

Metallized Polypropylene Capacitor-Mini Version (M) MKP Radial Potted Type

(mm)

< 16

≥ 16

(mm)

5

7.5 - 10

15 - 27.5

37.5

Pitch ± 0.4	Ø 0.8	0.4
Lead diameter	w	Pitch

1.0 ± 0.1	

APPLICATIONS

d_t (mm)

 0.5 ± 0.05

 0.6 ± 0.06

 0.8 ± 0.08

 0.8 ± 0.08

High frequency and pulse operations. Deflection circuits in TV-sets (S-correction). SMPS, loudspeaker crossover networks, electronic ballast, storage, filter, timing and sample and hold circuits

REFERENCE STANDARDS

IEC 60384-16

MARKING

C-value; tolerance; rated voltage; manufacturer's type; code for dielectric material; manufacturer location; manufacturer's logo; year and week;

DIELECTRIC

Polypropylene film

ELECTRODES

Metallized

CONSTRUCTION

Mono and internal series contruction

RATED DC VOLTAGES:

250 V, 400 V, 630 V, 1000 V,

RATED AC VOLTAGES:

160 V, 220 V, 250 V/ 400 V, 500 V,

FEATURES

5 to 37.5 mm lead pitch. Supplied loose in box, taped on reel and Ammopack RoHS compliant

ENCAPSULATION

Plastic case, epoxy resin sealed, flame retardant UL-class 94 V-0

CLIMATIC TESTING CLASS ACC.TO EN 60068-1

55/100/56

CAPACITANCE RANGE

1000 pF to 6.8 μF

CAPACITANCE TOLERANCE

 $\pm 5\%$, $\pm 2.5\%$, $\pm 2\%$

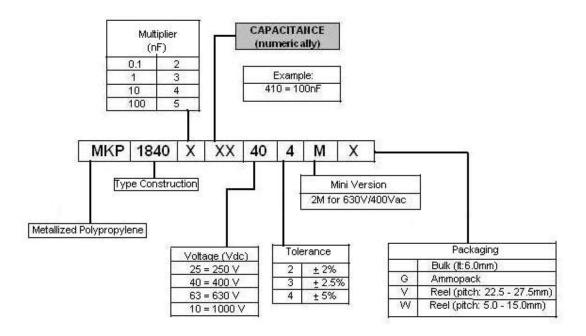
LEADS

Tinned wire

MAXIMUM APPLICATION TEMPERATURE

100°C

DETAIL SPECIFICATION


For more detailed data and test requirements contact: dc-film@Vishay.com

p 1of 13

www.vishay.com

COMPOSITION OF CATALOGUE NUMBER

Notes

1. For detailed tape specifications refer to Packaging information" www.vishay.com/doc?28139

SPECIFIC REFERENCE DATA

	DESCRIPTION			VA	ALUE		
Tangent of loss an	igle:		at 1KHz	at 10)KHz	at 100KHz	
C ≤ 0.1 µF			≤ 4 X 10 ⁻⁴	≤6 >	(10 ⁻⁴	≤ 40 X 10 ⁻⁴	
0.1 μF < C ≤ 1.0 μ	ıF		≤ 4 X 10 ⁻⁴	≤ <u>10</u> .	X 10 ⁻⁴	-	
C > 1.0 µF			≤ 10 X 10 ⁻⁴		-	-	
Pitch (mm)		Maximum pulse ri	se time $(dU/dt)_R$ [V /	µs]			
T Item (IIIII)	250 V dc 400 V dc 630 V					1000 V dc	
5	360	540	1080			-	
7.5	215	325	510		-		
10	150	240	340		1365		
15	90	135	185		680		
22.5	55	80	110			370	
27.5	40	65	85		285		
37.5	30	45	60			195	
	If the max. pulse voltag	e is less than the rated voltag	e higher dU/dt value	s can be p	ermitted.		
R between leads, f	for C ≤ 1.0 μF at 100 V; 1 m	inute			> 100	000 ΜΩ	
RC between leads	, for C 1.0 μF at 100 V; 1 m	inute			> 10	00000 s	
R between leads a	and case; 100 V; 1 minute				> 30	000 ΜΩ	
Withstanding (DC)	voltage (Cut off current 10r	1.6 X U _{Rdc} , 1 Minute					
Withstanding (DC)	voltage between leads and	500 V; 1 Minute					
Maximum applicati	ion temperature				100°C		

p 3of 13

Metalized Polypropylene Film capacitor ,Mini Version (-M)

Compositornos	Capacitance	,	OLTAGE 250 V dc	CODE 25 /160 V ac	5		/OLTAGE 400 Vdc /				/OLTAGE 630 Vdc /		
Capacitance	Code	w (mm)	h (mm)	l (mm)	Pitch (mm)	w (mm)	h (mm)	l (mm)	Pitch (mm)	W (mm)	h (mm)	l (mm)	Pitch (mm)
1000 pF	-210	-	-	-	-	-	-	-	-	3.0	6.5	7.5	5.0
1500 pF	-215	-	-	-	-	-	-	-	-	3.0	6.5	7.5	5.0
2200 pF	-222	-	-	-	-	-	-	-	-	3.5	8.5	7.5	5.0
3300 pF	-233	-	-	-	-	-	-	-	-	3.0	8.5	10.0	7.5
4700 pF	-247	-	-	-	-	-	-	-	-	3.0	8.5	10.0	7.5
6800 pF	-268	-	-	-	-	3.0	6.5	7.5	5.0	3.0	8.5	10.0	7.5
0.01 μF	-310	3.0	6.5	7.5	5.0	3.5	8.5	7.5	5.0	4.0	9.0	10.0	7.5
0.015 µF	-315	3.0	6.5	7.5	5.0	3.0	8.5	10.0	7.5	4.5	9.5	10.3	7.5
0.022 µF	-322	3.5	8.5	7.5	5.0	4.0	9.0	10.0	7.5	4.5	9.5	13.0	10.0
0.033 µF	-333	3.5	8.5	7.5	5.0	4.5	9.5	10.3	7.5	5.5	10.5	13.0	10.0
0.047 µF	-347	4.0	9.0	10.0	7.5	5.0	10.5	10.3	7.5	6.5	11.5	13.0	10.0
0.068 µF	-368	4.0	9.0	10.0	7.5	5.7	11.5	10.3	7.5	6.0	12.0	18.0	15.0
0.10 μF	-410	5.0	10.5	10.3	7.5	5.5	10.5	18.0	15.0	6.0	12.0	18.0	15.0
0.15 µF	-415	5.5	10.5	13.0	10.0	6.0	12.0	18.0	15.0	8.5	14.5	18.0	15.0
0.22 µF	-422	6.5	11.5	13.0	10.0	7.5	13.5	18.0	15.0	8.5	17.5	18.0	15.0
0.33 µF	-433	6.5	12.5	18.0	15.0	8.5	17.5	18.0	15.0	9.0	17.0	26.5	22.5
0.47 µF	-447	7.5	13.5	18.0	15.0	7.5	15.5	26.5	22.5	10.5	18.5	26.5	22.5
0.68 µF	-468	8.5	14.5	18.0	15.0	10.5	18.5	26.5	22.5	11.5	20.5	31.5	27.5
1.0 μF	-510	8.5	16.5	16.5	22.5	11.0	21.0	26.5	22.5	13.5	23.5	31.5	27.5
1.5 µF	-515	10.5	18.5	26.5	22.5	13.5	23.5	31.5	27.5	16.5	29.5	31.5	27.5
2.2 µF	-522	11.0	21.0	26.5	22.5	15.0	24.5	31.5	27.5	18.0	33.0	31.5	27.5
3.3 µF	-533	13.5	23.5	31.5	27.5	18.0	28.0	31.5	27.5	20.0	40.0	42.5	37.5
4.7 µF	-547	15.0	24.5	31.5	27.5	18.0	32.5	41.5	37.5	20.0	40.0	42.5	37.5
6.8 µF	-568	14.5	24.5	41.5	37.5	20.0	40.0	42.5	37.5	-	-	-	-

^{*} Ordering code –2M (e.g. MKP 1840 410 635-2M)

Canasitanas	Capacitance		VOLTAGE 630 Vdc/			VOLTAGE CODE 10 1000 Vdc /500 Vac **				
Capacitance	Code	w (mm)	h (mm)	l (mm)	Pitch (mm)	w (mm)	h (mm)	l (mm)	Pitch (mm)	
1000 pF	-210	-	-	-	-	-	-	-	-	
1500 pF	-215	-	-	-	-	-	-	-	-	
2200 pF	-222	-	-	-	-	-	-	-	-	
3300 pF	-233	-	-	-	-	-	-	-	-	
4700 pF	-247	-	-	-	-	4.0	9.0	13.0	10	
6800 pF	-268	-	-	-	-	4.0	9.0	13.0	10	
0.01 µF	-310	4.5	9.5	13.0	10*	5.5	10.5	13.0	10	
0.015 μF	-315	5.5	10.5	13.0	10*	6.5	11.5	13.0	10	
0.022 µF	-322	6.5	11.5	13.0	10*	5.5	10.5	18.0	15	
0.033 μF	-333	5.5	10.5	18.0	15*	6.0	12.0	18.0	15	
0.047 µF	-347	6.5	12.5	18.0	15*	7.5	13.5	18.0	15	
0.068 μF	-368	7.5	13.5	18.0	15*	8.5	14.5	18.0	15	
0.10 µF	-410	6.5	14.5	26.5	22.5*	7.5	15.5	26.5	22.5	
0.15 µF	-415	7.5	15.5	26.5	22.5*	9.0	17.0	26.5	22.5	
0.22 µF	-422	8.5	16.5	26.5	22.5*	10.5	18.5	26.5	22.5	
0.33 µF	-433	11.0	21.0	26.5	22.5*	11.5	20.5	31.5	27.5	
0.47 µF	-447	11.5	20.5	31.5	27.5*	13.5	23.5	31.5	27.5	
0.68 µF	-468	13.5	23.5	31.5	27.5*	16.5	29.5	31.5	27.5	
1.0 µF	-510	16.5	29.5	31.5	27.5*	18.0	33.0	31.5	27.5	

Further C-values upon request

Other PCM on request

Please refer to X-capacitors in our catalog "RFI Suppression Components".

^{**}Not suitable for mains applications.

RECOMMENDED PACKAGING:

LETTER	TYPE OF	HEIGHT	REEL	ORDERING CODE	Pitch ≤ 15	Pitch 22,5-27,5	Pitch 37,5
CODE	PACKAGING	(H)	DIAMETER	EXAMPLE			
		(MM)	(MM)				
G	AMMO	18.5	S*	MKP 1840- 410 /404- MG	х	-	ı
W	REEL	18.5	350	MKP 1840- 410 /404- MW	х	-	-
V	REEL	18.5	500	MKP 1840- 510 /254- MV	-	х	-
G	AMMO	18.5	L*	MKP 1840- 510 /254- MG	-	х	
-	BULK	-	-	MKP 1840- 510 /254- M	х	х	х

^{*}S = box size 55 x 210 x 340mm (W x H x L)

Example of ordering code:

Туре	Capacitance Code	Voltage Code	Tolerance Code	Mini	Packaging Code				
MKP 1840	447	63	4	М	G				
Tolerance codes: 4 = 5% (J); 3 = 2.5% (H)									

Metallized Polypropylene Film Capacitor, MKP 1840 PCM5, Mini-Version (-5M)

Capacitance	Capacitance	VOLTAGE CODE 25 250 V dc/160 V ac			VOLTAGE CODE 40 400 V dc/220 V ac*			VOLTAGE CODE 63 630 V dc/250 V ac*					
Capacitance	Code	w ()	h (*****)	 	Pitch	W	h ()	 	Pitch	W (****)	h (*****)	()	Pitch
d ₊ = 0.5 ± 0.05		(mm)	(mm)	(mm)	(mm)	(m	(mm)	(mm	(mm)	(mm)	(mm)	(mm)	(mm)
3300 pF	-233	-	-	-	-	-	-	-	-	3.5	8.5	7.5	5
4700 pF	-247	-	-	-	-	-	-	-	-	3.5	8.5	7.5	5
6800 pF	-268	-	-	-	-	-	-	-	-	4.5	9.5	7.5	5
0.01 µF	-310	-	-	-	-	-	-	-	-	4.5	9.5	7.5	5
0.015 µF	-315	-	-	-	-	4.5	9.5	7.5	5	5.5	11.5	7.5	5
0.022 µF	-322	-	-	-	-	4.5	9.5	7.5	5	-	-	-	-
0.033 µF	-333	-	-	-	-	5.5	11.5	7.5	5	-	-	-	-
0.047 µF	-347	4.5	9.5	7.5	5	5.5	11.5	7.5	5	-	-	-	-
0.068 µF	-368	5.0	10.0	7.5	5	-	-	-	-	-	-	-	-
0.1 μF	-410	5.5	11.5	7.5	5	-	-	-	-	-	-	-	-

Further C-values upon request

^{*} S = box size 55 x 210 x 340mm (wx h x l)

LETTER CODE	TYPE OF PACKAGING	HEIGHT (H) (MM)	REEL DIAMETER (MM)	ORDERING CODE EXAMPLE	Pitch 5
G	AMMO	18.5	`S*´	MKP 1840- 310 /404- 5MG	Х
W	REEL	18.5	350	MKP 1840- 310 /404- 5MW	X
-	BULK	-	-	MKP 1840- 310 /404- 5M	X

Example of ordering code:

Туре	Capacitance Code	Voltage Code	Tolerance Code	Mini	Packaging Code
MKP 1840	347	25	4	5M	G
Tolerance codes:	4 = 5% (J); 3 = 2,5% (H)				

p 5of 13

^{*}L = box size 60 x 360 x 510mm (W x H x L)

^{*}S = box size 55 x 210 x 340mm (W x H x L) *L = box size 60 x 360 x 510mm (W x H x L)

^{*}Not suitable for mains applications.

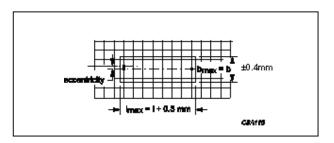
MOUNTING

NORMAL USE

The capacitors are designed for mounting on printed-circuit boards. The capacitors packed in bandoliers are designed for mounting in printed-circuit boards by means of automatic insertion machines.

For detailed tape specifications refer to Packaging information www.vishay.com/doc?28139

SPECIFIC METHOD OF MOUNTING TO WITHSTAND VIBRATION AND SHOCK


In order to withstand vibration and shock tests, it must be ensured that the stand-off pips are in good contact with the printed-circuit board:

- For pitches ≤ 15 mm capacitors shall be mechanically fixed by the leads
- For larger pitches the capacitors shall be mounted in the same way and the body clamped.

SPACE REQUIREMENTS ON PRINTED-CIRCUIT BOARD

The maximum length and width of film capacitors is shown in the drawing:

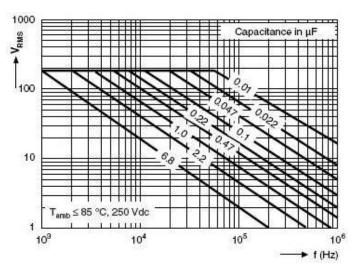
- Eccentricity as in drawing. The maximum eccentricity is smaller than or equal to the lead diameter of the product concerned.
- Product height with seating plane as given by "IEC 60717" as reference: hmax ≤ h +0.4 mm or hmax ≤ h' + 0.4 mm.

STORAGE TEMPERATURE

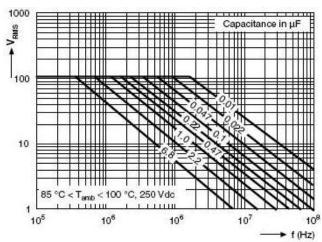
• Storage temperature: Tstg = - 25 to +40 °C with RH maximum 80% without condensation

RATINGS AND CHARACTERISTICS REFERENCE CONDITIONS

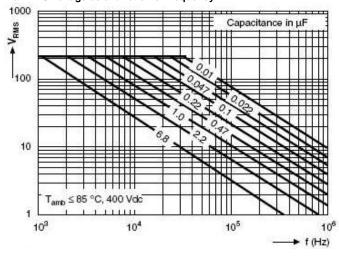
Unless otherwise specified, all electrical values apply to an ambient temperature of 23 ± 1 °C, an atmospheric pressure of 86 to 106 kPa and a relative humidity of 50 ± 2 %.

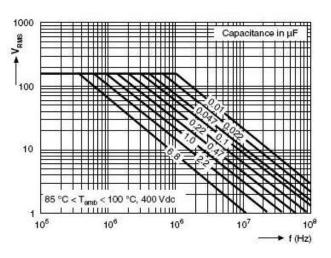

For reference testing, a conditioning period shall be applied over 96 ± 4 hours by heating the products in a circulating air oven at the rated temperature and a relative humidity not exceeding 20%.

p6 of 13


VISHAY.

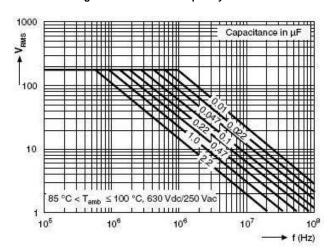
CHARACTERISTICS

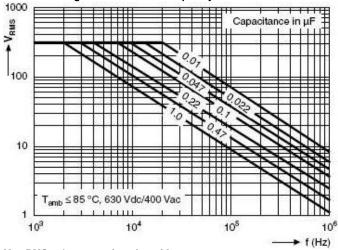

Max RMS voltage as a function of frequency

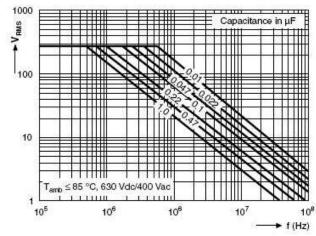

Max RMS voltage as a function of frequency

Max RMS voltage as a function of frequency

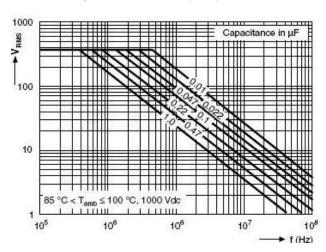

Max RMS voltage as a function of frequency


p 7of 13


Max RMS voltage as a function of frequency


Max RMS voltage as a function of frequency


Max RMS voltage as a function of frequency


Max RMS voltage as a function of frequency

Max RMS voltage as a function of frequency

Max RMS voltage as a function of frequency

p8 of 13

Document Number: 26018 Revision: 04 March 10 for technical questions contact: dc-film@Vishay.com

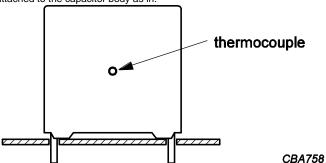
www.vishay.com

HEAT CONDUCTIVITY (G) AS A FUNCTION OF ORIGINAL PITCH AND CAPACITOR BODY THICKNESS IN mW/°C

W _{max}			Heat	conductivity (m	W/°C)		
(mm)	Pitch 5 mm	Pitch 7.5 mm	Pitch 10 mm	Pitch 15 mm	Pitch 22.5 mm	Pitch 27.5 mm	Pitch 37.5 mm
3.0	2.5	4.0	-	-	-	-	-
3.5	3.5	-	-	-	-	-	-
4.0	-	5.0	6.0	-	-	-	-
4.5	4.5	5.5	6.5	-	-	-	-
5.0	5.0	6.5	-	-	-	-	-
5.5	6.5	-	7.5	9.0	-	-	-
5.7	-	7.5	-	-	-	-	-
6.0	-	-	-	10.5	-	-	-
6.5	-	-	9.0	11.5	17.0	-	-
7.5	-	-	-	13.5	19.0	-	-
8.5	-	-	-	15.0	16.5	-	-
9.0	-	-	-	-	22.5	-	-
10.5	-	-	-	-	26.5	-	-
11.0	-	-	-	-	30.5	-	-
11.5	-	-	-	-	-	33.5	-
13.5	-	-	-	-	-	41.0	-
14.5	-	-	-	-	-	-	52.0
15.0	-	-	-	-	-	45.0	-
16.5	-	-	-	-	-	57.0	-
18.0	-	-	-	-	-	57.0	-
18.0	-	-	-	-	-	67.0	-
18.0	-	-	-	-	-	-	75.5
20.0	-	-	-	-	-	-	99.0

POWER DISSIPATION AND MAXIMUM COMPONENT TEMPERATURE RISE

The power dissipation must be limited in order not to exceed the maximum allowed component temperature rise as a function of the free air ambient temperature.


The power dissipation can be calculated according Type detail specification "HQN-384-01/101: Technical information film capacitors with the typical tgd of the curves.

The component temperature rise (ΔT) can be measured (see Section "Measuring the component temperature" for more details) or calculated by $\Delta T = P/G$:

- ΔT = component temperature rise (°C)
- P = power dissipation of the component (mW)
- G = heat conductivity of the component (mW/°C)

MEASURING THE COMPONENT TEMPERATURE

A thermocouple must be attached to the capacitor body as in:

CBA758

The temperature is measured in unloaded (T_{amb}) and maximum loaded condition (T_c).

The temperature rise is given by $\Delta T = T_c - T_{amb}$.

To avoid radiation or convection, the capacitor should be tested in a wind-free box.

p 9of 13

APPLICATION NOTE AND LIMITING CONDITIONS

These capacitors are not suitable for mains applications as across-the-line capacitors without additional protection, as described hereunder. These mains applications are strictly regulated in safety standards and therefore electromagnetic interference suppression capacitors conforming the standards must be used.

To select the capacitor for a certain application, the following conditions must be checked:

- 1. The peak voltage (Up) shall not be greater than the rated DC voltage (URdc)
- 2. The peak-to-peak voltage (U_{p-p}) shall not be greater than the maximum (U_{p-p}) to avoid the ionisation inception level
- The voltage peak slope (dU/dt) shall not exceed the rated voltage pulse slope in an RC-circuit at rated voltage and without ringing. If
 the pulse voltage is lower than the rated DC voltage, the rated voltage pulse slope may be multiplied by U_{Rdc} and divided by the
 applied voltage.

For all other pulses following equation must be fulfilled:

$$2 \times \int_{0}^{T} \left(\frac{dU}{dt}\right)^{2} \times dt < U_{Rdc} \times \left(\frac{dU}{dt}\right)_{rated}$$

T is the pulse duration

- 4. The maximum component surface temperature rise must be lower than the limits (see graph max allowed component temp rise)
- 5. Since in circuits used at voltages over 280V peak-to-peak the risk for an intrinsically active flammability after a capacitor breakdown (short circuit) increases, it is recommended that the power to the component is limited to 100 times the values mentioned in the table: "Heat conductivity"
- 6. When using these capacitors as across-the-line capacitor in the input filter for mains applications or as series connected with an impedance to the mains the applicant must guarantee that the following conditions are fulfilled in any case (spikes and surge voltages from the mains included).

VOLTAGE CONDITIONS FOR 6 ABOVE

ALLOWED VOLTAGES	T _{amb} ≤ 85 °C	85 °C <t<sub>amb ≤ 100 °C</t<sub>
Maximum continuous RMS voltage	U _{Rac}	U_Rac
Maximum temperature RMS-over voltage (<24 hours)	1.25 x U _{Rac}	1.25 x U _{Rac}
Maximum peak voltage (V _{o-p}) (<2s)	1.6 x U _{Rdc}	1.1 x U _{Rdc}

p10 of 13

MKP 1840-M

Vishay Film Capacitors

INSPECTION REQUIREMENTS

General note:

Sub-clause numbers of tests and performance requirements refer to the "Sectional Specification, publication IEC 60384-16 and specific reference data".

Group C inspection requirements

Group C inspection requirements		T .
SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
SUB-GROUP C1A PART OF SAMPLE OF SUB-GROUP C1		
4.1 Dimensions (detail)		As specified in Chapters "General data" of this specification
4.3.1 Initial measurements4.3 Robustness of	Capacitance Tangent of loss angle at 10 kHz Tensile and bending	No visible damage
terminations 4.4 Resistance to soldering heat 4.14 Component solvent resistance	Method: 1A Solder bath: 280 °C ± 5 °C Duration: 5 s Isopropylalcohol at room temperature Method: 2 Immersion time: 5 ± 0.5 min Recovery time:	
4.4.2 Final measurements	Min 1 hour, max 2 hours Visual examination Capacitance	No visible damage Legible marking ΔC/C ≤ 2% of the value measured initially.
	Tangent of loss angle	Increase of tan δ: ≤ 0.002 Compared to values measured in 4.3.1
SUB-GROUP C1B OTHER PART OF SAMPLE OF SUB- GROUP C1		
4.6.1 Initial measurements 4.15 Solvent resistance of the marking	Capacitance Tangent of loss angle at 100 kHz Isopropylalcohol at room temperature Method: 1 Rubbing material: cotton wool	No visible damage Legible marking
4.6 Rapid change of temperature4.7 Vibration	Immersion time: 5 ± 0.5 min θA= lower category temperature θB= upper category temperature 5 cycles Duration t = 30 min Visual examination Mounting: see Section "Mounting" for more information Procedure B4 Frequency range: 10 to 55 Hz. Amplitude: 0.75 mm or Acceleration 98 m/s² (whichever is less severe) Total duration 6 hours.	No visible damage
4.7.2 Final inspection 4.9 Shock	Visual examination Mounting: see Section "Mounting" for more information Pulse shape: half sine Acceleration: 490 m/s² Duration of pulse: 11 ms.	No visible damage

p 11of 13

SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
4.9.3 Final measurements	Visual examination Capacitance Tangent of loss angle	No visible damage $ \Delta C/C \le 2\%$ of the value measured in 4.6.1. Increase of tan δ : ≤ 0.002 Compared to values measured in 4.6.1
	Insulation resistance	As specified in Section "Insulation Resistance" of this specification
SUB-GROUP C1 COMBINED SAMPLE OF SPECIMENS OF SUB-GROUPS C1A AND C1B		
4.10 Climatic sequence 4.10.2 Dry heat	Temperature: upper category temperature Duration: 16 hours	
4.10.3 Damp heat cyclic Test Db, first cycle 4.10.4 Cold	Temperature: lower category temperature Duration: 2 hours	
4.10.6 Damp heat cyclic Test Db, remaining cycles		
4.10.6.2 Final measurements	Visual examination	No visible damage Legible marking
	Capacitance Tangent of loss angle	$ \Delta C/C \le 3\%$ of the value measured in 4.4.2 or 4.9.3 Increase of tan $\delta \le 0.003$
		Compared to values measured in 4.3.1 or 4.6.1
	Insulation resistance	≥ 50% of values specified in Section "Insulation resistance" of this specification
CUD ODOUD OO		
SUB_GROUP C2 4.11 Damp heat steady state	Capacitance	
4.11.1 Initial measurements	Tangent of loss angle at 1 kHz	
4.11.3 Final measurements	Visual examination	No visible damage Legible marking
	Capacitance Tangent of loss angle	$ \Delta C/C \le 3\%$ of the value measured in 4.11.1. Increase of tan $\delta \le 0.002$
	Insulation resistance	Compared to values measured in 4.11.1. ≥ 50% of values specified in Section
	modation resistance	"Insulation resistance" of this specification
SUB-GROUP C3A		
4.12 Endurance DC	Duration: 2000h 1.25 x U _{Rdc} at 85 °C	
4.12.1 Initial measurements	0.875 x U _{Rdc} at 100°C Capacitance Tangent of loss angle at 100 kHz	
4.12.5 Final measurements	Visual examination	No visible damage Legible marking
	Capacitance	$ \Delta C/C \le 3\%$ of the value measured in 4.12.1.
	Tangent of loss angle	Increase of tan δ: ≤ 0.004 Compared to values measured in 4.12.1
	Insulation resistance	≥ 50% of values specified in Section "Insulation resistance" of this specification
SUB-GROUP C4		
4.2.6 Temperature characteristics Initial measurements		
	1	İ
Intermediate measurements	Capacitance Capacitance at lower category temperature	For -55 °C to +20 °C:

p12 of 13

MKP 1840-M

Vishay Film Capacitors

SUB-CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
	Capacitance at upper category temperature	for 20 °C to 85 °C: -3% ≤ ΔC/C ≤ 0%
Final measurements	Capacitance	As specified in Section "Capacitance" of this specification
4.13 Charge and discharge	Insulation resistance	As specified in Section "Insulation Resistance" of this specification
	10000 cycles	
	Charged to U _{Rdc}	
	Discharge resistance:	
	$R = \frac{U_{Rdc}}{2.5xC (dU/dt)}$	
440.41.33.1		
4.13.1 Initial measurements	Capacitance Tangent of loss angle at 100 kHz	
4.13.3 Final measurements	Capacitance	∆C/C ≤ 3% of the value measured in
	Tangent of loss angle	Increase of tan δ: ≤ 0.005 Compared to values measured in 4.13.1
	Insulation resistance	≥ 50% of values specified in Section "Insulation resistance" of this specification.