

DATA SHEET

Thick Film Chip Resistor High Power RC 2512 2W (RoHS Compliant) Pb Free

YAGEO CORPORATION

Factory: No.350, Jhongjheng Rd., Dashe Township, Kaohsiung County 815, Taiwan (R.O.C.)

Tel: 886-7-351-4117 Fax: 886-7-351-2075

Headquarters: 3F, No.233-1, Pao Chiao Rd., Shin Tien, Taipei, Taiwan, R.O.C.

Tel: 886-2-2917-7555 Fax: 886-2-2917-4286

SCOPE

This specification describes RC2512 series chip resistors with lead-free terminal made by thick film process.

ORDERING INFORMATION

Part number is identified by the series, size, tolerance, packing style, temperature coefficient, taping reel, resistance value and resistor terminal.

RC2512 X X X 7 W XXXXX L MARKING

(1) (2) (3) (4) (5) (6)(7) RC2512

(1) TOLERANCE

 $J = \pm 5\%$

 $F = \pm 1\%$

Fig.1 Value = 100Ω

E-24 series: 3 digits for 5%

First two digits for significant figure and 3rd digit for number of zeros

K = Embossed taping reel

(2) PACKAGING STYLE

E-24/E-96 series: 4 digits for 1%

digit for number of zeros

First three digits for significant figure and 4rd

(3) TEMPERATURE COEFFICIENT **OFRESISTANCE**

- = Based on spec. (see table 2)

Fig.2 Value = 150Ω

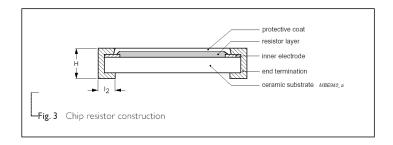
CONSTRUCTION

(4) TAPING REEL

7 = 7" dia. Reel

(5) Power rating

W = 2 x standard power (a)


The resistors are constructed out of a high-grade ceramic body. Internal metal electrodes are added at each end and connected by a resistive paste. The composition of the paste is adjusted to give the approximate required resistance. The resistive layer is covered with a protective coat. Finally, the two external terminations are added. See fig.3

(6) RESISTANCE VALUE

1R, 10R, 150R

(7) Extra Code

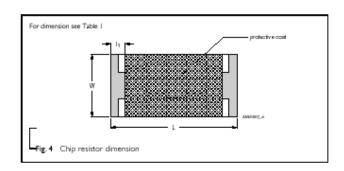
L = Optional (see Note)

Note:

- 1. All our RSMD products are 100% Lead free / RoHS compliant. On our 2D reel label the internal CTC (without L) will be mentioned with additional print "LFP" for : Lead Free Process.
- 2. On customized label, "LFP" or specific symbol printed and the optional "L" at the end of CTC / 12NC can be added (both are on customer request)
- 3. Products with lead free terminations meet RoHS requirements.

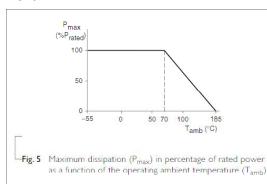
(Non of the forbidden materials are used in products / production)

The Pb-glass contained in electrodes, resistor element and glass is exempted by RoHS.


*: Standard power for 7" reel is 1 Watt.

<u>-www.yageo.com</u>

DIMENSION


_Table 1	
TYPE	RC2512
L (mm)	6.35±0.10
W (mm)	3.10±0.15
H (mm)	0.55±0.10
I1 (mm)	0.60±0.20
l2 (mm)	0.50±0.20

POWER RATING

RATED POWER AT 70°C

RC2512 2W

ELECTRICAL CHARACTERISTICS

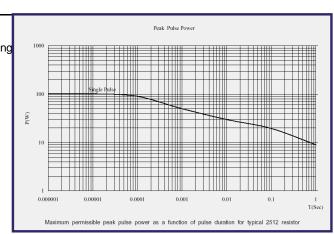
_____ Table 2

CHARACTERISTICS	RC2512 2 W
Operating Temperature Range	–55°C to +185°C
Maximum Working Voltage	200V
Maximum Overload Voltage	400V
Dielectric Withstanding Voltage	500V
Resistance Range	1Ω to 150Ω
	1% (E24/E96)
	5% (E24)
Temperature Coefficient	±200ppm/℃

RATED VOLTAGE:

The DC or AC (rms) continuous working voltage corresponding to the rated power is determined by the following formula:

$$V = \sqrt{(P * R)}$$


Where

V=Continuous rated DC

or AC (rms) working voltage

P=Rated power

R=Resistance value

_Table 5 Packing style and packaging quantity.

PACKING STYLE	REEL DIMENSION	RC2512
Embossed Taping Reel (K)	7" (178 mm)	4,000

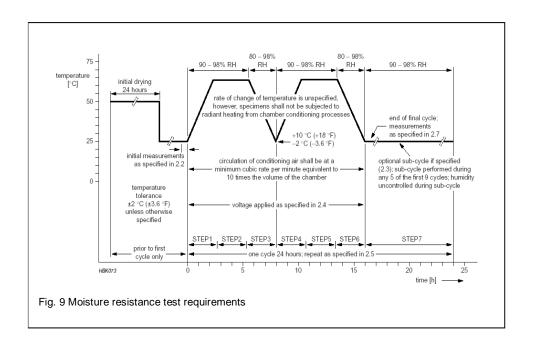
NOTE: For embossed tape and reel specification/dimensions, please see the special data sheet "Packing" document.

2004-09 V.0

<u>www.yageo.com</u>

Chip Resistor Surface Mount RC SERIES 2512(Pb Free)

TEST and REQUIREMENTS


EST	TEST METHOD	PROCEDURE	REQUIREMENTS		
Temperature	MIL-STD-202F-method 304;	At +25/–55 °C and +25/+125 °C	G 11 . C		
Coefficient of Resistance	JIS C 5202-4.8	Formula:	See table 2		
(T.C.R.)		T.C.R= $\frac{R_2-R_1}{R_1(t_2-t_1)} \times 10^6 \text{ (ppm/°C)}$			
		Where t_1 =+25 °C or specified room temperature			
		t_2 =-55 °C or +125 °C test temperature			
		R_{\parallel} =resistance at reference temperature in ohms			
		R ₂ =resistance at test temperature in ohms			
Thermal Shock	MIL-STD-202F-method 107G;	At -65 (+0/-10) °C for 2 minutes and at +155	$\pm (0.5\% + 0.05~\Omega)$ for 1% tol.		
	IEC 60115-1 4.19	(+10/-0) °C for 2 minutes; 25 cycles	$\pm (1.0\% + 0.05~\Omega)$ for 5% tol.		
Low	MIL-R-55342D-Para 4.7.4	At -65 (+0/-5) °C for I hour; RCWV applied	$\pm (0.5\% + 0.05~\Omega)$ for 1% tol .		
Temperature		for 45 (+5/–0) minutes	$\pm (\text{1.0\%} \text{+0.05}\ \Omega)$ for 5% tol.		
Operation			No visible damage		
Short Time	MIL-R-55342D-Para 4.7.5;	2.5 × RCWV applied for 5 seconds at room	\pm (2.0%+0.05 Ω) for 1% tol		
Overload	IEC 60115-1 4.13	temperature	$\pm (3.0\% \pm 0.05 \ \Omega)$ for 5% tol		
			No visible damage		
Insulation	MIL-STD-202F-method 302;		≥10 GΩ		
Resistance	IEC 60115-1 4.6.1.1				
Dielectric	MIL-STD-202F-method 301;	Maximun voltage (V _{rms}) applied for 1 minute	No breakdown or flashover		
Withstand	IEC 60115-1 4.6.1.1	Type RC2512			
Voltage		Voltage (AC) 500Vrms			
Resistance to	MIL-STD-202F-method 210C;	Unmounted chips; 260 ±5 °C for 10 ±1	$\pm (0.5\% + 0.05 \ \Omega)$ for 1% tol.		
Soldering	IEC 60115-1 4.18	seconds	$\pm (1.0\% + 0.05 \ \Omega)$ for 5% tol.		
Heat			No visible damage		
Life	MIL-STD-202F-method 108A;	At 70±2 °C for 1,000 hours; RCWV applied for	$\pm (2\% + 0.05 \ \Omega)$ for 1% tol.		
		1.5 hours on and 0.5 hour off			

Chip Resistor Surface Mount | RC | SERIES | 2512(Pb Free)

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Solderability	MIL-STD-202F-method 208A; IEC 60115-1 4.17	Solder bath at 245±3 °C Dipping time: 2±0.5 seconds	Well tinned (≥95% covered) No visible damage
Bending Strength	JIS C 5202.6.14; IEC 60115-1 4.15	Resistors mounted on a 90 mm glass epoxy resin PCB (FR4) Bending: 5 mm	\pm (1.0%+0.05 Ω) for 1% tol. \pm (1.0%+0.05 Ω) for 5% tol. No visible damage
Resistance to Solvent	MIL-STD-202F-method 215; IEC 60115-1 4.29	Isopropylalcohol (C $_3$ H $_7$ OH) or dichloromethane (CH $_2$ Cl $_2$) followed by brushing	No smeared
Leaching	EIA/IS 4.13B; IEC 60115-8 4.18	Solder bath at 260±5 °C Dipping time: 30±1 seconds	No visible damage
Moisture Resistance Heat	MIL-STD-202F-method 106F; IEC 60115-1 4.24.2	42 cycles; total 1,000 hours Shown as figure 9	$\pm (0.5\% + 0.05\Omega)$ for 1% tol. $\pm (2.0\% + 0.05\Omega)$ for 5% tol. No visible damage

YAGEO					5	
	Chip Resistor Surface Mount	RC	SERIES	2512(Pb Free)	6	

REVISION HISTORY

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 0	2006-05-08		- First issue of this specification
Version 1	2006-10-03		- Add Pulse loading chart