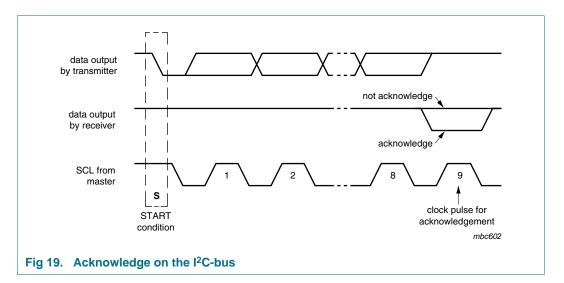
- A START condition is defined with a HIGH-to-LOW transition on the SDA line while SCI is HIGH
- A STOP condition is defined with a LOW-to-HIGH transition on the SDA line while SCL is HIGH.

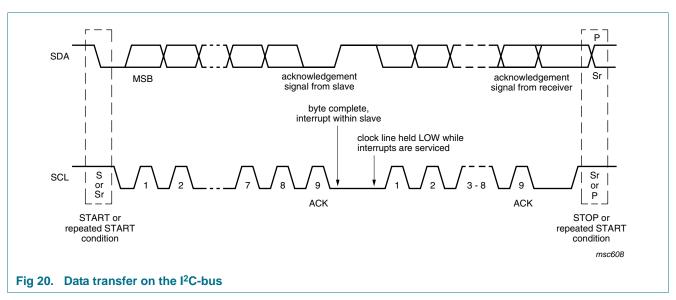
The I²C-bus master always generates the START and STOP conditions. The bus is busy after the START condition. The bus is free again a certain time after the STOP condition.

The bus stays busy if a repeated START (Sr) is generated instead of a STOP condition. The START (S) and repeated START (Sr) conditions are functionally identical. Therefore, S is used as a generic term to represent both the START (S) and repeated START (Sr) conditions.

10.4.3 Byte format

Each byte must be followed by an acknowledge bit. Data is transferred with the MSB first; see <u>Figure 21</u>. The number of transmitted bytes during one data transfer is unrestricted but must meet the read/write cycle format.


Transmission module


10.4.4 Acknowledge

An acknowledge must be sent at the end of one data byte. The acknowledge-related clock pulse is generated by the master. The transmitter of data, either master or slave, releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver pulls down the SDA line during the acknowledge clock pulse so that it remains stable LOW during the HIGH period of this clock pulse.

The master can then generate either a STOP (P) condition to stop the transfer or a repeated START (Sr) condition to start a new transfer.

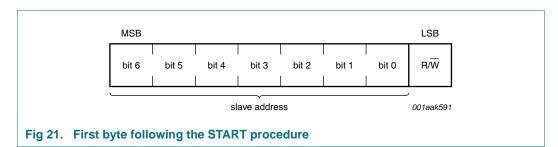
A master-receiver indicates the end of data to the slave-transmitter by not generating an acknowledge on the last byte that was clocked out by the slave. The slave-transmitter releases the data line to allow the master to generate a STOP (P) or repeated START (Sr) condition.

PN512

Transmission module

10.4.5 7-Bit addressing

During the I²C-bus address procedure, the first byte after the START condition is used to determine which slave will be selected by the master.


Several address numbers are reserved. During device configuration, the designer must ensure that collisions with these reserved addresses cannot occur. Check the PC-bus specification for a complete list of reserved addresses.

The I²C-bus address specification is dependent on the definition of pin EA. Immediately after releasing pin NRSTPD or after a power-on reset, the device defines the I²C-bus address according to pin EA.

If pin EA is set LOW, the upper 4 bits of the device bus address are reserved by NXP Semiconductors and set to 0101b for all PN512 devices. The remaining 3 bits (ADR_0, ADR_1, ADR_2) of the slave address can be freely configured by the customer to prevent collisions with other I²C-bus devices.

If pin EA is set HIGH, ADR_0 to ADR_5 can be completely specified at the external pins according to Table 140 on page 65. ADR_6 is always set to logic 0.

In both modes, the external address coding is latched immediately after releasing the reset condition. Further changes at the used pins are not taken into consideration. Depending on the external wiring, the I²C-bus address pins can be used for test signal outputs.

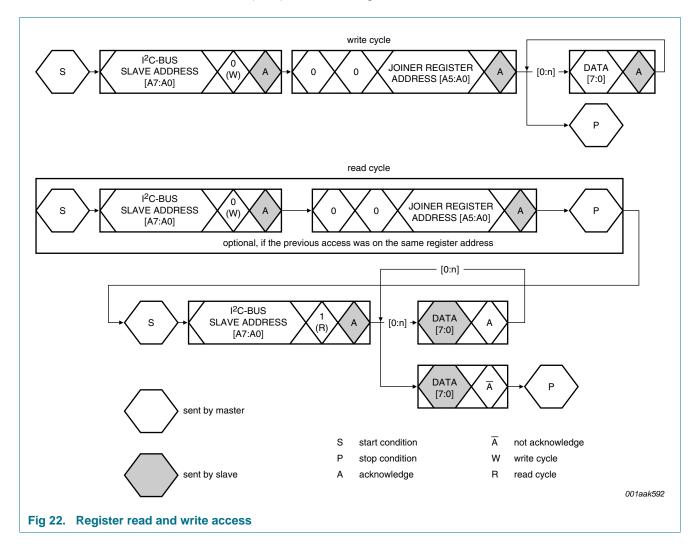
10.4.6 Register write access

To write data from the host controller using the I²C-bus to a specific register in the PN512 the following frame format must be used.

- The first byte of a frame indicates the device address according to the I²C-bus rules.
- The second byte indicates the register address followed by up to n-data bytes.

In one frame all data bytes are written to the same register address. This enables fast FIFO buffer access. The Read/Write (R/\overline{W}) bit is set to logic 0.

Transmission module


10.4.7 Register read access

To read out data from a specific register address in the PN512, the host controller must use the following procedure:

- Firstly, a write access to the specific register address must be performed as indicated in the frame that follows
- The first byte of a frame indicates the device address according to the I²C-bus rules
- The second byte indicates the register address. No data bytes are added
- The Read/Write bit is 0

After the write access, read access can start. The host sends the device address of the PN512. In response, the PN512 sends the content of the read access register. In one frame all data bytes can be read from the same register address. This enables fast FIFO buffer access or register polling.

The Read/Write (R/W) bit is set to logic 1.

Transmission module

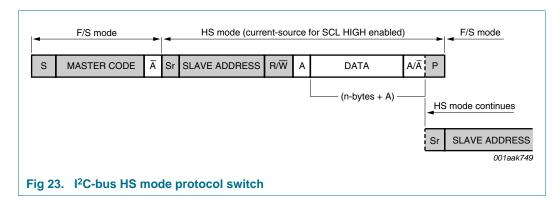
10.4.8 High-speed mode

In High-speed mode (HS mode), the device can transfer information at data rates of up to 3.4 Mbit/s, while remaining fully downward-compatible with Fast or Standard mode (F/S mode) for bidirectional communication in a mixed-speed bus system.

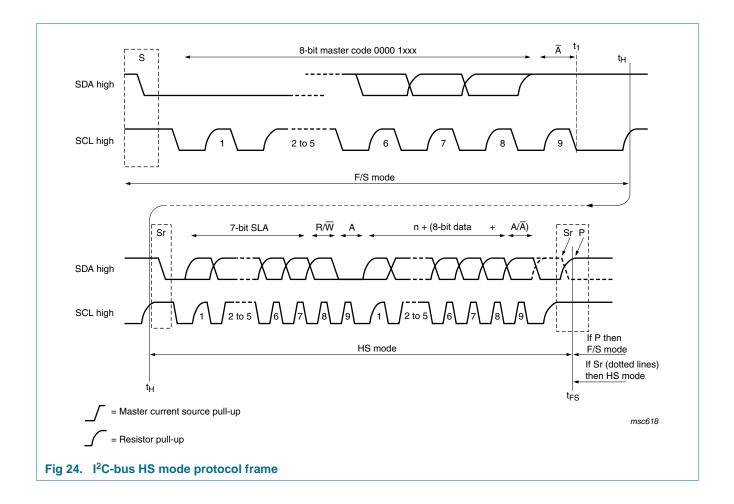
10.4.9 High-speed transfer

To achieve data rates of up to 3.4 Mbit/s the following improvements have been made to I^2C -bus operation.

- The inputs of the device in HS mode incorporate spike suppression, a Schmitt trigger on the SDA and SCL inputs and different timing constants when compared to F/S mode
- The output buffers of the device in HS mode incorporate slope control of the falling edges of the SDA and SCL signals with different fall times compared to F/S mode


10.4.10 Serial data transfer format in HS mode

The HS mode serial data transfer format meets the Standard mode I²C-bus specification. HS mode can only start after all of the following conditions (all of which are in F/S mode):


- 1. START condition (S)
- 2. 8-bit master code (00001XXXb)
- 3. Not-acknowledge bit (\overline{A})

When HS mode starts, the active master sends a repeated START condition (Sr) followed by a 7-bit slave address with a R/W bit address and receives an acknowledge bit (A) from the selected PN512.

Data transfer continues in HS mode after the next repeated START (Sr), only switching back to F/S mode after a STOP condition (P). To reduce the overhead of the master code, a master links a number of HS mode transfers, separated by repeated START conditions (Sr).

Transmission module

Transmission module

10.4.11 Switching between F/S mode and HS mode

After reset and initialization, the PN512 is in Fast mode (which is in effect F/S mode as Fast mode is downward-compatible with Standard mode). The connected PN512 recognizes the "S 00001XXX A" sequence and switches its internal circuitry from the Fast mode setting to the HS mode setting.

The following actions are taken:

- 1. Adapt the SDA and SCL input filters according to the spike suppression requirement in HS mode.
- 2. Adapt the slope control of the SDA output stages.

It is possible for system configurations that do not have other I²C-bus devices involved in the communication to switch to HS mode permanently. This is implemented by setting Status2Reg register's I²CForceHS bit to logic 1. In permanent HS mode, the master code is not required to be sent. This is not defined in the specification and must only be used when no other devices are connected on the bus. In addition, spikes on the I²C-bus lines must be avoided because of the reduced spike suppression.

10.4.12 PN512 at lower speed modes

PN512 is fully downward-compatible and can be connected to an F/S mode I²C-bus system. The device stays in F/S mode and communicates at F/S mode speeds because a master code is not transmitted in this configuration.

11. 8-bit parallel interface

The PN512 supports two different types of 8-bit parallel interfaces, Intel and Motorola compatible modes.

11.1 Overview of supported host controller interfaces

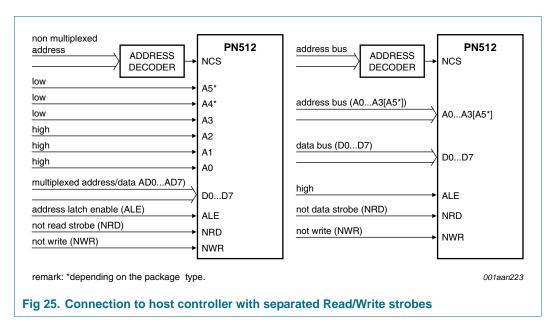
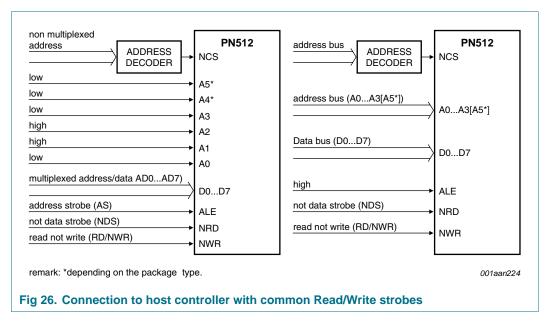

The PN512 supports direct interfacing to various μ -Controllers. The following table shows the parallel interface types supported by the PN512.

Table 151. Supported interface types

Bus	Separated Address and Data Bus	Multiplexed Address and Data Bus
control	NRD, NWR, NCS	NRD, NWR, NCS, ALE
address	A0 A3 [A5*]	AD0 AD7
data	D0 D7	AD0 AD7
control	R/NW, NDS, NCS	R/NW, NDS, NCS, AS
address	A0 A3 [A5*]	AD0 AD7
data	D0 D7	AD0 AD7
	control address data control address	Data Bus control NRD, NWR, NCS address A0 A3 [A5*] data D0 D7 control R/NW, NDS, NCS address A0 A3 [A5*]


Transmission module

11.2 Separated Read/Write strobe

For timing requirements refer to Section 25.2 "8-bit parallel interface timing".

11.3 Common Read/Write strobe

For timing requirements refer to Section 25.2 "8-bit parallel interface timing"

Transmission module

12. Analog interface and contactless UART

12.1 General

The integrated contactless UART supports the external host online with framing and error checking of the protocol requirements up to 848 kBd. An external circuit can be connected to the communication interface pins MFIN and MFOUT to modulate and demodulate the data.

The contactless UART handles the protocol requirements for the communication protocols in cooperation with the host. Protocol handling generates bit and byte-oriented framing. In addition, it handles error detection such as parity and CRC, based on the various supported contactless communication protocols.

Remark: The size and tuning of the antenna and the power supply voltage have an important impact on the achievable operating distance.

12.2 TX driver

The signal on pins TX1 and TX2 is the 13.56 MHz energy carrier modulated by an envelope signal. It can be used to drive an antenna directly using a few passive components for matching and filtering; see Section 15 on page 92. The signal on pins TX1 and TX2 can be configured using the TxControlReg register; see Section 9.2.2.5 on page 36.

The modulation index can be set by adjusting the impedance of the drivers. The impedance of the p-driver can be configured using registers CWGsPReg and ModGsPReg. The impedance of the n-driver can be configured using the GsNReg register. The modulation index also depends on the antenna design and tuning.

The TxModeReg and TxSelReg registers control the data rate and framing during transmission and the antenna driver setting to support the different requirements at the different modes and transfer speeds.

Table 152. Register and bit settings controlling the signal on pin TX1

Bit Tx1RFEn	Bit Force 100ASK	Bit InvTx1RFOn	Bit InvTx1RFOff	Envelope	Pin TX1	GSPMos	GSNMos	Remarks
0	X[1]	X[1]	X[1]	X[1]	X[1]	X[1]	X[1]	not specified if RF is switched off
1	0	0	X[1]	0	RF	pMod	nMod	100 % ASK: pin TX1
				1	RF	pCW	nCW	pulled to logic 0, independent of the
	0	1	X[1]	0	RF	pMod	nMod	InvTx1RFOff bit
				1	RF	pCW	nCW	
	1	1	X[1]	0	0	pMod	nMod	
				1	RF_n	pCW	nCW	_

^[1] X = Do not care.

Transmission module

Table 153. Register and bit settings controlling the signal on pin TX2

Bit Tx1RFEn	Bit Force 100ASK	Bit Tx2CW	Bit InvTx2RFOn	Bit InvTx2RFOff	Envelope	Pin TX2	GSPMos	GSNMos	Remarks	
0	X <u>[1]</u>	X[1]	X[1]	X[1]	X[1]	X <u>[1]</u>	X <u>[1]</u>	X[1]	not specified if RF is switched off	
1 0 0	0	0	X[1]	0	RF	pMod	nMod	-		
				1	RF	pCW	nCW			
		1	X[1]	0	RF_n	pMod	nMod			
					1	RF_n	pCW	nCW		
		1	0	X[1]	<u>χ[1]</u>	RF	pCW	nCW	conductance	
			1	X <u>[1]</u>	X[1]	RF_n	pCW	nCW	always CW for the Tx2CW bit	
	1	0	0	0	X[1]	0	0	pMod	nMod	100 % ASK: pin
				1	RF	pCW	nCW	TX2 pulled to logic 0		
			1	X[1]	0	0	pMod	nMod	(independent of	
					1	RF_n	pCW	nCW	the	
		1	0	<u>χ[1]</u>	<u>χ[1]</u>	RF	pCW	nCW	InvTx2RFOn/Inv Tx2RFOff bits)	
			1	X[1]	χ <u>[1]</u>	RF_n	pCW	nCW	TAZICI OII DIO)	

^[1] X = Do not care.

The following abbreviations have been used in Table 152 and Table 153:

- RF: 13.56 MHz clock derived from 27.12 MHz quartz crystal oscillator divided by 2
- RF_n: inverted 13.56 MHz clock
- GSPMos: conductance, configuration of the PMOS array
- GSNMos: conductance, configuration of the NMOS array
- pCW: PMOS conductance value for continuous wave defined by the CWGsPReg register
- pMod: PMOS conductance value for modulation defined by the ModGsPReg register
- nCW: NMOS conductance value for continuous wave defined by the GsNReg register's CWGsN[3:0] bits
- nMod: NMOS conductance value for modulation defined by the GsNReg register's ModGsN[3:0] bits
- X = do not care.

Remark: If only one driver is switched on, the values for CWGsPReg, ModGsPReg and GsNReg registers are used for both drivers.

12.3 RF level detector

The RF level detector is integrated to fulfill NFCIP1 protocol requirements (e.g. RF collision avoidance). Furthermore the RF level detector can be used to wake up the PN512 and to generate an interrupt.

Transmission module

The sensitivity of the RF level detector is adjustable in a 4-bit range using the bits RFLevel in register RFCfgReg. The sensitivity itself depends on the antenna configuration and tuning.

Possible sensitivity levels at the RX pin are listed in the Table 153.

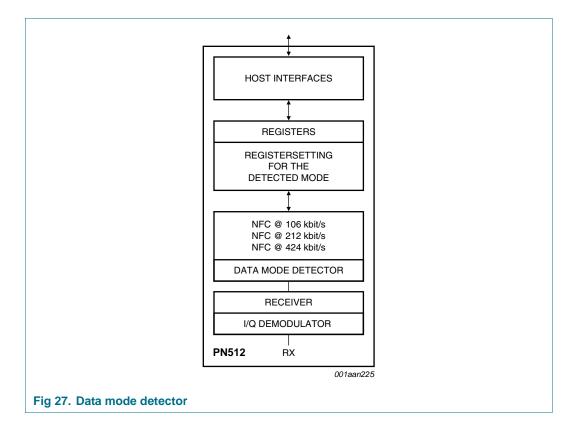
Table 154. Setting of the bits RFlevel in register RFCfgReg (RFLevel amplifier deactivated)

V~Rx [Vpp]	RFLevel
~2	1111
~1.4	1110
~0.99	1101
~0.69	1100
~0.49	1011
~0.35	1010
~0.24	1001
~0.17	1000
~0.12	0111
~0.083	0110
~0.058	0101
~0.041	0100
~0.029	0011
~0.020	0010
~0.014	0001
~0.010	0000

To increase the sensitivity of the RF level detector an amplifier can be activated by setting the bit RFLevelAmp in register RFCfgReg to 1.

Remark: During soft Power-down mode the RF level detector amplifier is automatically switched off to ensure that the power consumption is less than 10 μ A at 3 V.

Remark: With typical antennas lower sensitivity levels can provoke misleading results because of intrinsic noise in the environment.


Note: It is recommended to use the bit RFLevelAmp only with higher RF level settings.

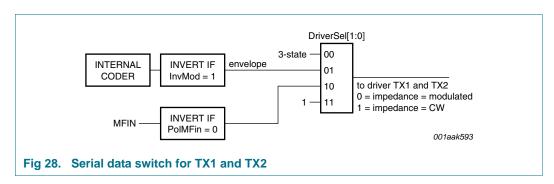
12.4 Data mode detector

The Data mode detector gives the possibility to detect received signals according to the ISO/IEC 14443A/MIFARE, FeliCa or NFCIP-1 schemes at the standard transfer speeds for 106 kbit, 212 kbit and 424 kbit in order to prepare the internal receiver in a fast and convenient way for further data processing.

The Data mode detector can only be activated by the AutoColl command. The mode detector resets, when no external RF field is detected by the RF level detector. The Data mode detector could be switched off during the AutoColl command by setting bit ModeDetOff in register ModeReg to 1.

Transmission module

Transmission module

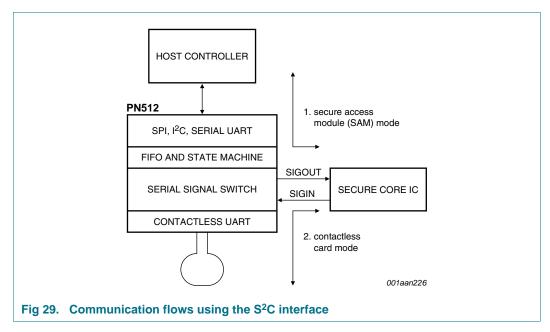

12.5 Serial data switch

Two main blocks are implemented in the PN512. The digital block comprises the state machines, encoder/decoder logic. The analog block comprises the modulator and antenna drivers, the receiver and amplifiers. The interface between these two blocks can be configured in the way, that the interfacing signals may be routed to the pins SIGIN and SIGOUT. SIGIN is capable of processing digital NFC signals on transfer speeds above 424 kbit. The SIGOUT pin can provide a digital signal that can be used with an additional external circuit to generate transfer speeds above 424 kbit (including 106, 212 and 424 kbit). Furthermore SIGOUT and SIGIN can be used to enable the S²C interface in the card SAM mode to emulate a card functionality with the PN512 and a secure IC. A secure IC can be the Smart*MX* smart card controller IC.

This topology allows the analog block of the PN512 to be connected to the digital block of another device.

The serial signal switch is controlled by the TxSelReg and RxSelReg registers.

Figure 28 shows the serial data switch for TX1 and TX2.


12.6 S²C interface support

The S²C provides the possibility to directly connect a secure IC to the PN512 in order act as a contactless smart card IC via the PN512. The interfacing signals can be routed to the pins SIGIN and SIGOUT. SIGIN can receive either a digital FeliCa or digitized ISO/IEC 14443A signal sent by the secure IC. The SIGOUT pin can provide a digital signal and a clock to communicate to the secure IC. A secure IC can be the smart card IC provided by NXP Semiconductors.

The PN512 has an extra supply pin (SVDD and PVSS as Ground line) for the SIGIN and SIGOUT pads.

Figure 30 outlines possible ways of communications via the PN512 to the secure IC.

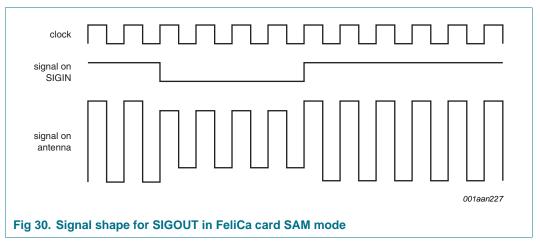
Transmission module

Configured in the Secure Access Mode the host controller can directly communicate to the Secure IC via SIGIN/SIGOUT. In this mode the PN512 generates the RF clock and performs the communication on the SIGOUT line. To enable the Secure Access module mode the clock has to be derived by the internal oscillator of the PN512, see bits SAMClockSel in register TestSel1Reg.

Configured in Contactless Card mode the secure IC can act as contactless smart card IC via the PN512. In this mode the signal on the SIGOUT line is provided by the external RF field of the external reader/writer. To enable the Contactless Card mode the clock derived by the external RF field has to be used.

The configuration of the S²C interface differs for the FeliCa and MIFARE scheme as outlined in the following chapters.

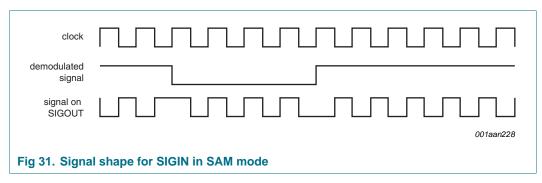
Transmission module


12.6.1 Signal shape for Felica S²C interface support

The FeliCa secure IC is connected to the PN512 via the pins SIGOUT and SIGIN.

The signal at SIGOUT contains the information of the 13.56 MHz clock and the digitized demodulated signal. The clock and the demodulated signal is combined by using the logical function exclusive or.

To ensure that this signal is free of spikes, the demodulated signal is digitally filtered first. The time delay for that digital filtering is in the range of one bit length. The demodulated signal changes only at a positive edge of the clock.


The register TxSelReg controls the setting at SIGOUT.

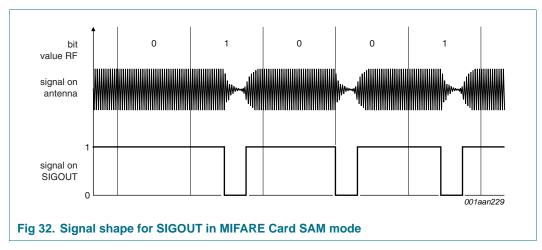
The answer of the FeliCa SAM is transferred from SIGIN directly to the antenna driver. The modulation is done according to the register settings of the antenna drivers.

The clock is switched to AUX1 or AUX2 (see AnalogSelAux).

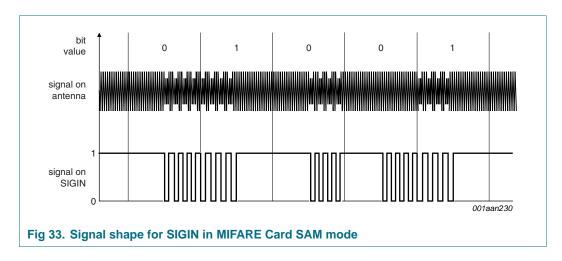
Note: A HIGH signal on AUX1 and AUX2 has the same level as AVDD. A HIGH signal at SIGOUT has the same level as SVDD. Alternatively it is possible to use pin D0 as clock output if a serial interface is used. The HIGH level at D0 is the same as PVDD.

Note: The signal on the antenna is shown in principle only. In reality the waveform is sinusoidal.

Transmission module


12.6.2 Waveform shape for ISO/IEC 14443A and MIFARE S²C support

The secure IC, e.g. the SmartMX is connected to the PN512 via the pins SIGOUT and SIGIN.


The waveform shape at SIGOUT is a digital 13.56 MHz Miller coded signal with levels between PVSS and PVDD derived out of the external 13.56 MHz carrier signal in case of the Contactless Card mode or internally generated in terms of Secure Access mode.

The register TxSelReg controls the setting at SIGOUT.

Note: The clock settings for the Secure Access mode and the Contactless Card mode differ, refer to the description of the bits SAMClockSel in register TestSel1Reg.

The signal at SIGIN is a digital Manchester coded signal according to the requirements of the ISO/IEC 14443A with the subcarrier frequency of 847.5 kHz generated by the secure IC.

Transmission module

12.7 Hardware support for FeliCa and NFC polling

12.7.1 Polling sequence functionality for initiator

- 1. Timer: The PN512 has a timer, which can be programmed in a way that it generates an interrupt at the end of each timeslot, or if required an interrupt is generated at the end of the last timeslot.
- 2. The receiver can be configured in a way to receive continuously. In this mode it can receive any number of packets. The receiver is ready to receive the next packet directly after the last packet has been received. This mode is active by setting the bit RxMultiple in register RxModeReg to 1 and has to be stopped by software.
- The internal UART adds one byte to the end of every received packet, before it is transferred into the FIFO-buffer. This byte indicates if the received byte packet is correct (see register ErrReg). The first byte of each packet contains the length byte of the packet.
- 4. The length of one packet is 18 or 20 bytes (+ 1 byte Error-Info). The FIFO has a length of 64 bytes. This means three packets can be stored in the FIFO at the same time. If more than three packets are expected, the host controller has to empty the FIFO, before the FIFO is filled completely. In case of a FIFO-overflow data is lost (See bit BufferOvfl in register ErrorReg).

12.7.2 Polling sequence functionality for target

- 1. The host controller has to configure the PN512 with the correct polling response parameters for the polling command.
- 2. To activate the automatic polling in Target mode, the AutoColl Command has to be activated.
- 3. The PN512 receives the polling command send out by an initiator and answers with the polling response. The timeslot is selected automatically (The timeslot itself is randomly generated, but in the range 0 to TSN, which is defined by the Polling command). The PN512 compares the system code, stored in byte 17 and 18 of the Config Command with the system code received by the polling command of an initiator. If the system code is equal, the PN512 answers according to the configured polling response. The system code FF (hex) acts as a wildcard for the system code bytes, i.e. a target of a system code 1234 (hex) answers to the polling command with one of the following system codes 1234 (hex), 12FF (hex), FF34 (hex) or FFFF (hex). If the system code does not match no answer is sent back by the PN512.

If a valid command is received by the PN512, which is not a Polling command, no answer is sent back and the command AutoColl is stopped. The received packet is stored in the FIFO.

Transmission module

12.7.3 Additional hardware support for FeliCa and NFC

Additionally to the polling sequence support for the Felica mode, the PN512 supports the check of the Len-byte.

The received Len-byte in accordance to the registers FelNFC1Reg and FelNFC2Reg:

DataLenMin in register FelNFC1Reg defines the minimum length of the accepted packet length. This register is six bit long. Each bit represents a length of four bytes.

DataLenMax in register FelNFC2Reg defines the maximum length of the accepted package. This register is six bit long. Each bit represents a length of four bytes. If set to logic 1 this limit is ignored. If the length is not in the supposed range, the packet is not transferred to the FIFO and receiving is kept active.

Example 1:

- DataLenMin = 4
 - The length shall be greater or equal 16.
- DataLenMax = 5
 - The length shall be smaller than 20. Valid area: 16, 17, 18, 19

Example 2:

- DataLenMin = 9
 - The length shall be greater or equal 36.
- DataLenMax = 0
 - The length shall be smaller than 256. Valid area: 36 to 255

12.7.4 CRC coprocessor

The following CRC coprocessor parameters can be configured:

- The CRC preset value can be either 0000h, 6363h, A671h or FFFFh depending on the ModeReg register's CRCPreset[1:0] bits setting
- The CRC polynomial for the 16-bit CRC is fixed to $x^{16} + x^{12} + x^5 + 1$
- The CRCResultReg register indicates the result of the CRC calculation. This register is split into two 8-bit registers representing the higher and lower bytes.
- The ModeReg register's MSBFirst bit indicates that data will be loaded with the MSB first.

Table 155. CRC coprocessor parameters

Parameter	Value
CRC register length	16-bit CRC
CRC algorithm	algorithm according to ISO/IEC 14443 A and ITU-T
CRC preset value	0000h, 6363h, A671h or FFFFh depending on the setting of the ModeReg register's CRCPreset[1:0] bits

Transmission module

13. FIFO buffer

An 8×64 bit FIFO buffer is used in the PN512. It buffers the input and output data stream between the host and the PN512's internal state machine. This makes it possible to manage data streams up to 64 bytes long without the need to take timing constraints into account.

13.1 Accessing the FIFO buffer

The FIFO buffer input and output data bus is connected to the FIFODataReg register. Writing to this register stores one byte in the FIFO buffer and increments the internal FIFO buffer write pointer. Reading from this register shows the FIFO buffer contents stored in the FIFO buffer read pointer and decrements the FIFO buffer read pointer. The distance between the write and read pointer can be obtained by reading the FIFOLevelReg register.

When the microcontroller starts a command, the PN512 can, while the command is in progress, access the FIFO buffer according to that command. Only one FIFO buffer has been implemented which can be used for input and output. The microcontroller must ensure that there are not any unintentional FIFO buffer accesses.

13.2 Controlling the FIFO buffer

The FIFO buffer pointers can be reset by setting FIFOLevelReg register's FlushBuffer bit to logic 1. Consequently, the FIFOLevel[6:0] bits are all set to logic 0 and the ErrorReg register's BufferOvfl bit is cleared. The bytes stored in the FIFO buffer are no longer accessible allowing the FIFO buffer to be filled with another 64 bytes.

13.3 FIFO buffer status information

The host can get the following FIFO buffer status information:

- Number of bytes stored in the FIFO buffer: FIFOLevelReg register's FIFOLevel[6:0]
- FIFO buffer almost full warning: Status1Reg register's HiAlert bit
- FIFO buffer almost empty warning: Status1Reg register's LoAlert bit
- FIFO buffer overflow warning: ErrorReg register's BufferOvfl bit. The BufferOvfl bit can only be cleared by setting the FIFOLevelReg register's FlushBuffer bit.

The PN512 can generate an interrupt signal when:

- ComlEnReg register's LoAlertIEn bit is set to logic 1. It activates pin IRQ when Status1Reg register's LoAlert bit changes to logic 1.
- ComlEnReg register's HiAlertIEn bit is set to logic 1. It activates pin IRQ when Status1Reg register's HiAlert bit changes to logic 1.

If the maximum number of WaterLevel bytes (as set in the WaterLevelReg register) or less are stored in the FIFO buffer, the HiAlert bit is set to logic 1. It is generated according to Equation 3:

$$HiAlert = (64 - FIFOLength) \le WaterLevel$$
 (3)

Transmission module

If the number of WaterLevel bytes (as set in the WaterLevelReg register) or less are stored in the FIFO buffer, the LoAlert bit is set to logic 1. It is generated according to Equation 4:

$$LoAlert = FIFOLength \le WaterLevel \tag{4}$$

14. Interrupt request system

The PN512 indicates certain events by setting the Status1Reg register's IRq bit and, if activated, by pin IRQ. The signal on pin IRQ can be used to interrupt the host using its interrupt handling capabilities. This allows the implementation of efficient host software.

14.1 Interrupt sources overview

<u>Table 156</u> shows the available interrupt bits, the corresponding source and the condition for its activation. The ComlrqReg register's TimerIRq interrupt bit indicates an interrupt set by the timer unit which is set when the timer decrements from 1 to 0.

The ComIrqReg register's TxIRq bit indicates that the transmitter has finished. If the state changes from sending data to transmitting the end of the frame pattern, the transmitter unit automatically sets the interrupt bit. The CRC coprocessor sets the DivIrqReg register's CRCIRq bit after processing all the FIFO buffer data which is indicated by CRCReady bit = 1.

The ComIrqReg register's RxIRq bit indicates an interrupt when the end of the received data is detected. The ComIrqReg register's IdleIRq bit is set if a command finishes and the Command[3:0] value in the CommandReg register changes to idle (see <u>Table 157 on page 97</u>).

The ComIrqReg register's HiAlertIRq bit is set to logic 1 when the Status1Reg register's HiAlert bit is set to logic 1 which means that the FIFO buffer has reached the level indicated by the WaterLevel[5:0] bits.

The ComIrqReg register's LoAlertIRq bit is set to logic 1 when the Status1Reg register's LoAlert bit is set to logic 1 which means that the FIFO buffer has reached the level indicated by the WaterLevel[5:0] bits.

The ComIrqReg register's ErrIRq bit indicates an error detected by the contactless UART during send or receive. This is indicated when any bit is set to logic 1 in register ErrorReg.

Table 156. Interrupt sources

Interrupt flag	Interrupt source	Trigger action
TimerIRq	timer unit	the timer counts from 1 to 0
TxIRq	transmitter	a transmitted data stream ends
CRCIRq	CRC coprocessor	all data from the FIFO buffer has been processed
RxIRq	receiver	a received data stream ends
IdleIRq	ComIrqReg register	command execution finishes
HiAlertIRq	FIFO buffer	the FIFO buffer is almost full
LoAlertIRq	FIFO buffer	the FIFO buffer is almost empty
ErrlRq	contactless UART	an error is detected
-		

Transmission module

15. Timer unit

A timer unit is implemented in the PN512. The external host controller may use this timer to manage timing relevant tasks. The timer unit may be used in one of the following configurations:

- Time-out counter
- Watch-dog counter
- Stop watch
- Programmable one-shot
- Periodical trigger

The timer unit can be used to measure the time interval between two events or to indicate that a specific event occurred after a specific time. The timer can be triggered by events which will be explained in the following, but the timer itself does not influence any internal event (e.g. A time-out during data reception does not influence the reception process automatically). Furthermore, several timer related bits are set and these bits can be used to generate an interrupt.

Timer

The timer has an input clock of 13.56 MHz (derived from the 27.12 MHz quartz). The timer consists of two stages: 1 prescaler and 1 counter.

The prescaler is a 12-bit counter. The reload value for TPrescaler can be defined between 0 and 4095 in register TModeReg and TPrescalerReg.

The reload value for the counter is defined by 16 bits in a range of 0 to 65535 in the register TReloadReg.

The current value of the timer is indicated by the register TCounterValReg.

If the counter reaches 0 an interrupt will be generated automatically indicated by setting the TimerIRq bit in the register CommonIRqReg. If enabled, this event can be indicated on the IRQ line. The bit TimerIRq can be set and reset by the host controller. Depending on the configuration the timer will stop at 0 or restart with the value from register TReloadReg.

The status of the timer is indicated by bit TRunning in register Status1Reg.

The timer can be manually started by TStartNow in register ControlReg or manually stopped by TStopNow in register ControlReg.

Furthermore the timer can be activated automatically by setting the bit TAuto in the register TModeReg to fulfill dedicated protocol requirements automatically.

The time delay of a timer stage is the reload value +1.

The definition of total time is: $t = ((TPrescaler^2 + 1)^*TReload + 1)/13.56MHz$ or if TPrescaleEven bit is set: $t = ((TPrescaler^2 + 2)^*TReload + 1)/13.56MHz$

Maximum time: TPrescaler = 4095,TReloadVal = 65535=> (2*4095 + 2)*65536/13.56 MHz = 39.59 s

Example:

Transmission module

To indicate 25 us it is required to count 339 clock cycles. This means the value for TPrescaler has to be set to TPrescaler = 169. The timer has now an input clock of 25 us. The timer can count up to 65535 timeslots of each 25 μ s.

Transmission module

16. Power reduction modes

16.1 Hard power-down

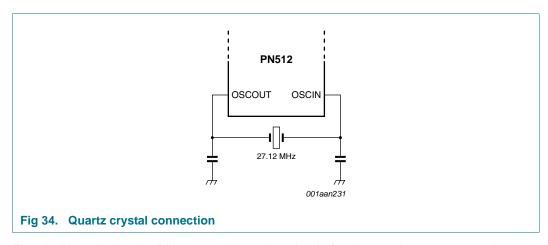
Hard power-down is enabled when pin NRSTPD is LOW. This turns off all internal current sinks including the oscillator. All digital input buffers are separated from the input pins and clamped internally (except pin NRSTPD). The output pins are frozen at either a HIGH or LOW level.

16.2 Soft power-down mode

Soft Power-down mode is entered immediately after the CommandReg register's PowerDown bit is set to logic 1. All internal current sinks are switched off, including the oscillator buffer. However, the digital input buffers are not separated from the input pins and keep their functionality. The digital output pins do not change their state.

During soft power-down, all register values, the FIFO buffer content and the configuration keep their current contents.

After setting the PowerDown bit to logic 0, it takes 1024 clocks until the Soft power-down mode is exited indicated by the PowerDown bit. Setting it to logic 0 does not immediately clear it. It is cleared automatically by the PN512 when Soft power-down mode is exited.


Remark: If the internal oscillator is used, you must take into account that it is supplied by pin AVDD and it will take a certain time (t_{osc}) until the oscillator is stable and the clock cycles can be detected by the internal logic. It is recommended for the serial UART, to first send the value 55h to the PN512. The oscillator must be stable for further access to the registers. To ensure this, perform a read access to address 0 until the PN512 answers to the last read command with the register content of address 0. This indicates that the PN512 is ready.

16.3 Transmitter power-down mode

The Transmitter Power-down mode switches off the internal antenna drivers thereby, turning off the RF field. Transmitter power-down mode is entered by setting either the TxControlReg register's Tx1RFEn bit or Tx2RFEn bit to logic 0.

Transmission module

17. Oscillator circuitry

The clock applied to the PN512 provides a time basis for the synchronous system's encoder and decoder. The stability of the clock frequency, therefore, is an important factor for correct operation. To obtain optimum performance, clock jitter must be reduced as much as possible. This is best achieved using the internal oscillator buffer with the recommended circuitry.

If an external clock source is used, the clock signal must be applied to pin OSCIN. In this case, special care must be taken with the clock duty cycle and clock jitter and the clock quality must be verified.

18. Reset and oscillator start-up time

18.1 Reset timing requirements

The reset signal is filtered by a hysteresis circuit and a spike filter before it enters the digital circuit. The spike filter rejects signals shorter than 10 ns. In order to perform a reset, the signal must be LOW for at least 100 ns.

18.2 Oscillator start-up time

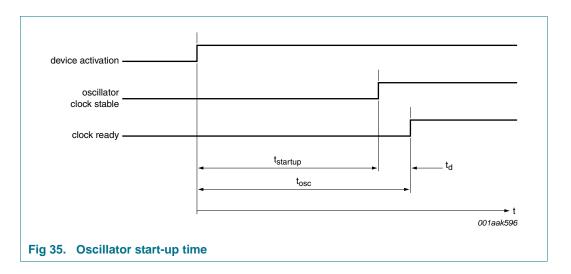
If the PN512 has been set to a Power-down mode or is powered by a V_{DDX} supply, the start-up time for the PN512 depends on the oscillator used and is shown in Figure 35.

The time ($t_{startup}$) is the start-up time of the crystal oscillator circuit. The crystal oscillator start-up time is defined by the crystal.

The time (t_d) is the internal delay time of the PN512 when the clock signal is stable before the PN512 can be addressed.

The delay time is calculated by:

$$t_d = \frac{1024}{27 \,\mu\text{s}} = 37.74 \,\mu\text{s} \tag{5}$$


The time (t_{osc}) is the sum of t_d and $t_{startup}$.

PN512

All information provided in this document is subject to legal disclaimers

© NXP B.V. 2011. All rights reserved

Transmission module

19. PN512 command set

The PN512 operation is determined by a state machine capable of performing a set of commands. A command is executed by writing a command code (see <u>Table 157</u>) to the CommandReg register.

Arguments and/or data necessary to process a command are exchanged via the FIFO buffer.

19.1 General description

The PN512 operation is determined by a state machine capable of performing a set of commands. A command is executed by writing a command code (see <u>Table 157</u>) to the CommandReg register.

Arguments and/or data necessary to process a command are exchanged via the FIFO buffer.

19.2 General behavior

- Each command that needs a data bit stream (or data byte stream) as an input immediately processes any data in the FIFO buffer. An exception to this rule is the Transceive command. Using this command, transmission is started with the BitFramingReg register's StartSend bit.
- Each command that needs a certain number of arguments, starts processing only when it has received the correct number of arguments from the FIFO buffer.
- The FIFO buffer is not automatically cleared when commands start. This makes it
 possible to write command arguments and/or the data bytes to the FIFO buffer and
 then start the command.
- Each command can be interrupted by the host writing a new command code to the CommandReg register, for example, the Idle command.

Transmission module

19.3 PN512 command overview

Table 157. Command overview

Command code	Action
0000	no action, cancels current command execution
0001	stores 25 bytes into the internal buffer
0010	generates a 10-byte random ID number
0011	activates the CRC coprocessor or performs a self test
0100	transmits data from the FIFO buffer
0111	no command change, can be used to modify the CommandReg register bits without affecting the command, for example, the PowerDown bit
1000	activates the receiver circuits
1100	transmits data from FIFO buffer to antenna and automatically activates the receiver after transmission
1101	reserved for future use
1110	performs the MIFARE standard authentication as a reader
1111	resets the PN512
	code 0000 0001 0010 0011 0100 0111 1000 1100 1101 1110

19.3.1 PN512 command descriptions

19.3.1.1 Idle

Places the PN512 in Idle mode. The Idle command also terminates itself.

19.3.1.2 Mem

Transfers 25 bytes from the FIFO buffer to the internal buffer.

To read out the 25 bytes from the internal buffer the Mem command must be started with an empty FIFO buffer. In this case, the 25 bytes are transferred from the internal buffer to the FIFO.

During a hard power-down (using pin NRSTPD), the 25 bytes in the internal buffer remain unchanged and are only lost if the power supply is removed from the PN512.

This command automatically terminates when finished and the Idle command becomes active.

19.3.1.3 Generate RandomID

This command generates a 10-byte random number which is initially stored in the internal buffer. This then overwrites the 10 bytes in the internal 25-byte buffer. This command automatically terminates when finished and the PN512 returns to Idle mode.

19.3.1.4 CalcCRC

The FIFO buffer content is transferred to the CRC coprocessor and the CRC calculation is started. The calculation result is stored in the CRCResultReg register. The CRC calculation is not limited to a dedicated number of bytes. The calculation is not stopped when the FIFO buffer is empty during the data stream. The next byte written to the FIFO buffer is added to the calculation.

Transmission module

The CRC preset value is controlled by the ModeReg register's CRCPreset[1:0] bits. The value is loaded in to the CRC coprocessor when the command starts.

This command must be terminated by writing a command to the CommandReg register, such as, the Idle command.

If the AutoTestReg register's SelfTest[3:0] bits are set correctly, the PN512 enters Self Test mode. Starting the CalcCRC command initiates a digital self test. The result of the self test is written to the FIFO buffer.

19.3.1.5 Transmit

The FIFO buffer content is immediately transmitted after starting this command. Before transmitting the FIFO buffer content, all relevant registers must be set for data transmission.

This command automatically terminates when the FIFO buffer is empty. It can be terminated by another command written to the CommandReg register.

19.3.1.6 NoCmdChange

This command does not influence any running command in the CommandReg register. It can be used to manipulate any bit except the CommandReg register Command[3:0] bits, for example, the RcvOff bit or the PowerDown bit.

19.3.1.7 Receive

The PN512 activates the receiver path and waits for a data stream to be received. The correct settings must be chosen before starting this command.

This command automatically terminates when the data stream ends. This is indicated either by the end of frame pattern or by the length byte depending on the selected frame type and speed.

Remark: If the RxModeReg register's RxMultiple bit is set to logic 1, the Receive command will not automatically terminate. It must be terminated by starting another command in the CommandReg register.

19.3.1.8 Transceive

This command continuously repeats the transmission of data from the FIFO buffer and the reception of data from the RF field. The first action is transmit and after transmission the command is changed to receive a data stream.

Each transmit process must be started by setting the BitFramingReg register's StartSend bit to logic 1. This command must be cleared by writing any command to the CommandReg register.

Remark: If the RxModeReg register's RxMultiple bit is set to logic 1, the Transceive command never leaves the receive state because this state cannot be cancelled automatically.

19.3.1.9 MFAuthent

This command manages MIFARE authentication to enable a secure communication to any MIFARE Mini, MIFARE 1K and MIFARE 4K card. The following data is written to the FIFO buffer before the command can be activated:

Transmission module

- Authentication command code (60h, 61h)
- Block address
- Sector key byte 0
- Sector key byte 1
- Sector key byte 2
- Sector key byte 3
- Sector key byte 4
- Sector key byte 5
- Card serial number byte 0
- Card serial number byte 1
- Card serial number byte 2
- Card serial number byte 3

In total 12 bytes are written to the FIFO.

Remark: When the MFAuthent command is active all access to the FIFO buffer is blocked. However, if there is access to the FIFO buffer, the ErrorReg register's WrErr bit is set.

This command automatically terminates when the MIFARE card is authenticated and the Status2Reg register's MFCrypto1On bit is set to logic 1.

This command does not terminate automatically if the card does not answer, so the timer must be initialized to automatic mode. In this case, in addition to the IdleIRq bit, the TimerIRq bit can be used as the termination criteria. During authentication processing, the RxIRq bit and TxIRq bit are blocked. The Crypto1On bit is only valid after termination of the MFAuthent command, either after processing the protocol or writing Idle to the CommandReg register.

If an error occurs during authentication, the ErrorReg register's ProtocolErr bit is set to logic 1 and the Status2Reg register's Crypto1On bit is set to logic 0.

19.3.1.10 SoftReset

This command performs a reset of the device. The configuration data of the internal buffer remains unchanged. All registers are set to the reset values. This command automatically terminates when finished.

Remark: The SerialSpeedReg register is reset and therefore the serial data rate is set to 9.6 kBd.

Transmission module

20. Testsignals

20.1 Selftest

The PN512 has the capability to perform a digital selftest. To start the selftest the following procedure has to be performed:

- 1. Perform a soft reset.
- 2. Clear the internal buffer by writing 25 bytes of 00h and perform the Config Command.
- 3. Enable the Selftest by writing the value 09h to the register AutoTestReg.
- 4. Write 00h to the FIFO.
- 5. Start the Selftest with the CalcCRC Command.
- 6. The Selftest will be performed.
- 7. When the Selftest is finished, the FIFO contains the following bytes:

```
Correct answer for VersionReg equal to 82h:
```

```
0x00, 0xEB, 0x66, 0xBA, 0x57, 0xBF, 0x23, 0x95, 0xD0, 0xE3, 0x0D, 0x3D, 0x27, 0x89, 0x5C, 0xDE, 0x9D, 0x3B, 0xA7, 0x00, 0x21, 0x5B, 0x89, 0x82, 0x51, 0x3A, 0xEB, 0x02, 0x0C, 0xA5, 0x00, 0x49, 0x7C, 0x84, 0x4D, 0xB3, 0xCC, 0xD2, 0x1B, 0x81, 0x5D, 0x48, 0x76, 0xD5, 0x71, 0x61, 0x21, 0xA9, 0x86, 0x96, 0x83, 0x38, 0xCF, 0x9D, 0x5B, 0x6D, 0xDC, 0x15, 0xBA, 0x3E, 0x7D, 0x95, 0x3B, 0x2F
```

20.2 Testbus

The testbus is implemented for production test purposes. The following configuration can be used to improve the design of a system using the PN512. The testbus allows to route internal signals to the digital interface. The testbus signals are selected by accessing TestBusSel in register TestSel2Reg.

Table 158. Testsignal routing (TestSel2Reg = 07h)

	_		_	-			
Pins	D6	D5	D4	D3	D2	D1	D0
Testsignal	sdata	scoll	svalid	sover	RCV_reset	RFon, filtered	Envelope

Table 159. Description of Testsignals

Pins	Testsignal	Description
D6	sdata	shows the actual received data stream.
D5	scoll	shows if in the actual bit a collision has been detected (106 kbit only)
D4	svalid	shows if sdata and scoll are valid
D3	sover	shows that the receiver has detected a stop condition (ISO/IEC 14443A/ MIFARE mode only).
D2	RCV_reset	shows if the receiver is reset
D1	RFon, filtered	shows the value of the internal RF level detector
D0	Envelope	shows the output of the internal coder

Table 160. Testsignal routing (TestSel2Reg = 0Dh)

Pins	D6	D5	D4	D3	D2	D1	D0
Testsignal	clkstable	clk27/8	clk27rf/8	clkrf13rf/4	clk27	clk27rf	clk13rf

PN512

Transmission module

Table 161. Description of Testsignals

l by 8

Table 162. Testsignal routing (TestSel2Reg = 19h)

Pins	D6	D5	D4	D3	D2	D1	D0
Testsignal	-	TRunning	-	-	-	-	-

Table 163. Description of Testsignals

		3
Pins	Testsignal	Description
D6	-	-
D5	TRunning	TRunning stops 1 clockcycle after TimerIRQ is raised
D4	-	-
D3	-	-
D2	-	-
D1	-	-
D0	-	-

20.3 Testsignals at pin AUX

Table 164. Testsignals description

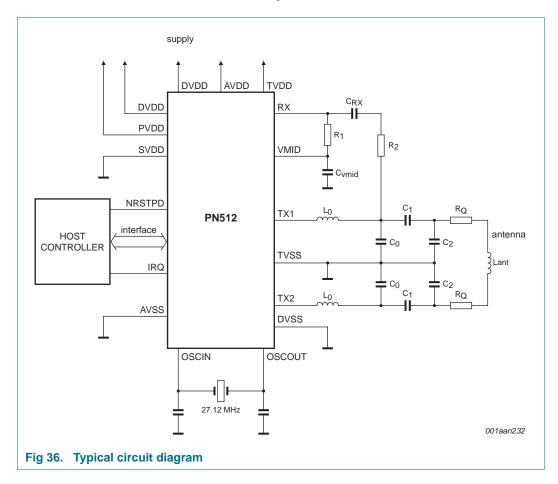
SelAux	Description for Aux1 / Aux2
0000	Tristate
0001	DAC: register TestDAC 1/2
0010	DAC: testsignal corr1
0011	DAC: testsignal corr2
0100	DAC: testsignal MinLevel
0101	DAC: ADC_I
0110	DAC: ADC_Q
0111	DAC: testsignal ADC_I combined with ADC_Q
1000	Testsignal for production test
1001	SAM clock
1010	High
1011	low
1100	TxActive
1101	RxActive
1110	Subcarrier detected
1111	TstBusBit

Each signal can be switched to pin AUX1 or AUX2 by setting SelAux1 or SelAux2 in the register AnalogTestReg.

Transmission module

Note: The DAC has a current output, it is recommended to use a 1 $k\Omega$ pull-down resistance at pins AUX1/AUX2.

20.4 PRBS


Enables the PRBS9 or PRBS15 sequence according to ITU-TO150. To start the transmission of the defined datastream the command send has to be activated. The preamble/Sync byte/start bit/parity bit are generated automatically depending on the selected mode.

Note: All relevant register to transmit data have to be configured before entering PRBS mode according ITU-TO150.

21. Application design-in information

The figure below shows a typical circuit diagram, using a complementary antenna connection to the PN512.

The antenna tuning and RF part matching is described in the application note "NFC Transmission Module Antenna and RF Design Guide".

Transmission module

22. Limiting values

Table 165. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DDA}	analog supply voltage		-0.5	+4.0	V
V_{DDD}	digital supply voltage		-0.5	+4.0	V
$V_{DD(PVDD)}$	PVDD supply voltage		-0.5	+4.0	V
$V_{DD(TVDD)}$	TVDD supply voltage		-0.5	+4.0	V
V _{DD(SVDD)}	SVDD supply voltage		-0.5	+4.0	V
VI	input voltage	all input pins except pins SIGIN and RX	$V_{SS(PVSS)} - 0.5$	$V_{DD(PVDD)} + 0.5$	V
		pin MFIN	$V_{SS(PVSS)} - 0.5$	$V_{DD(SVDD)} + 0.5$	V
P _{tot}	total power dissipation	per package; and $V_{\mbox{\scriptsize DDD}}$ in shortcut mode	-	200	mW
Tj	junction temperature		-	100	°C
V _{ESD}	electrostatic discharge voltage	HBM; 1500 Ω , 100 pF; JESD22-A114-B	-	2000	V
		MM; 0.75 μH, 200 pF; JESD22-A114-A	-	200	V
		Field induced model; JESC22-C101-A		500	V

23. Recommended operating conditions

Table 166. Operating conditions

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V_{DDA}	analog supply voltage	$V_{DD(PVDD)} \le V_{DDA} = V_{DDD} = V_{DD(TVDD)};$ $V_{SSA} = V_{SSD} = V_{SS(PVSS)} = V_{SS(TVSS)} = 0 \text{ V}$	[1][2]	2.5	-	3.6	V
V_{DDD}	digital supply voltage	$V_{DD(PVDD)} \le V_{DDA} = V_{DDD} = V_{DD(TVDD)};$ $V_{SSA} = V_{SSD} = V_{SS(PVSS)} = V_{SS(TVSS)} = 0 \text{ V}$	[1][2]	2.5	-	3.6	V
$V_{DD(TVDD)}$	TVDD supply voltage	$V_{DD(PVDD)} \le V_{DDA} = V_{DDD} = V_{DD(TVDD)};$ $V_{SSA} = V_{SSD} = V_{SS(PVSS)} = V_{SS(TVSS)} = 0 \text{ V}$	[1][2]	2.5	-	3.6	V
$V_{DD(PVDD)}$	PVDD supply voltage	$V_{DD(PVDD)} \le V_{DDA} = V_{DDD} = V_{DD(TVDD)};$ $V_{SSA} = V_{SSD} = V_{SS(PVSS)} = V_{SS(TVSS)} = 0 \text{ V}$	<u>[3]</u>	1.6	-	3.6	V
$V_{DD(SVDD)}$	SVDD supply voltage	$V_{SSA} = V_{SSD} = V_{SS(PVSS)} = V_{SS(TVSS)} = 0 \text{ V}$		1.6	-	3.6	V
T _{amb}	ambient temperature	HVQFN32, HVQFN40		-30	-	+85	°C

^[1] Supply voltages below 3 V reduce the performance (the achievable operating distance).

^[2] V_{DDA} , V_{DDD} and $V_{DD(TVDD)}$ must always be the same voltage.

^[3] $V_{DD(PVDD)}$ must always be the same or lower voltage than V_{DDD} .

Transmission module

24. Thermal characteristics

Table 167. Thermal characteristics

Symbol	Parameter	Conditions	Package	Тур	Unit
R _{thj-a}	Thermal resistance from	In still air with exposed pad	HVQFN32	40	K/W
	junction to ambient	soldered on a 4 layer Jedec PCB In still air	HVQFN40	35	K/W

25. Characteristics

Table 168. Characteristics

Table 100.	Characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Input char	acteristics					
Pins EA, I ²	C and NRSTPD					
I _{LI}	input leakage current		–1	-	+1	μΑ
V _{IH}	HIGH-level input voltage		$0.7V_{DD(PVDD)}$	-	-	V
V _{IL}	LOW-level input voltage		-	-	$0.3V_{DD(PVDD)}$	V
Pin SIGIN						
I _{LI}	input leakage current		–1	-	+1	μΑ
V _{IH}	HIGH-level input voltage		0.7V _{DD(SVDD)}	-	-	V
V_{IL}	LOW-level input voltage		-	-	0.3V _{DD(SVDD)}	V
Pin SDA						
I _{LI}	input leakage current		–1	-	+1	μΑ
V _{IH}	HIGH-level input voltage		$0.7V_{DD(PVDD)}$	-	-	V
V _{IL}	LOW-level input voltage		-	-	$0.3V_{DD(PVDD)}$	V
Pin RX[1]						
Vi	input voltage		-1	-	V _{DDA} +1	V
C _i	input capacitance	V_{DDA} = 3 V; receiver active; $V_{RX(p-p)}$ = 1 V; 1.5 V (DC) offset	-	10	-	pF
R _i	input resistance	V_{DDA} = 3 V; receiver active; $V_{RX(p-p)}$ = 1 V; 1.5 V (DC) offset	-	350	-	Ω
Input volta	ge range; see <u>Figure 37</u>					
$V_{i(p-p)(min)}$	minimum peak-to-peak input voltage	Manchester encoded; V _{DDA} = 3 V	-	100	-	mV
$V_{i(p-p)(max)}$	maximum peak-to-peak input voltage	Manchester encoded; V _{DDA} = 3 V	-	4	-	V
Input sens	itivity; see <u>Figure 37</u>					
V_{mod}	modulation voltage	minimum Manchester encoded; V _{DDA} = 3 V; RxGain[2:0] = 111b (48 dB)	-	5	-	mV
Pin OSCIN						
I _{LI}	input leakage current		–1	-	+1	μΑ
V _{IH}	HIGH-level input voltage		$0.7V_{DDA}$	-	-	V
V _{IL}	LOW-level input voltage		-	-	$0.3V_{DDA}$	V
PN512		All information provided in this document is subject to lega	al disclaimers.		© NXP B.V. 2011. All rig	hts reserve

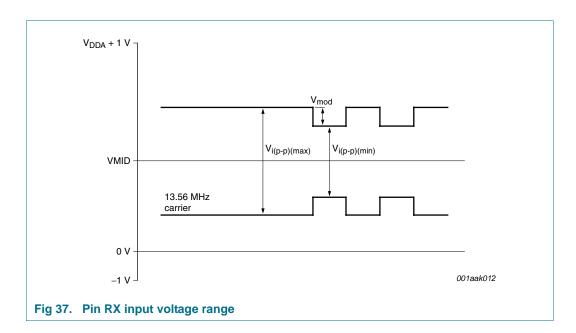
Transmission module

Table 168. Characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _i	input capacitance	$V_{DDA} = 2.8 \text{ V}; DC = 0.65 \text{ V};$ AC = 1 V (p-p)	-	2	-	pF
Input/out	put characteristics					
pins D1, [02, D3, D4, D5, D6 and D7					
ILI	input leakage current		-1	-	+1	μΑ
V_{IH}	HIGH-level input voltage		$0.7V_{DD(PVDD)}$	-	-	V
V_{IL}	LOW-level input voltage		-	-	$0.3V_{DD(PVDD)}$	V
V _{OH}	HIGH-level output voltage	$V_{DD(PVDD)} = 3 \text{ V}; I_O = 4 \text{ mA}$	V _{DD(PVDD)} – 0.4	-	$V_{DD(PVDD)}$	V
V _{OL}	LOW-level output voltage	$V_{DD(PVDD)} = 3 \text{ V}; I_O = 4 \text{ mA}$	$V_{SS(PVSS)}$	-	V _{SS(PVSS)} + 0.4	V
I _{OH}	HIGH-level output current	$V_{DD(PVDD)} = 3 V$	-	-	4	mA
I _{OL}	LOW-level output current	$V_{DD(PVDD)} = 3 V$	-	-	4	mA
Output cl	naracteristics					
Pin SIGO	JT					
V _{OH}	HIGH-level output voltage	$V_{DD(SVDD)} = 3 \text{ V}; I_O = 4 \text{ mA}$	V _{DD(SVDD)} – 0.4	-	$V_{DD(SVDD)}$	V
V_{OL}	LOW-level output voltage	$V_{DD(SVDD)} = 3 \text{ V; } I_O = 4 \text{ mA}$	$V_{SS(PVSS)}$	-	V _{SS(PVSS)} + 0.4	V
I _{OL}	LOW-level output current	$V_{DD(SVDD)} = 3 \text{ V}$	-	-	4	mA
I _{OH}	HIGH-level output current	$V_{DD(SVDD)} = 3 V$	-	-	4	mA
Pin IRQ						
V _{OH}	HIGH-level output voltage	$V_{DD(PVDD)} = 3 \text{ V; } I_O = 4 \text{ mA}$	V _{DD(PVDD)} – 0.4	-	$V_{DD(PVDD)}$	V
V_{OL}	LOW-level output voltage	$V_{DD(PVDD)} = 3 \text{ V; } I_O = 4 \text{ mA}$	$V_{SS(PVSS)}$	-	V _{SS(PVSS)} + 0.4	V
I _{OL}	LOW-level output current	$V_{DD(PVDD)} = 3 V$	-	-	4	mA
I _{OH}	HIGH-level output current	$V_{DD(PVDD)} = 3 V$	-	-	4	mA
Pins AUX	1 and AUX2					
V_{OH}	HIGH-level output voltage	$V_{DDD} = 3 \text{ V}; I_{O} = 4 \text{ mA}$	$V_{DDD}-0.4$	-	V_{DDD}	V
V_{OL}	LOW-level output voltage	$V_{DDD} = 3 \text{ V}; I_{O} = 4 \text{ mA}$	$V_{SS(PVSS)}$	-	V _{SS(PVSS)} + 0.4	V
I _{OL}	LOW-level output current	V _{DDD} = 3 V	-	-	4	mA
I _{OH}	HIGH-level output current	$V_{DDD} = 3 V$	-	-	4	mA

Transmission module

Table 168. Characteristics ... continued


Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Pins TX1	and TX2						
V _{OH}	HIGH-level output voltage	$V_{DD(TVDD)} = 3 \text{ V};$ $I_{DD(TVDD)} = 32 \text{ mA};$ CWGsP[5:0] = 3Fh		V _{DD(TVDD)} – 0.15	-	-	V
		$V_{DD(TVDD)} = 3 \text{ V};$ $I_{DD(TVDD)} = 80 \text{ mA};$ CWGsP[5:0] = 3Fh		V _{DD(TVDD)} – 0.4	-	-	V
		$V_{DD(TVDD)} = 2.5 \text{ V};$ $I_{DD(TVDD)} = 32 \text{ mA};$ CWGsP[5:0] = 3Fh		V _{DD(TVDD)} – 0.24	-	-	V
		$V_{DD(TVDD)} = 2.5 \text{ V};$ $I_{DD(TVDD)} = 80 \text{ mA};$ CWGsP[5:0] = 3Fh		V _{DD(TVDD)} – 0.64	-	-	V
V _{OL}	LOW-level output voltage	$V_{DD(TVDD)} = 3 \text{ V};$ $I_{DD(TVDD)} = 32 \text{ mA};$ CWGsP[5:0] = 0Fh		-	-	0.15	V
	$V_{DD(TVDD)} = 3 \text{ V};$ $I_{DD(TVDD)} = 80 \text{ mA};$ CWGsP[5:0] = 0Fh		-	-	0.4	V	
		$V_{DD(TVDD)} = 2.5 \text{ V};$ $I_{DD(TVDD)} = 32 \text{ mA};$ CWGsP[5:0] = 0Fh		-	-	0.24	V
		$V_{DD(TVDD)} = 2.5 \text{ V};$ $I_{DD(TVDD)} = 80 \text{ mA};$ CWGsP[5:0] = 0Fh		-	-	0.64	V
	onsumption						
I _{pd}	power-down current	$V_{DDA} = V_{DDD} = V_{DD(TVDD)} = V_{DD(PVDD)} = 3 V$					
		hard power-down; pin NRSTPD set LOW	[2]	-	-	5	μΑ
		soft power-down; RF level detector on	[2]	-	-	10	μΑ
I _{DDD}	digital supply current	pin DVDD; V _{DDD} = 3 V		-	6.5	9	mA
I _{DDA}	analog supply current	pin AVDD; V _{DDA} = 3 V; bit RcvOff = 0		-	7	10	mA
		pin AVDD; receiver switched off; V _{DDA} = 3 V; bit RcvOff = 1		-	3	5	mA
I _{DD(PVDD)}	PVDD supply current	pin PVDD	[3]	-	-	40	mA
I _{DD(TVDD)}	TVDD supply current	pin TVDD; continuous wave	[4][5][6]	-	60	100	mA
I _{DD(SVDD)}	SVDD supply current	pin SVDD	<u>[7]</u>	-	-	4	mA
Clock free	quency						
f _{clk}	clock frequency			-	27.12	-	MHz
$\delta_{\sf clk}$	clock duty cycle			40	50	60	%
t _{jit}	jitter time	RMS		-	-	10	ps
Crystal of							
V _{OH}	HIGH-level output voltage	pin OSCOUT		-	1.1	-	V
N512		All information provided in this document is subject to	o legal disclai	imers.		© NXP B.V. 201	All rights reserve

Transmission module

Table 168. Characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{OL}	LOW-level output voltage	pin OSCOUT	-	0.2	-	V
Ci	input capacitance	pin OSCOUT	-	2	-	pF
		pin OSCIN	-	2	-	pF
Typical in	out requirements					
f _{xtal}	crystal frequency		-	27.12	-	MHz
ESR	equivalent series resistance		-	-	100	Ω
C_L	load capacitance		-	10	-	pF
P _{xtal}	crystal power dissipation		-	50	100	mW

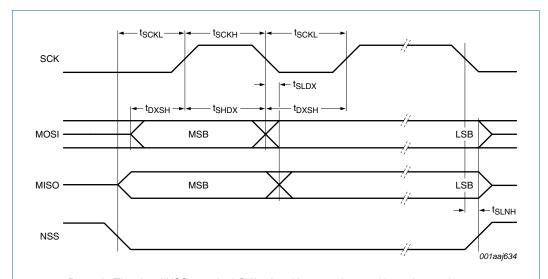
- [1] The voltage on pin RX is clamped by internal diodes to pins AVSS and AVDD.
- [2] I_{pd} is the total current for all supplies.
- [3] $I_{DD(PVDD)}$ depends on the overall load at the digital pins.
- [4] $I_{DD(TVDD)}$ depends on $V_{DD(TVDD)}$ and the external circuit connected to pins TX1 and TX2.
- [5] During typical circuit operation, the overall current is below 100 mA.
- [6] Typical value using a complementary driver configuration and an antenna matched to 40 Ω between pins TX1 and TX2 at 13.56 MHz.
- [7] $I_{DD(SVDD)}$ depends on the load at pin MFOUT.

25.1 Timing characteristics

Table 169. SPI timing characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t_{WL}	pulse width LOW	line SCK	50	-	-	ns
t_{WH}	pulse width HIGH	line SCK	50	-	-	ns
t _{h(SCKH-D)}	SCK HIGH to data input hold time	SCK to changing MOSI	25	-	-	ns

Transmission module


Table 169. SPI timing characteristics ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$t_{su(D\text{-SCKH})}$	data input to SCK HIGH set-up time	changing MOSI to SCK	25	-	-	ns
t _{h(SCKL-Q)}	SCK LOW to data output hold time	SCK to changing MISO	-	-	25	ns
t(SCKL-NSSH)	SCK LOW to NSS HIGH time		0	-	-	ns

Table 170. I²C-bus timing in Fast mode

Symbol	Parameter	Conditions	Fast r	mode	High-speed mode		Unit
			Min	Max	Min	Max	
f_{SCL}	SCL clock frequency		0	400	0	3400	kHz
t _{HD;STA}	hold time (repeated) START condition	after this period, the first clock pulse is generated	600	-	160	-	ns
t _{SU;STA}	set-up time for a repeated START condition		600	-	160	-	ns
t _{SU;STO}	set-up time for STOP condition		600	-	160	-	ns
t_{LOW}	LOW period of the SCL clock		1300	-	160	-	ns
t _{HIGH}	HIGH period of the SCL clock		600	-	60	-	ns
$t_{\text{HD};\text{DAT}}$	data hold time		0	900	0	70	ns
$t_{\text{SU;DAT}}$	data set-up time		100	-	10	-	ns
t _r	rise time	SCL signal	20	300	10	40	ns
t _f	fall time	SCL signal	20	300	10	40	ns
t _r	rise time	SDA and SCL signals	20	300	10	80	ns
t _f	fall time	SDA and SCL signals	20	300	10	80	ns
t _{BUF}	bus free time between a STOP and START condition		1.3	-	1.3	-	μS

Transmission module

Remark: The signal NSS must be LOW to be able to send several bytes in one data stream. To send more than one data stream NSS must be set HIGH between the data streams.

Fig 38. Timing diagram for SPI

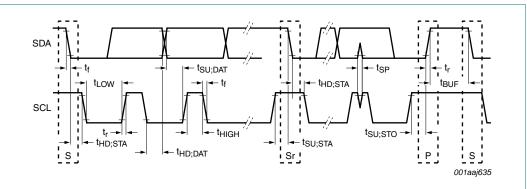


Fig 39. Timing for Fast and Standard mode devices on the I²C-bus

Transmission module

25.2 8-bit parallel interface timing

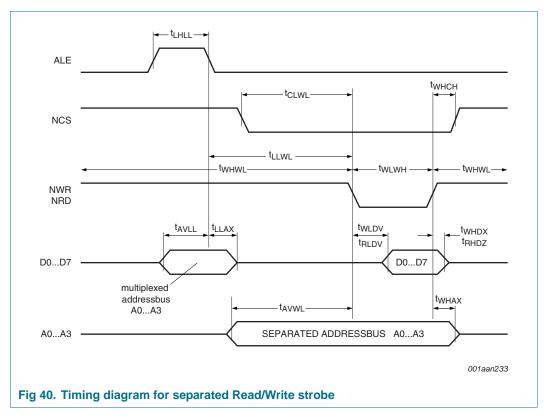
25.2.1 AC symbols

Each timing symbol has five characters. The first character is always 't' for time. The other characters indicate the name of a signal or the logic state of that signal (depending on position):

Table 171. AC symbols

Designation	Signal	Designation	Logic Level
Α	address	Н	HIGH
D	data	L	LOW
W	NWR or nWait	Z	high impedance
R	NRD or R/NW or nWrite	Χ	any level or data
L	ALE or AS	V	any valid signal or data
С	NCS	N	NSS
S	NDS or nDStrb and nAStrb, S	CK	

Example: t_{AVLL} = time for address valid to ALE low


25.2.2 AC operating specification

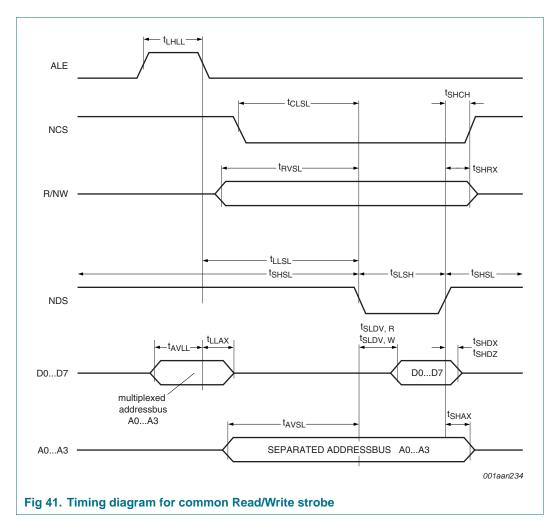
25.2.2.1 Bus timing for separated Read/Write strobe

Table 172. Timing specification for separated Read/Write strobe

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Symbol	Parameter	Min	Max	Unit
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t_{LHLL}	ALE pulse width	10	-	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t_{AVLL}	Multiplexed Address Bus valid to ALE low (Address Set Up Time)	5	-	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t_{LLAX}	Multiplexed Address Bus valid after ALE low (Address Hold Time)	5	-	ns
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t_{LLWL}	ALE low to NWR, NRD low	10	-	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t _{CLWL}	NCS low to NRD, NWR low	0	-	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t _{WHCH}	NRD, NWR high to NCS high	0	-	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t_{RLDV}	NRD low to DATA valid	-	35	ns
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	t_{RHDZ}	NRD high to DATA high impedance	-	10	ns
t _{WLWH} NRD, NWR pulse width 40 - r t _{AVWL} Separated Address Bus valid to NRD, NWR low (Set Up Time) 30 - r	t_{DVWH}	DATA valid to NWR high	5	-	ns
t _{AVWL} Separated Address Bus valid to NRD, NWR low (Set Up Time) 30 - r	t_{WHDX}	DATA hold after NWR high (Data Hold Time)	5	-	ns
· · · · · · · · · · · · · · · · · · ·	t_{WLWH}	NRD, NWR pulse width	40	-	ns
	t _{AVWL}	Separated Address Bus valid to NRD, NWR low (Set Up Time)	30	-	ns
t _{WHAX} Separated Address Bus valid after NWR high (Hold Time) 5 - r	t_{WHAX}	Separated Address Bus valid after NWR high (Hold Time)	5	-	ns
t _{WHWL} period between sequenced read/write accesses 40 - r	t _{WHWL}	period between sequenced read/write accesses	40	-	ns

Transmission module

Remark: For separated address and data bus the signal ALE is not relevant and the multiplexed addresses on the data bus don't care.


For the multiplexed address and data bus the address lines A0 to A3 have to be connected as described in chapter Automatic host controller Interface Type Detection.

25.2.2.2 Bus timing for common Read/Write strobe

Table 173. Timing specification for common Read/Write strobe

Symbol	Parameter	Min	Max	Unit
t _{LHLL}	AS pulse width	10	-	ns
t _{AVLL}	Multiplexed Address Bus valid to AS low (Address Set Up Time)	5	-	ns
t_{LLAX}	Multiplexed Address Bus valid after AS low (Address Hold Time)	5	-	ns
t _{LLSL}	AS low to NDS low	10	-	ns
t _{CLSL}	NCS low to NDS low	0	-	ns
t _{SHCH}	NDS high to NCS high	0	-	ns
t _{SLDV,R}	NDS low to DATA valid (for read cycle)	-	35	ns
t _{SHDZ}	NDS low to DATA high impedance (read cycle)	-	10	ns
t _{DVSH}	DATA valid to NDS high (for write cycle)	5	-	ns
t _{SHDX}	DATA hold after NDS high (write cycle, Hold Time)	5	-	ns
t _{SHRX}	R/NW hold after NDS high	5	-	ns
t _{SLSH}	NDS pulse width	40	-	ns
t _{AVSL}	Separated Address Bus valid to NDS low (Hold Time)	30	-	ns
t _{SHAX}	Separated Address Bus valid after NDS high (Set Up Time)	5	-	ns

Transmission module

Remark: For separated address and data bus the signal ALE is not relevant and the multiplexed addresses on the data bus don't care. For the multiplexed address and data bus the address lines A0 to A3 have to be connected as described in Automatic μ -Controller Interface Type Detection.

Transmission module

26. Package information

The PN512 can be delivered in 2 different packages.

Table 174. Package information

Package	Remarks
HVQFN32	8-bit parallel interface not supported
HVQFN40	Supports the 8-bit parallel interface

Transmission module

27. Package outline

HVQFN32: plastic thermal enhanced very thin quad flat package; no leads; 32 terminals; body $5 \times 5 \times 0.85 \text{ mm}$

SOT617-1

Fig 42. Package outline package version (HVQFN32)

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2011. All rights reserved.

Transmission module

HVQFN40: plastic thermal enhanced very thin quad flat package; no leads; 40 terminals; body 6 x 6 x 0.85 mm

SOT618-1

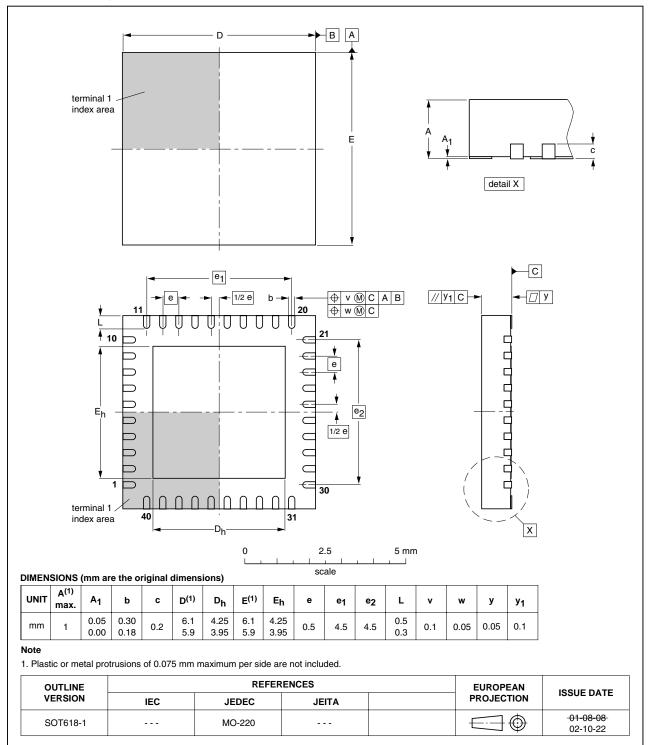


Fig 43. Package outline package version (HVQFN40)

Transmission module

28. Abbreviations

Table 175. Abbreviations

14510 1101 7155	· orialiono
Acronym	Description
ADC	Analog-to-Digital Converter
ASK	Amplitude Shift keying
BPSK	Binary Phase Shift Keying
CRC	Cyclic Redundancy Check
CW	Continuous Wave
DAC	Digital-to-Analog Converter
EOF	End of frame
HBM	Human Body Model
I ² C	Inter-integrated Circuit
LSB	Least Significant Bit
MISO	Master In Slave Out
MM	Machine Model
MOSI	Master Out Slave In
MSB	Most Significant Bit
NSS	Not Slave Select
PCB	Printed-Circuit Board
PLL	Phase-Locked Loop
PRBS	Pseudo-Random Bit Sequence
RX	Receiver
SOF	Start Of Frame
SPI	Serial Peripheral Interface
TX	Transmitter
UART	Universal Asynchronous Receiver Transmitter

29. Glossary

Modulation index — Defined as the voltage ratio $(V_{max} - V_{min}) / (V_{max} + V_{min})$.

Load modulation index — Defined as the voltage ratio for the card $(V_{max} - V_{min}) / (V_{max} + V_{min})$ measured at the card's coil.

Initiator — Generates RF field at 13.56 MHz and starts the NFCIP-1 communication.

Target — Responds to command either using load modulation scheme (RF field generated by Initiator) or using modulation of self generated RF field (no RF field generated by initiator).

30. References

[1] Application note — NFC Transmission Module Antenna and RF Design Guide

Transmission module

31. Revision history

Table 176. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
PN512 v.3.6	20110310	Product data sheet	-	PN512 v.3.5
Modifications:	• Figure 36 "Typic	al circuit diagram" on page 10	2: corrected	
PN512 v.3.5	20110211	Product data sheet	-	111334
Modifications:	Table 2: type nu	umber upadated		
	 General re-word 	ling of MIFARE designation an	d commercial condit	ions.
	 Graphics: update 	ed to latest standard.		
	 Descriptive text: 	updated.		
	 Register and bit 	names: updated.		
	 Register tables: 	presentation updated.		
	 Parameter symbol 	ools: updated.		
	 Section 9.2.2.4: 	register update		
	 Section 9.2.2.10 	: register update		
	 Section 9.2.2.15 	: register update		
	 Section 9.2.3.10 	: register update		
	Section 9.2.4.7:	register update		
	 Section 9.1.1: up 	odate of version		
	Section 9.2.4.8:	update of version		
	 Section 15: upda 	ated of time calculation		
	 Section 20: upda 	ated of selftest result		
111334	8 September 2009	Product data sheet	-	111333
111333	21 January 2009	Product data sheet	-	111332
111332	June 2007	Product data sheet	-	111331
111331	January 2007	Product data sheet	-	111330
111330	October 2006	Product data sheet	-	111310
111310	June 2005	Objective data sheet	-	
Modifications:	 Initial version 			
-				

Transmission module

32. Legal information

32.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

32.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

32.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

PN512

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2011. All rights reserved.

Transmission module

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

32.4 Licenses

Purchase of NXP ICs with ISO/IEC 14443 type B functionality

This NXP Semiconductors IC is ISO/IEC 14443 Type B software enabled and is licensed under Innovatron's Contactless Card patents license for ISO/IEC 14443 B.

The license includes the right to use the IC in systems and/or end-user equipment.

RATP/Innovatron Technology

32.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

I2C-bus - logo is a trademark of NXP B.V.

MIFARE — is a trademark of NXP B.V.

33. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Transmission module

34. Tables

Table 1.	Quick reference data4		00h, 00000000b29
Table 2.	Ordering information4	Table 41.	Description of ControlReg bits29
Table 3.	Pin description HVQFN328	Table 42.	BitFramingReg register (address 0Dh); reset
Table 4.	Pin description HVQFN409		value: 00h, 00000000b
Table 5.	Communication overview for	Table 43.	Description of BitFramingReg bits 30
	ISO/IEC 14443 A/MIFARE reader/writer 10		CollReg register (address 0Eh); reset value: XXh,
Table 6.	Communication overview for FeliCa		101XXXXXb31
	reader/writer	Table 45.	Description of CollReg bits31
Table 7.	FeliCa framing and coding		PageReg register (address 10h); reset value: 00h,
Table 8.	Start value for the CRC Polynomial: (00h), (00h)12		0000000b32
Table 9.	Communication overview for Active	Table 47.	Description of PageReg bits
	communication mode		ModeReg register (address 11h); reset value:
Table 10.	Communication overview for Passive		3Bh, 00111011b
	communication mode	Table 49.	Description of ModeReg bits
Table 11.	Framing and coding overview16		TxModeReg register (address 12h); reset value:
	MIFARE Card operation mode 16		00h, 00000000b34
	FeliCa Card operation mode	Table 51.	Description of TxModeReg bits
	PN512 registers overview17		RxModeReg register (address 13h); reset value:
	Behavior of register bits and its designation 19		00h, 00000000b35
	PageReg register (address 00h); reset value: 00h,	Table 53.	Description of RxModeReg bits
	0000000b		TxControlReg register (address 14h); reset value:
Table 17.	Description of PageReg bits20		80h, 10000000b
	CommandReg register (address 01h); reset	Table 55.	Description of TxControlReg bits
	value: 20h, 00100000b20		TxAutoReg register (address 15h); reset value:
Table 19.	Description of CommandReg bits20		00h, 00000000b37
	CommlEnReg register (address 02h); reset value:	Table 57.	Description of TxAutoReg bits
	80h, 10000000b		TxSelReg register (address 16h); reset value:
Table 21.	Description of CommlEnReg bits		10h, 00010000b
	DivIEnReg register (address 03h); reset value:	Table 59.	Description of TxSelReg bits
	00h, 00000000b		RxSelReg register (address 17h); reset value:
Table 23.	Description of DivlEnReg bits		84h, 10000100b
	CommlRqReg register (address 04h); reset value:	Table 61.	Description of RxSelReg bits
	14h, 00010100b		RxThresholdReg register (address 18h); reset
Table 25.	Description of CommlRqReg bits		value: 84h, 10000100b
	DivIRqReg register (address 05h); reset value:	Table 63.	Description of RxThresholdReg bits 40
	XXh, 000X00XXb		DemodReg register (address 19h); reset value:
Table 27.	Description of DivIRqReg bits24		4Dh, 01001101b41
	ErrorReg register (address 06h); reset value: 00h,	Table 65.	Description of DemodReg bits 41
	00000000b		FelNFC1Reg register (address 1Ah); reset value:
Table 29.	Description of ErrorReg bits		00h, 00000000b42
	Status1Reg register (address 07h); reset value:	Table 67.	Description of FeINFC1Reg bits 42
	XXh, X100X01Xb	Table 68.	FelNFC2Reg register (address1Bh); reset value:
Table 31.	Description of Status1Reg bits		00h, 00000000b43
	Status2Reg register (address 08h); reset value:	Table 69.	Description of FeINFC2Reg bits 43
	00h, 00000000b		MifNFCReg register (address 1Ch); reset value:
Table 33.	Description of Status2Reg bits		62h, 01100010b44
	FIFODataReg register (address 09h); reset value:	Table 71.	Description of MifNFCReg bits44
	XXh, XXXXXXXXb		ManualRCVReg register (address 1Dh); reset
Table 35.	Description of FIFODataReg bits 28		value: 00h, 00000000b
	FIFOLevelReg register (address 0Ah); reset	Table 73.	Description of ManualRCVReg bits 45
	value: 00h, 00000000b28		TypeBReg register (address 1Eh); reset value:
Table 37.	Description of FIFOLevelReg bits28		00h, 00000000b
	WaterLevelReg register (address 0Bh); reset	Table 75.	Description of TypeBReg bits
	value: 08h, 00001000b29		SerialSpeedReg register (address 1Fh); reset
Table 39.	Description of WaterLevelReg bits		value: EBh, 11101011b
	ControlReg register (address 0Ch); reset value:	Table 77.	Description of SerialSpeedReg bits 47
	5 5 (

Transmission module

Table		PageReg register (address 20h); reset value: 00h,	value: 80h, 10000000b 59
		00000000b	Table 117. Description of TestPinEnReg bits 59
		Description of PageReg bits	Table 118. TestPinValueReg register (address 34h); reset
Table		CRCResultReg register (address 21h); reset	value: 00h, 00000000b
		value: FFh, 11111111b	Table 119. Description of TestPinValueReg bits 59
		Description of CRCResultReg bits	Table 120. TestBusReg register (address 35h); reset value:
Table		CRCResultReg register (address 22h); reset	XXh, XXXXXXXXb60
		value: FFh, 11111111b	Table 121. Description of TestBusReg bits 60
		Description of CRCResultReg bits	Table 122. AutoTestReg register (address 36h); reset value:
Table		GsNOffReg register (address 23h); reset value:	40h, 01000000b60
		88h, 10001000b	Table 123. Description of bits 60
		Description of GsNOffReg bits	Table 124. VersionReg register (address 37h); reset value:
Table		ModWidthReg register (address 24h); reset value:	XXh, XXXXXXXXb
		26h, 00100110b	Table 125. Description of VersionReg bits 61
		Description of ModWidthReg bits 50	Table 126. AnalogTestReg register (address 38h); reset
lable		TxBitPhaseReg register (address 25h); reset	value: 00h, 00000000b
		value: 87h, 10000111b	Table 127. Description of AnalogTestReg bits 62
		Description of TxBitPhaseReg bits 50	Table 128. TestDAC1Reg register (address 39h); reset
lable		RFCfgReg register (address 26h); reset value:	value: XXh, 00XXXXXXb
		48h, 01001000b	Table 129. Description of TestDAC1Reg bits 63
		Description of RFCfgReg bits51	Table 130. TestDAC2Reg register (address 3Ah); reset
lable		GsNOnReg register (address 27h); reset value:	value: XXh, 00XXXXXXb
-		88h, 10001000b	Table 131. Description of TestDAC2Reg bits
		Description of GsNOnReg bits	Table 132. TestADCReg register (address 3Bh); reset value:
rable		CWGsPReg register (address 28h); reset value:	XXh, XXXXXXXXb
T-1-1-		20h, 00100000b	Table 133. Description of TestADCReg bits
		Description of CWGsPReg bits	Table 134. RFTReg register (address 3Ch); reset value:
rabie		ModGsPReg register (address 29h); reset value:	FFh, 11111111b
Toblo		20h, 00100000b	Table 135. Description of RFTReg bits
		Description of ModGsPReg bits	Table 136. RFTReg register (address 3Dh, 3Fh); reset value:
Table		TModeReg register (address 2Ah); reset value: 00h, 00000000b	00h, 00000000b
Tabla		Description of TModeReg bits	Table 138. RFTReg register (address 3Eh); reset value:
		TPrescalerReg register (address 2Bh); reset	03h, 00000011b
Idolo		value: 00h, 00000000b54	Table 139. Description of RFTReg bits
Table		Description of TPrescalerReg bits	Table 140. Connection protocol for detecting different
		TReloadReg (Higher bits) register (address 2Ch);	interface types
10010		reset value: 00h, 00000000b	Table 141. Connection scheme for detecting the different
Table		Description of the higher TReloadReg bits55	interface types
		TReloadReg (Lower bits) register (address 2Dh);	Table 142. MOSI and MISO byte order
		reset value: 00h, 00000000b	Table 143. MOSI and MISO byte order67
Table		Description of lower TReloadReg bits 55	Table 144. Address byte 0 register; address MOSI 67
		TCounterValReg (Higher bits) register (address	Table 145. BR_T0 and BR_T1 settings 68
		2Eh); reset value: XXh, XXXXXXXX56	Table 146. Selectable UART transfer speeds 68
Table		Description of the higher TCounterValReg bits 56	Table 147. UART framing
		TCounterValReg (Lower bits) register (address	Table 148. Read data byte order69
		2Fh); reset value: XXh, XXXXXXXXb 56	Table 149. Write data byte order
Table		Description of lower TCounterValReg bits 56	Table 150. Address byte 0 register; address MOSI 71
Table	110.	PageReg register (address 30h); reset value:	Table 151. Supported interface types 79
		00h, 00000000b	Table 152. Register and bit settings controlling the signal on
Table	111.	Description of PageReg bits57	pin TX1
Table	112.	TestSel1Reg register (address 31h); reset value:	Table 153. Register and bit settings controlling the signal on
		00h, 00000000b	pin TX2
		Description of TestSel1Reg bits	Table 154. Setting of the bits RFlevel in register RFCfgReg
Table		TestSel2Reg register (address 32h); reset value:	(RFLevel amplifier deactivated) 83
		00h, 00000000b	Table 155. CRC coprocessor parameters90
		Description of TestSel2Reg bits	Table 156. Interrupt sources92
Table	116.	TestPinEnReg register (address 33h); reset	Table 157. Command overview

Transmission module

Table 158. Testsignal routing (TestSel2Reg = 07h)101
Table 159. Description of Testsignals
Table 160. Testsignal routing (TestSel2Reg = 0Dh)101
Table 161. Description of Testsignals102
Table 162. Testsignal routing (TestSel2Reg = 19h)102
Table 163. Description of Testsignals
Table 164. Testsignals description102
Table 165. Limiting values104
Table 166. Operating conditions
Table 167. Thermal characteristics
Table 168. Characteristics105
Table 169. SPI timing characteristics108
Table 170. I ² C-bus timing in Fast mode109
Table 171. AC symbols
Table 172. Timing specification for separated Read/Write
strobe
Table 173. Timing specification for common Read/Write
strobe
Table 174. Package information
Table 175. Abbreviations
Table 176. Revision history

Transmission module

35. Figures

Fig 1.	Simplified block diagram of the PN512 5
Fig 2.	Detailed block diagram of the PN5126
Fig 3.	Pinning configuration HVQFN32 (SOT617-1) 7
Fig 4.	Pinning configuration HVQFN40 (SOT618-1) 7
Fig 5.	PN512 Read/Write mode10
Fig 6.	ISO/IEC 14443 A/MIFARE Read/Write mode
	communication diagram10
Fig 7.	Data coding and framing according to
	ISO/IEC 14443 A
Fig 8.	FeliCa reader/writer communication diagram 12
Fig 9.	NFCIP-1 mode
Fig 10.	Active communication mode
Fig 11.	Passive communication mode
Fig 12.	SPI connection to host66
Fig 13.	UART connection to microcontrollers67
Fig 14.	UART read data timing diagram69
Fig 15.	UART write data timing diagram70
Fig 16.	I ² C-bus interface
Fig 17.	Bit transfer on the I ² C-bus
Fig 18.	START and STOP conditions72
Fig 19.	Acknowledge on the I ² C-bus
Fig 20.	Data transfer on the I ² C-bus74
Fig 21.	First byte following the START procedure 74
Fig 22.	Register read and write access
Fig 23.	I ² C-bus HS mode protocol switch
Fig 24.	I ² C-bus HS mode protocol frame78
Fig 25.	Connection to host controller with separated
	Read/Write strobes
Fig 26.	Connection to host controller with common
	Read/Write strobes
Fig 27.	Data mode detector
Fig 28.	Serial data switch for TX1 and TX2
Fig 29.	Communication flows using the S ² C interface86
Fig 30.	Signal shape for SIGOUT in FeliCa card
_	SAM mode87
Fig 31.	Signal shape for SIGIN in SAM mode 87
Fig 32.	Signal shape for SIGOUT in MIFARE Card
_	SAM mode88
Fig 33.	Signal shape for SIGIN in MIFARE Card
•	SAM mode88
Fig 34.	Quartz crystal connection96
Fig 35.	Oscillator start-up time97
Fig 36.	Typical circuit diagram
Fig 37.	Pin RX input voltage range108
Fig 38.	Timing diagram for SPI110
Fig 39.	Timing for Fast and Standard mode devices on the
3	I ² C-bus110
Fig 40.	Timing diagram for separated Read/Write
J	strobe112
Fig 41.	Timing diagram for common Read/Write strobe 113
Fig 42.	Package outline package version (HVQFN32) . 115
Fig 43.	Package outline package version (HVQFN40) .116

Transmission module

36. Contents

1	Introduction	. 1	9.2.2.13	MifNFCReg	44
2	General description	. 1	9.2.2.14	ManualRCVReg	45
3	Features and benefits		9.2.2.15	TypeBReg	
4	Quick reference data		9.2.2.16	SerialSpeedReg	
			9.2.3	Page 2: Configuration	
5	Ordering information		9.2.3.1	PageReg	
6	Block diagram		9.2.3.2	CRCResultReg	
7	Pinning information	. 7	9.2.3.3	GsNOffReg	
7.1	Pinning	. 7	9.2.3.4	ModWidthReg	
7.2	Pin description	. 8	9.2.3.5	TxBitPhaseReg	
8	Functional description	10	9.2.3.6	RFCfgReg	
8.1	ISO/IEC 14443 A/MIFARE functionality		9.2.3.7	GsNOnReg	
8.2	ISO/IEC 14443 B functionality		9.2.3.8	CWGsPReg	
8.3	FeliCa reader/writer functionality		9.2.3.9	ModGsPReg	
8.3.1	FeliCa framing and coding		9.2.3.10	TMode Register, TPrescaler Register	
8.4	NFCIP-1 mode		9.2.3.11	TReloadReg	
8.4.1	Active communication mode		9.2.3.12	TCounterValReg	
8.4.2	Passive communication mode		9.2.4	Page 3: Test	
8.4.3	NFCIP-1 framing and coding		9.2.4.1	PageReg	
8.4.4	NFCIP-1 protocol support		9.2.4.2	TestSel1Reg	
8.4.5	MIFARE Card operation mode		9.2.4.3	TestSel2Reg	
8.4.6	FeliCa Card operation mode		9.2.4.4	TestPinEnReg	
9	PN512 register SET		9.2.4.5	TestPinValueReg	
9.1	PN512 registers overview		9.2.4.6	TestBusReg	
9.1.1	Register bit behavior		9.2.4.7	AutoTestReg	
9.2	Register description		9.2.4.8	VersionReg	
9.2.1	Page 0: Command and status		9.2.4.9	AnalogTestReg	
9.2.1.1	PageReg		9.2.4.10	TestDAC1Reg	
9.2.1.1	CommandReg		9.2.4.11	TestDAC2Reg	
9.2.1.3	CommlEnReg		9.2.4.12	TestADCReg	
9.2.1.4	DivlEnReg		9.2.4.13	RFTReg	
9.2.1.5	CommIRqReg			Digital interfaces	
9.2.1.6	DivIRqReg		10.1	Automatic microcontroller interface detection	
9.2.1.7	ErrorReg		10.2	Serial Peripheral Interface	
9.2.1.8	Status1Reg		10.2.1	SPI read data	66
9.2.1.9	Status2Reg		10.2.2	SPI write data	
9.2.1.10	-		10.2.3	SPI address byte	
9.2.1.11	S .		10.3	UART interface	
9.2.1.12	3		10.3.1	Connection to a host	-
9.2.1.13	3		10.3.2	Selectable UART transfer speeds	
9.2.1.14	9		10.3.3	UART framing	
9.2.1.15			10.4	I ² C Bus Interface	
9.2.2	Page 1: Communication		10.4.1	Data validity	
9.2.2.1	PageReg		10.4.2	START and STOP conditions	
9.2.2.2	ModeReg		10.4.3	Byte format	
9.2.2.3	TxModeReg		10.4.4	Acknowledge	
9.2.2.4	RxModeReg		10.4.5	7-Bit addressing	
9.2.2.5	TxControlReg		10.4.6	Register write access	
9.2.2.6	TxAutoReg		10.4.7	Register read access	
9.2.2.7	TxSelReg		10.4.8	High-speed mode	
9.2.2.8	RxSelReg		10.4.9	High-speed transfer	
9.2.2.9	RxThresholdReg		10.4.10	Serial data transfer format in HS mode	
9.2.2.10			10.4.11	Switching between F/S mode and HS mode .	
9.2.2.11	3		10.4.12	PN512 at lower speed modes	
9.2.2.12	•		11 8	-bit parallel interface	79

PN512 NXP Semiconductors

Transmission module

11.1	Overview of supported host controller		19.3.1.1	0 SoftReset	100
	interfaces		20	Testsignals	101
11.2	Separated Read/Write strobe		20.1	Selftest	101
11.3	Common Read/Write strobe	80	20.2	Testbus	
12	Analog interface and contactless UART	81	20.3	Testsignals at pin AUX	
12.1	General	81	20.4	PRBS	
12.2	TX driver	81	21	Application design-in information	103
12.3	RF level detector	82	22	Limiting values	
12.4	Data mode detector	83	23	Recommended operating conditions	
12.5	Serial data switch	85			
12.6	S ² C interface support		24	Thermal characteristics	
12.6.1	Signal shape for Felica S ² C interface support	87	25	Characteristics	
12.6.2	Waveform shape for ISO/IEC 14443A and		25.1	Timing characteristics	
	MIFARE S ² C support		25.2	8-bit parallel interface timing	
12.7	Hardware support for FeliCa and NFC polling		25.2.1	AC symbols	
12.7.1	Polling sequence functionality for initiator		25.2.2	AC operating specification	
12.7.2	Polling sequence functionality for target	89	25.2.2.1	9 1	
12.7.3	Additional hardware support for FeliCa	00	25.2.2.2	3	
1071	and NFC		26	Package information	
12.7.4	CRC coprocessor		27	Package outline	. 115
13	FIFO buffer		28	Abbreviations	. 117
13.1	Accessing the FIFO buffer		29	Glossary	. 117
13.2	Controlling the FIFO buffer		30	References	. 117
13.3	FIFO buffer status information		31	Revision history	
14	Interrupt request system		32	Legal information	
14.1	Interrupt sources overview		32 .1	Data sheet status	
15	Timer unit	93	32.1	Definitions	
16	Power reduction modes	95	32.3	Disclaimers	
16.1	Hard power-down	95	32.4	Licenses	
16.2	Soft power-down mode		32.5	Trademarks	
16.3	Transmitter power-down mode	95	33	Contact information	
17	Oscillator circuitry	96	34	Tables	
18	Reset and oscillator start-up time	96	-		
18.1	Reset timing requirements	96	35	Figures	
18.2	Oscillator start-up time	96	36	Contents	125
19	PN512 command set	97			
19.1	General description				
19.2	General behavior				
19.3	PN512 command overview				
19.3.1	PN512 command descriptions	98			
19.3.1.1	Idle	98			
19.3.1.2					
19.3.1.3					
19.3.1.4					
19.3.1.5					
19.3.1.6	3				
19.3.1.7					
19.3.1.8					
19.3.1.9	MFAuthent	99			

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2011.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com